TY - CONF A1 - Kern, Simon A1 - Michalik-Onichimowska, Aleksandra A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, R. A1 - Maiwald, Michael ED - Herwig, Christoph T1 - “Click” analytics for “click” chemistry – a simple method for calibration-free evaluation of online NMR spectra T2 - Tagungsband 11. Interdisziplinäres Doktorandenseminar N2 - Currently, research in chemical manufacturing moves towards flexible plug-and-play approaches focusing on modular plants, capable of producing small scales on-demand with short down-times between individual campaigns. This approach allows for efficient use of hardware, a faster optimization of the process conditions, and thus, an accelerated introduction of new products to the market. Driven mostly by the search for chemical syntheses under biocompatible conditions, so-called “click” chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques. Here we report on a fast and reliable calibration-free online high field NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement with a time interval of 20 s per spectrum, and a robust, automated algorithm to interpret the obtained data. All spectra were acquired using a 500 MHz NMR spectrometer (Varian) with a dual band flow probe having a 1/16-inch polymer tubing working as a flow cell. Single scan 1H NMR spectra were recorded with an acquisition time of 5 s, relaxation delay of 15 s. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and allyl alcohol was conducted in non-deuterated solvents while its time-resolved behaviour was characterised with step tracer experiments. Through the application of spectral modeling the signal area for each reactant can be deconvoluted in the online spectra and thus converted to the respective concentrations or molar ratios. The signals which were suitable for direct integration were used herein for comparison purposes of both methods. T2 - 11. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 12.03.2017 KW - Process Monitoring KW - Online NMR Spectroscopy KW - Indirect Hard Modeling KW - Process Control KW - Process Analytical Technology KW - CONSENS KW - Click Chemistry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435531 SP - 33 EP - 35 PB - Gesellschaft Deutscher Chemiker (GDCh) CY - Frankfurt a. M. AN - OPUS4-43553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas A1 - Trappe, Volker A1 - Nielow, D. A1 - Schumacher, David A1 - Lange, A. A1 - Hentschel, M.P. A1 - Redmer, Bernhard A1 - Ewert, U. A1 - Bruno, Giovanni T1 - X-ray laminographic inspection of sandwich shell segments for wind turbine rotor blades T2 - Proceedings 12th European conference on Non-Destructive Testing N2 - 3D structural investigations are described by X-ray laminography studies of sandwich shell segments, made of a PVC foam core, covered by non-crimp fabric glass fibre composite lay-ups processed by vacuum assisted resin infusion of epoxy. The specific scope of this study is to image transversal flaws within the foam core (joints) and of single ply overlaps. Test flaws were purposely implemented in order to simulate typical failure under cyclic load. In a dedicated test rig for shell structures, the flaw evolution/propagation is monitored by thermography and optical 3D inspection of deformation. Due to the unfavourable preconditions for classical computed tomography as of large aspect ratio, the samples were investigated by coplanar translational laminography. Its limited range of observation angles of ± 45°, results in anisotropic artefacts about the normal to the sample surface, but the typical flaws are well visualized in the as-prepared state, in a state of early damage, and in the repaired state. T2 - 12th European conference on Non-Destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - X-ray laminography KW - Wind turbine KW - Rotor blade PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-453931 SN - 978-91-639-6217-2 SP - 1 EP - 8 AN - OPUS4-45393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias ED - Alexander, M.G. ED - Beushausen, H. ED - Dehn, F. ED - Moyo, P. T1 - Workability and mechanical properties of ultrafine cement based grout for structural rehabilitation: A parametric study on the partial replacement with SCMs T2 - Proceedings of the International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) N2 - Grouting is a universal repair and strengthening technique, which is constantly used for structural remediation of concrete components, trenches, mine subsidence, dam joints, restoration of masonry structures, and geological stabilizations. Having an extremely small particle size of only few microns, ultrafine cements are ideal for grouting applications due to their superior permeability and compressive strength properties of the hardened cement paste compared to that of the less-expensive, but coarser ordinary Portland cements. Supplementary cementitious materials (SCMs) are often used to replace ultrafine cement in order to modify certain properties and to reduce costs. The aim of this experimental study is to investigate the effect of three supplementary materials: microsilica (MS), fly ash (FA), and metakaolin (MK) on the workability, and mechanical properties of an ultrafine cement based grout with a constant water-binder ratio and constant superplasticizer content. Maximum percentages of replacement with ultrafine cement were 6% by volume of cement for MS and 16% for FA, and MK. In general, results suggest that the workability is improved by addition of FA, whereas is reduced, when modified with MS and MK. The compressive strength of grout after cement replacement remains comparable to that of pure cement grout. However, there is a tendency of the MS to positively affect the compressive strength opposite to FA, whereas flexural strength is positively affected by FA. Based on the results, it is evident that grouts with Hägerman cone flow more than 500 mm and compressive strength of more than 90 MPa after 28 days can be produced. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018) CY - Cape Town, South Africa DA - 19.11.2018 KW - Grouting KW - Repair KW - Box-Behnken KW - Supplementary cementitious materials KW - Analysis of variance PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464769 DO - https://doi.org/10.1051/matecconf/201819907006 SN - 2261-236X VL - 199 SP - 07006-1 EP - 07006-7 PB - MATEC Web of Conferences AN - OPUS4-46476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Ou, D. A1 - Ghafafian, Carineh A1 - Zscherpel, Uwe A1 - Trappe, Volker T1 - Wind turbine rotor blade testing by dual-energy laminography T2 - Proceedings of International Symposium on Digital Industrial Radiology and Computed Tomography – DIR2019 N2 - Modern wind turbine rotor blades consist of sandwich shell segments made from glass fiber reinforced polymers. During manufacturing, defects can arise which could lead to failure of the whole component under dynamic mechanical and thermal loads. Hence during operation defects can arise which, if detected, can be repaired locally and in-situ by applying repair patches instead of taking the whole rotor blade down and repair it remotely. This method is much more time and cost effective, since the shut-down time of the energy converter is limited to a minimum. These repair patches can, however, also lead to new defects if not applied optimally. Therefore, it is necessary to control the quality of the repair patches to ensure the best possible restoration of structural integrity of the component. As a rotor blade is an object with a large aspect ratio, X-ray laminography is predestined to provide 3D information of the objective volume. To enhance the amount of information gained from laminographic reconstruction, we use in this study a photon counting and energy discriminating X-ray detector and apply a material decomposition algorithm to the data. By inherently separating the incident spectra within the detection process into two distinct energy bins, the basis material decomposition can provide material resolved images. Choosing glass and epoxy resin as basis materials and numerically solving the inverse dual-energy equation system, the reconstructed laminographic datasets contain highly valuable information about the distribution of the basis materials within the structure. Furthermore, cross- artifacts arising from the limited angle of the projection data can be reduced by this method which allows to investigate structures that were hidden underneath the artefacts. T2 - International Symposium on Digital Industrial Radiology and Computed Tomography – DIR2019 CY - Fürth, Germany DA - 02.07.2019 KW - Laminography KW - Wind energy KW - Fiber reinforced polymer KW - Photon counting detector KW - Repair patch PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484380 UR - https://www.dir2019.com/portals/dir2019/bb/Tu.3.A.1.pdf SN - 978-947971-06-0 SP - 1 EP - 13 AN - OPUS4-48438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Welding with high-power lasers: trends and developments T2 - Physics Procedia - 9th International Conference on Photonic Technologies - LANE 2016 N2 - High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation. T2 - 9th International Conference on Photonic Technologies - LANE 2016 CY - Fürth, Germany DA - 19.09.2016 KW - High-power Laserbeam Welding KW - Electromagnetic Force KW - Vacuum KW - Simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377280 DO - https://doi.org/10.1016/j.phpro.2016.08.003 VL - 83 SP - 15 EP - 25 PB - Elsevier B.V. CY - Berlin, Germany AN - OPUS4-37728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Wavelength-scanning distributed acoustic sensing for structural monitoring and seismic applications T2 - Proceedings of International Symposium on Sensor Science N2 - We introduce wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) for dynamic vibration sensing along optical fibers. The method is based on spectral shift computation from Rayleigh backscatter spectra. Artificial neural networks (ANNs) are used for fast and high-resolution strain computation from raw measurement data. The applicability of the method is demonstrated for vibration monitoring of a reinforced concrete bridge. We demonstrate another application example for quasi-static and dynamic measurement of ground deformation and surface wave propagation along a dark fiber in a telecommunication cable. T2 - 7th International Symposium on Sensor Science CY - Napoli, Italy DA - 09.05.2019 KW - Optical fiber sensor KW - Distributed acoustic sensor (DAS) KW - Optical time domain reflectometry KW - Rayleigh scattering KW - Artificial neural networks KW - Structural health monitoring KW - Seismic measurement PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487733 DO - https://doi.org/10.3390/proceedings2019015030 SN - 2504-3900 VL - 15 SP - Paper 30, 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-48773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Moortgat-Pick, A. A1 - Marx, S. ED - Helmerich, Rosemarie ED - Ilki, A. ED - Motavalli, M. T1 - Vibration Analysis of Structures using a Drone (UAV) based Mobile Sensing Platform T2 - Proceedings of the 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) N2 - The identification of the dynamic behavior of structures, like bridges and towers, is relevant to address multiple issues. In many cases the dynamic parameters should be acquired only once or at a frequency that doesn’t justify the installation of distinct vibration sensors for a long-term monitoring. To identify modal frequencies of a structure, a drone based mobile sensing platform has been implemented. This sensing platform measures the relative displacement be-tween the structure and the drone, which also shows a strong dynamic behavior under wind tur-bulences. By regarding the dynamic model of the drone and additional measurements at the dis-tance sensor the absolute movement of the structure can be estimated based on the measured relative distance. This time domain data is a suitable input for various operational modal analysis algorithms. The system has been used to identify the dynamic properties of test and real structure, like a 1.5 MW wind turbine tower. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2019) CY - Potsdam, Germany DA - 27.08.2019 KW - Modal Analysis KW - Drone KW - Vibration KW - Wind Turbines KW - Bridges PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492045 UR - http://data.smar-conferences.org/downloads/SMAR_2019_Proceedings.zip SN - 978-3-947971-07-7 SP - We.4.C.3 EP - 8 PB - German Society for Non-Destructive Testing (DGZfP e.V.) AN - OPUS4-49204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Villalobos, S. A1 - Scott, D. T1 - Validation of artificial defects for non-destructive testing measurements on a reference structure T2 - MATEC web of conferences N2 - Non-destructive testing was established over the last decades as an important tool for assessing damages, material characterization and quality assurance in civil engineering. For example, Ground Penetrating Radar (GPR) can be used to scan large areas of concrete structures to determine the spatial position of the reinforcement. With the ultrasonic echo method, the thickness of concrete structures can be easily determined even if a high density of reinforcement is given. Various methods and processes have been developed for the validation of NDT procedures aiming at ensuring the quality of measurements in practical use. The Probability of Detection (POD) for example, is an available method to compare different technical devices with each other quantitatively regarding their performance. With this method, the best suited testing device for a specific inspection task under defined boundary conditions can be selected. By using the Guide to the Expression of Uncertainty in Measurement (GUM), it is possible to quantify the measurement uncertainty of an inspection procedure for a specific task. Another important aspect to improve the acceptance of Non-destructive testing methods is the development of reference specimens. Reference specimens serve for the calibration and further development of NDT methods under realistic conditions in different laboratories under the same conditions. A particular challenge here is the most realistic representation of a damage that can occur at building sites. Possible damages include for example horizontal and vertical cracks or honeycombs in concrete. Such a reference structure was built for the development of a new design of power plant constructions. Comparative studies on the manufacturing of realistic honeycombs and delaminations were carried out in advance on a test specimen. The results of this study are presented here. T2 - ICCRRR 2018 - Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 19.11.2018 KW - Zerstörungsfreie Prüfung KW - Nondestructive testing KW - Istzustandserfassung KW - Ultrasonic PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464497 DO - https://doi.org/10.1051/matecconf/201819906006 SN - 2261-236X VL - 199 SP - 1 EP - 9 PB - EDP Sciences CY - Les Ulis AN - OPUS4-46449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cotic, P. A1 - Niederleithinger, Ernst A1 - Stoppel, Markus T1 - Unsupervised fusion of scattered data collected by a multi-sensor robot on concrete T2 - DGZfP-Jahrestagung 2014 (Proceedings) N2 - At BAM a multi-sensor robot system BetoScan is used for the investigation of reinforced concrete floors affected by corrosion in parking garages. Potential maps, as well as the distribution of concrete cover and moisture can be assessed simultaneously and data can be collected contactlessly. In order to evaluate the extent of degradation adequately and to divide the investigated structure into zones with defined damage classes, large data sets have to be collected and interpreted manually. Thus, to promote an efficient data evaluation framework, which could speed up and simplify the evaluation of large data sets, an unsupervised data fusion is of major interest. However, taking into account that collected data do not certainly coincide in space, a scattered data interpolation method should be applied prior data fusion. In the paper, a case study involving a BetoScan data set acquired from a reinforced concrete floor of a parking garage in Germany is presented. The data set includes potential mapping, covermeter based on eddy current, as well as microwave moisture measurements. Among the examined methods for interpolation of scattered data, kriging shows to yield smooth interpolated data plots even in the case of very sparse data. In the post-processing step, the investigated structure is efficiently segmented into zones using clustering based data fusion methods, which prove to be robust enough also for handling noisy data. Based on the minimization of the XB validity index, an unsupervised selection of optimal segmentation into damage classes is derived. T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 26.05.2014 KW - Robot KW - Data fusion KW - Ultrasonics KW - Radar KW - Potential method PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-337943 UR - http://www.ndt.net/article/dgzfp2014/papers/di2c1.pdf SN - 978-3-940283-61-0 IS - DGZfP-BB 148 SP - Di.2.C.1, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-33794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Dohse, Elmar A1 - Bartusch, Jürgen A1 - Köppe, Enrico A1 - Kreutzbruck, Marc A1 - Hillger, W. A1 - Amos, J. M. T1 - Ultrasonic testing of adhesively bonded joints using air-coupled cellular polypropylene transducers T2 - ECNDT 2014 - 11th European conference on non-destructive testing (Proceedings) N2 - In air-coupled ultrasonic testing, the impedance mismatch between the transducer and the air is commonly being solved by adding matching layers to composite transducers. To avoid the difficult technological procedure regarding matching layers, some new piezoelectric materials have been proposed. Most promising are ferroelectrets, which are charged cellular polymers, having ferroelectric and consequently piezoelectric properties. In particular, the extreme softness of cellular polypropylene (cPP) leads to a high piezoelectric constant and to a good impedance match with the air, making matching layers redundant. Its elasticity modulus below 1 MPa causes an additional effect not observed with common piezoelectric materials: that is the electrostrictive effect, here defined as the thickness change due to the attractive force between the transducer electrodes. This effect exceeds the piezoelectric effect at excitation voltages over 1 kV. The extreme softness of cPP leads also to high flexibility, enabling easy focusing by bending the transducer. We have developed air-coupled ultrasonic transducers based on cPP. This includes the electrical matching networks for the transmitter and for the receiver. The transmitter is excited with voltages up to 2.5 kV, so that the electrostrictive effect dominates, leading to sound pressure around 145dB at the transducer surface. These transducers have been applied for testing carbon-fiber-reinforced polymer plates, adhesive joints and other composite structures. Here we report about ultrasonic transmission of two types of adhesive joints. The first one is multi-layer aluminium components with some artificial disbonds, which are common in aerospace industry, and the second one is an aluminium-steel joint with polyurethane adhesive, which is used in automotive industry. T2 - ECNDT 2014 - 11th European conference on non-destructive testing CY - Prague, Czech Republic DA - 06.10.2014 KW - Air-coupled KW - Ultrasonic testing KW - Ferroelectret KW - Cellular polypropylene KW - Transducer KW - Adhesive joint PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317204 SN - 978-80-214-5018-9 SP - 1 EP - 8 PB - Brno University of Technology AN - OPUS4-31720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -