TY - CONF A1 - Holstein, R. A1 - Müller, Christina T1 - Analyzing the reliability of non-destructive tests using the modular modell - a practical approach N2 - Non-destructive testing is an important tool to guarantee the safety of railway traffic. The infrastructure with tracks, switches and sleepers is regularly tested, the locomotives and wagons with their wheels, bogies and axles as well. Many years of experience and some events lead in Germany to a good practice in testing the railway components. Now, European authorities are drafting a system of common requirements and standards for the European Railway Market. The German practice combines an intensive training of the NDT-personnel including sufficient time for practical exercises with organizational measures of the companies, responsible for rolling stock and infrastructure. Through the example of UT-testing of railway axles it will be shown, how training and organizational measures influence the reliability of such testing. T2 - 19th World Conference on Non-Destructive Testing CY - München, Germany DA - 13.06.2016 KW - NDT KW - Reliability KW - Modular model KW - Railway KW - Human factors PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-375712 UR - http://www.ndt.net/article/wcndt2016/papers/mo1d4.pdf SP - id 19519, 1 EP - 6 AN - OPUS4-37571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Prager, Jens T1 - Analysis of Guided Wave Propagation in an Aluminium-CFRP Plate N2 - Guided waves cover comparably long distances and thus allow for online structural health monitoring of safety relevant components, e.g. lightweight composite overwrapped pressure vessels (COPV) as used for the transportation of pressurised gases. Reliable non-destructive assessment of COPVs’ condition is not available yet due to their complex composite structure comprising a thin metal liner and a fibre reinforced plastics (FRP) overwrap. The conventional overload hydrostatic pressure testing used for the metal vessels is not suitable for the composite vessels, because it may damage the FRP overwrap reducing the service life of the COPV. Therefore, ISO and CEN defined a maximum service life of composite pressure vessels as of 15 to 20 years. To extend the COPVs’ service life and to ensure a safer usage a structural health monitoring system based on guided ultrasonic waves is to be developed. In this contribution first results of guided waves propagation in a flat composite plate consisting of an aluminium layer firmly bonded to a carbon fibre reinforced plastic laminate are presented. Based on experimental results material properties of FRP are reconstructed by means of the Scaled Boundary Finite Element Method (SBFEM). T2 - ECNDT 2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Structural Health Monitoring KW - Pressure tanks KW - Hydrogen storage KW - Natural gas KW - Composites PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452084 SP - 1 EP - 6 AN - OPUS4-45208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - An efficient and clean fuel for high temperature process industries N2 - The use of energetic materials as a main fuel in high temperature process industries are not known to the scientific community as such. This paper highlights some of the features and advantages of using organic peroxides especially di-tert-butyl peroxide (DTBP) in high temperature process industries. The feasibility of using DTBP as a main or supporting fuel in process industries have also been justified with the help of Computational Fluid Dynamics (CFD) simulations. For peroxides requirement of less fuel and air for the same amount of heat flux has been shown. The resulted emission from the combustion of DTBP is also discussed. T2 - 11th Conference on Energy for a Clean Environment CY - Lisbon, Portugal DA - 2011-07-05 KW - Energetic materials KW - Process industries KW - Organic peroxide KW - Di-tert-butylperoxide (DTBP) KW - CFD simulation KW - Emission PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-247071 SP - 1 EP - 10 AN - OPUS4-24707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotschate, Daniel A1 - Wendland, Saskia A1 - Gaal, Mate T1 - Airborne testing of molded polymer compounds N2 - Modern and energy-efficient materials are essential for innovative designs for aerospace and automotive industries. Current technologies for rapid manufacturing such as additive manufacturing and liquid composite moulding by polymer Extrusion allow innovative ways of creating robust and lightweight constructions. Commercially available printing devices often use polylactide (PLA) or acrylonitrile butadiene styrene (ABS) as raw material. Therefore, parameters like the infill ratio, influencing the ability to resist mechanical stress, may have a beneficial impact on the lifetime of components. These manufacturing technologies require a good knowledge about materials and even adapted non-destructive testing technologies and methods. Airborne ultrasonic testing has beneficial advantages for testing those lightweight constructions. It is a contact-free testing method, which does not require a liquid couplant. Therefore, it allows fast test cycles without any unwanted alternations of the material properties due to interactions with any coupling liquid. This contribution deals with the characterisation of printed specimens based on PLA by using airborne ultrasound and presents the current edge of non-destructive testing and evaluation using airborne ultrasonic transducers. The specimens, manufactured by polymer extrusion, are printed as thin plates. The infill ratio, as well as the material thickness, were varied to model density imperfections with different geometric shapes and properties. For better understanding of the limits of airborne ultrasonic testing in transmission, we compared own-developed transducers based on different physical principles: on ferroelectrets, on the thermoacoustic effect, as well as a new type of transducers based on gas discharges. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 24.10.2018 KW - Air-coupled ultrasonic testing KW - Polymer KW - Plasma acoustics KW - Gas discharges KW - Atmospheric pressure plasma PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465609 VL - 168 SP - Th.6.C.1, 1 EP - 7 AN - OPUS4-46560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Schadow, Florian A1 - Nielow, Dustin A1 - Trappe, Volker T1 - Air-coupled ultrasonic ferroelectret transducers with additional bias voltage for testing of composite structures N2 - Common air-coupled transducers for non-destructive testing consist of a piezocomposite material and several matching layers. Better acoustical matching to air is achieved by transducers based on charged cellular polypropylene (PP). This material has about hundred times lower acoustic impedance than any piezocomposite, having about the same piezoelectric coefficient. The piezoelectric properties of cellular PP are caused by the polarization of air cells. Alternatively, a ferroelectret receiver can be understood as a capacitive microphone with internal polarization creating permanent internal voltage. The sensitivity of the receiver can be increased by applying additional bias voltage. We present an ultrasonic receiver based on cellular PP including a high-voltage module providing bias voltage up to 2 kV. The application of bias voltage increased the signal by 12 to 15 dB with only 1 dB increase of the noise. This receiver was combined with a cellular PP transmitter in through transmission to inspect several test specimens consisting of glass-fiber-reinforced polymer face sheets and a porous closed-cell PVC core. These test specimens were inspected before and after load. Fatigue cracks in the porous PVC core and some fatigue damage in the face sheets were detected. These test specimens were originally developed to emulate a rotor blade segment of a wind power plant. Similar composite materials are used in lightweight aircrafts for the general aviation. The other inspected test specimen was a composite consisted of glass-fiber-reinforced polymer face sheets and a wooden core. The structure of the wooden core could be detected only with cellular PP transducers, while commercial air-coupled transducers lacked the necessary sensitivity. Measured on a 4-mm thick carbon-fiber-reinforced polymer plate, cellular PP transducers with additional bias voltage achieved a 32 dB higher signal-to-noise ratio than commercial air-coupled transducers. T2 - 10th International Symposium on NDT in Aerospace CY - Dresden, Germany DA - 26.10.2018 KW - Airborne ultrasonic testing KW - Air-coupled ultrasonic testing KW - Ferroelectret KW - Composites KW - Transducers PY - 2018 SP - 1 EP - 6 AN - OPUS4-46657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Caldeira, Rui A1 - Bartusch, Jürgen A1 - Kupnik, M. T1 - Air-coupled ultrasonic ferroelectret receiver with additional DC voltage N2 - Highly sensitive air-coupled ultrasonic sensors are essential for various applications such as testing of composite materials. One of the major challenges for the development of air-coupled ultrasonic sensors is the impedance matching to air. With a lower acoustic impedance than the usual piezoelectric materials, charged cellular polypropylene film (cPP) offers better matching to air with a similar piezoelectric coefficient. The piezoelectric behaviour demonstrated by cPP comes from polarized air cells that create a permanent internal voltage. The sensitivity of the sensor varies with the application of an additional DC bias voltage. Thus, this work presents a cPP ultrasonic sensor with an improvement of up to 15 ± 1 dB on the signal-to-noise ratio. T2 - Eurosensors 2017 CY - Paris, France DA - 3.9.2017 KW - Ultrasonic KW - Air-coupled KW - Cellular polypropylene KW - Transducer KW - Ferroelectret PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-419009 DO - https://doi.org/10.3390/proceedings1040362 VL - 1 IS - 4 SP - Article 362, 1 EP - 4 AN - OPUS4-41900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grager, J.-C. A1 - Kotschate, Daniel A1 - Gamper, J. A1 - Gaal, Mate A1 - Pinkert, K. A1 - Mooshofer, H. A1 - Goldammer, M. A1 - Grosse, C. U. T1 - Advances in air-coupled ultrasonic testing combining an optical microphone with novel transmitter concepts N2 - Air-coupled ultrasound (ACU) is increasingly used for automated and contactless inspection of large-scale composite structures as well as for non-destructive testing (NDT) of water-sensitive or porous materials. The major challenge to overcome using ACU in NDT is the enormous loss of ultrasonic energy at each solid-air interface caused by the high acoustic impedance mismatch. Resonant low-frequency piezoceramic transducers are specially designed to achieve high sound pressure levels. For an expanded use of this technique, however, the spatial resolution needs to be increased. Recent studies of our collaborative research group demonstrated the successful application of a resonance-free, highly sensitive receiver that uses a Fabry-Pérot etalon instead of piezoceramic materials or membranes. However, to reach the full potential of this broadband small-aperture optical microphone, novel transmitter concepts have to be developed and evaluated for advanced NDT applications. Different types of transmitter were tested in combination with the optical microphone acting as receiver and they were compared to conventional piezoceramic transducers in through-transmission mode. Monolithic carbon fiber-reinforced plastics (CFRP) and CFRP sandwich structures containing different defect types were inspected. Presented results are processed as C-scan images and further evaluated for spatial resolution, signal-to-noise ratio and sensitivity of each measurement setup. Novel transmitter concepts, such as ferroelectret and thermoacoustic emitters, show promising findings with a considerably improved time and spatial resolution for ACU-NDT. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Air-coupled ultrasonic testing KW - Optical microphone KW - Thermoacoustic KW - Cellular polypropylene KW - Ferroelectret KW - Transducer PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452114 SP - ECNDT-0166-2018, 1 EP - 10 AN - OPUS4-45211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Grohmann, Maria A1 - Niederleithinger, Ernst T1 - Advanced ultrasonic imaging for concrete: Alternative imaging conditions for reverse time migration N2 - Ultrasound echo is a widely used NDT technique for determining the internal geometry of structures. Reverse-time migration (RTM) has been recently introduced to NDT applications, as an imaging method for ultrasound data, to overcome some of the limitations (e.g. imaging steeply dipping reflector) experienced by the Synthetic Aperture Focusing Technique (SAFT), the most commonly used imaging algorithm for these measurements. The standard implementation of RTM also experiences some drawbacks caused by its imaging condition, which is based on the zero-lag of the cross-correlation between source and receiver wavefields and generates high-amplitude low-frequency artifacts. Three alternative imaging conditions, developed for seismic data applications, were tested for their ability to provide better images than the standard cross-correlation: illumination compensation, deconvolution and wavefield decomposition. A polyamide specimen was chosen for the simulation of a synthetic experiment and for real data acquisition. The migrations of both synthetic and real data were performed with the software Madagascar. The illumination imaging condition was able to reduce the low-frequency noise and had a good performance in terms of computing time. The deconvolution improved the resolution in the synthetic tests, but did not showed such benefit for the real experiments. Finally, as for the wavefield decomposition, although it presented some advantages in terms of attenuating the low-frequency noise and some unwanted reflections, it was not able to image the internal structure of the polyamide as well as the cross-correlation did. Suggestions on how to improve the cost-effectiveness of the implementation of the deconvolution and wavefield decomposition were presented, as well as possible investigations that could be carried out in the future, in order to obtain better results with those two imaging conditions. T2 - DGZfP Jahrestagung 2018 CY - Leipzig DA - 07.05.2018 KW - Ultrasound KW - Reverse time migration KW - Imaging condition KW - Concrete PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448704 SP - Mi.3.A.4, 1 EP - 10 PB - DGZfP AN - OPUS4-44870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Metz, Christian A1 - Franz, Philipp A1 - Fischer, C. A1 - Wachtendorf, Volker A1 - Maierhofer, Christiane T1 - Active thermography for quality assurance of 3D-printed polymer structures N2 - Additively manufactured test specimens made of polyamide 12 (PA 12) by Laser Sintering (LS) as well as of acrylnitril-butadien-styrol (ABS) by Fused Layer Modeling (FLM), were tested with active thermography. For this, two different excitation methods (flash and impulse excitation) were used and compared, regarding the suitability for the detection of constructed and imprinted defects. To increase the quality of the thermograms, data processing methods like thermal signal reconstruction (TSR) and Fourier-Transformation were applied. Furthermore, the long-term stability of the probes towards environmental stress, like UV-radiation, heat, water contact and frost is being investigated in the presented project with artificial weathering tests. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Active thermography KW - Artificial weathering PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453919 SP - Tu.3.A.2, 1 EP - 9 AN - OPUS4-45391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Prager, Jens T1 - Acoustic-structure interaction in the Scaled Boundary Finite Element Method for primsatic geometries N2 - Due to the short wavelength compared to the dimensions of the structure, the simulation of ultrasonic waves is still a challenging task. A numerical method well suited for this purpose is the semi-analytical Scaled Boundary Finite Element Method (SBFEM). When applying this method, only the boundary of a computational domain is discretized using finite elements, while the interior is described by an analytical ansatz. Hence, the number of degrees of freedom is reduced significantly compared to the classical Finite Element Method (FEM). In recent years, a particular formulation of the SBFEM for the simulation of ultrasonic guided waves was developed. The method constitutes an efficient algorithm for prismatic structures of arbitrary length, such as plates, pipes, or beams. Wave propagation phenomena in such structures can be modeled for isotropic and anisotropic inhomogeneous waveguides. Even though the method is an efficient tool for the simulation of guided waves in solid media, a reliable model for the simulation of acoustic wave propagation in fluids as well as acoustic-structure interaction in terms of SBFEM is still missing. In principle, the fluid can be described by a displacement-based formulation and thus be implemented in existing SBFEM algorithms for solid bodies. However, due to the discretization with classical finite elements, spurious modes occur, which cannot be separated from the physical modes straightforwardly. The spurious modes can be suppressed using a penalty parameter. Although very accurate results were achieved for some problems, this procedure has been proven unreliable for certain cases. For this reason, we propose a different approach in this contribution. We employ a pressure model to simulate the acoustic behavior of fluids. The implementation of the pressure model results in a higher effort due to the necessity of incorporating coupling terms, but it presents a stable alternative without spurious modes. The accuracy of the method is demonstrated in comparison with analytical solutions and results obtained using the FEM. T2 - GACM 2019 CY - Kassel, Germany DA - 28.08.2019 KW - Scaled Boundary Finite Element Method KW - Guided Waves KW - Ultrasound KW - Acoustic-Structure Interaction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497364 UR - https://www.upress.uni-kassel.de/katalog/abstract.php?978-3-7376-5093-9 SN - 978-3-86219-5093-9 DO - https://doi.org/10.19211/KUP9783737650939 SP - 347 EP - 350 AN - OPUS4-49736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -