TY - JOUR A1 - de Krom, I. A1 - Heikens, D. A1 - Horn, Wolfgang A1 - Wilke, Olaf A1 - Richter, Matthias A1 - Baldan, A. T1 - Metrological generation of SI-traceable gas-phase standards and reference materials for (semi-) volatile organic compounds N2 - EN 16516 sets specifications for the determination of emissions into indoor air from construction products. Reliable, accurate and International System of Unit (SI)-traceable measurement results of the emissions are the key to consumer protection. Such measurement results can be obtained by using metrologically traceable reference materials. Gas-phase standards of volatile organic compounds (VOCs) in air can be prepared by a variety of dynamic methods according to the ISO 6145 series. However, these methods are not always applicable for semi-VOCs (SVOCs) due to their high boiling point and low vapour pressure. Therefore, a novel dynamic gas mixture generation system has been developed. With this system gas-phase standards with trace level VOCs and SVOCs in air can be prepared between 10 nmol mol−1 and 1000 nmol mol−1. The VOCs and SVOCs in this study have normal boiling points ranging from 146 °C to 343 °C. Metrologically traceable reference materials of the gas-phase standard were obtained by sampling of the VOC gas-phase standard into Tenax TA® sorbent material in SilcoNert® coated stainless steel tubes. Accurately known masses between 10 ng and 1000 ng per VOC were sampled. These reference materials were used to validate the dynamic system. Furthermore, the storage and stability periods of the VOCs in the reference materials were determined as these are crucial characteristics to obtain accurate and SI-traceable reference materials. In a round robin test (RRT), the reference materials were used with the aim of demonstrating the feasibility of providing SI-traceable standard reference values for SVOCs for interlaboratory comparison purposes. Based on the results from the validation, the storage and stability studies and the RRT, gas-phase standards and reference materials of VOCs and SVOCs with relative expanded uncertainties between 5% and 12% (k = 2) have been developed. These reference standards can be used as calibrants, reference materials or quality control materials for the analysis of VOC emissions. KW - SVOC KW - Dynamic calibration gas mixtures KW - Reference materials KW - Indoor air KW - Thermal desorption PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565978 DO - https://doi.org/10.1088/1361-6501/aca704 VL - 34 IS - 3 SP - 1 EP - 13 PB - IOP Publishing AN - OPUS4-56597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Recknagel, Sebastian A1 - Prinz, Carsten A1 - Vogel, Kristin A1 - Koch, Matthias A1 - Becker, Roland T1 - eCerto—versatile software for interlaboratory data evaluation and documentation during reference material production N2 - The statistical tool eCerto was developed for the evaluation of measurement data to assign property values and associated uncertainties of reference materials. The analysis is based on collaborative studies of expert laboratories and was implemented using the R software environment. Emphasis was put on comparability of eCerto with SoftCRM, a statistical tool based on the certification strategy of the former Community Bureau of Reference. Additionally, special attention was directed towards easy usability from data collection through processing, archiving, and reporting. While the effects of outlier removal can be flexibly explored, eCerto always retains the original data set and any manipulation such as outlier removal is (graphically and tabularly) documented adequately in the report. As a major reference materials producer, the Bundesanstalt für Materialforschung und -prüfung (BAM) developed and will maintain a tool to meet the needs of modern data processing, documentation requirements, and emerging fields of RM activity. The main features of eCerto are discussed using previously certified reference materials. KW - Reference material KW - Statistics KW - Software KW - Collaborative trial PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591851 DO - https://doi.org/10.1007/s00216-023-05099-3 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-59185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - A three-dimensional microfluidic flow cell and system integration for improved electrochemical substrate detection in HRP/TMB-based immunoassays N2 - Immunoassays, based on the recognition and capture of analytes by highly selective antibodies, are now used extensively in all areas of diagnostics, but the challenge is to further integrate them into online sensors. To improve the transition from laboratory immunoassays to immunosensors, we have developed a complete flow system, based on a microfluidic core flow cell to enable automated detection of one of the most commonly used immunoassay substrates, TMB, by chronoamperometry. The architecture and fluidic optimisation of the system showed that a specially designed 3D flow cell allows higher flow rates (500 μL min−1) than a standard enlarged microfluidic channel (50 μL min−1) resulting in a significantly shorter detection time of 30 seconds per sample and making the system more robust against interferences due to bubble formation in the chip. The electrochemical measurements showed an improved signal-to-noise ratio (SNR) and thus higher sensitivity for a model immunoassay for diclofenac (SNR = 59), compared to the analytical performance of a conventional laboratory microplate-based assay with optical detection (SNR = 19). In general, this system facilitates the conversion of any conventional immunoassay into an immunosensor with automatic and continuous detection. KW - Microfluidic KW - Immunoassay KW - Electrochemical KW - Mikrofluidik KW - Immunassay KW - Elektrochemie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580159 DO - https://doi.org/10.1039/d3sd00095h VL - 2 SP - 887 EP - 892 PB - Royal Society of Chemistry CY - London, United Kingdom AN - OPUS4-58015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raysyan, Anna A1 - Zwigart, S. A1 - Eremin, S. A. A1 - Schneider, Rudolf T1 - BPA Endocrine Disruptor Detection at the Cutting Edge: FPIA and ELISA Immunoassays N2 - BPA is a chemical commonly used in the production of polymer-based materials that can have detrimental effects on the thyroid gland and impact human reproductive health. Various expensive methods, such as liquid and gas chromatography, have been suggested for detecting BPA. The fluorescence polarization immunoassay (FPIA) is an inexpensive and efficient homogeneous mix-and-read method that allows for high-throughput screening. FPIA offers high specificity and sensitivity and can be carried out in a single phase within a timeframe of 20–30 min. In this study, new tracer molecules were designed that linked the fluorescein fluorophore with and without a spacer to the bisphenol A moiety. To assess the influence of the C6 spacer on the sensitivity of an assay based on the respective antibody, hapten–protein conjugates were synthesized and assessed for performance in an ELISA setup, and this resulted in a highly sensitive assay with a detection limit of 0.05 µg/L. The lowest limit of detection was reached by employing the spacer derivate in the FPIA and was 1.0 µg/L, working range from 2 to 155 µg/L. The validation of the methods was conducted using actual samples compared to LC–MS/MS, which served as the reference method. The FPIA and ELISA both demonstrated satisfactory concordance. KW - Fluorescence Polarization KW - Enzyme-Linked Immunosorbent Assay KW - Endokriner Disruptor KW - Bisphenol A KW - Freisetzung PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579497 DO - https://doi.org/10.3390/bios13060664 VL - 13 IS - 6 SP - 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-57949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Filimonova, S. M. A1 - Melnikov, E. S. A1 - Kaufmann, Jan Ole A1 - Shchepochkina, O. Y. A1 - Eremin, S. A. A1 - Gravel, I. V. A1 - Raysyan, Anna T1 - Exploring the anti‐α‐amylase activity of flavonoid aglycones in fabaceae plant extracts: a combined MALDI‐TOF‐MS and LC–MS/MS approach N2 - A combination of TLC-bioautography, MALDI-TOF-MS and LC–MS/MS methods was used to identify flavonoids with anti-α-amylase activity in extracts of Lathyrus pratensis L. (herb), L. polyphillus L. (fruits), Thermopsis lanceolata R. Br. (herb) and S. japonica L. (buds). After the TLC-autobiography assay, substances with anti-amylase activity were identified by MALDI-TOF-MS followed by confirmation of the result by LC–MS/MS. Results of the study revealed that the flavonoids apigenin, luteolin, formononetin, genistein and kaempferol display marked anti-α-amylase activity. Formononetin showed the largest activity. Compared with LC–MS/MS, MALDI-TOF-MS is a quick and convenient method; results can be obtained within minutes; and only minor sample amounts are required which allows us to analyse mixtures of substances without preliminary separation. However, the inability to distinguish between isomers is the main limitation of the method. KW - Enzyme KW - MALDI-TOF-MS KW - LC-MS/MS KW - Massenspektrometrie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-577128 DO - https://doi.org/https://doi.org/10.1111/ijfs.16491 SN - 0950-5423 VL - 58 IS - 7 SP - 3902 EP - 3911 PB - Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-57712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riedel, Soraya A1 - Jaut, Valerie A1 - Schneider, Rudolf T1 - Ergometrine sensing in rye flour by a magnetic bead-based immunoassay followed by flow injection analysis with amperometric detection N2 - A certain group of mycotoxins, the ergot alkaloids, has caused countless deaths throughout human history. They are found in rye and other cereals and ingesting contaminated foods can cause serious health problems. To identify contaminated food exceeding the legal limits for ergot alkaloids, a portable and cost-effective test system is of great interest to the food industry. Rapid analysis can be achieved by screening for a marker compound, for which we chose ergometrine. We developed a magnetic bead-based immunoassay for ergometrine with amperometric detection in a flow injection system using a handheld potentiostat and a smartphone. With this assay a limit of detection of 3 nM (1 μg/L) was achieved. In spiked rye flour, ergometrine levels from 25 to 250 μg/kg could be quantified. All results could be verified by optical detection. The developed assay offers great promise to meet the demand for on-site ergometrine detection in the food industry. KW - Ergot alkaloids KW - Amperometry KW - Magnetic beads KW - Immunoassay KW - Food analysis KW - Fow injection analysis KW - Mycotoxins PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565906 DO - https://doi.org/10.1016/j.talanta.2022.124172 SN - 0039-9140 N1 - Geburtsname von Riedel, Soraya: Höfs, S. - Birth name of Riedel, Soraya: Höfs, S. VL - 254 IS - 124172 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-56590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Bellinghausen, I. A1 - Leifke, A. L. A1 - Backes, A. T. A1 - Bothen, N. A1 - Ziegler, K. A1 - Weller, Michael G. A1 - Saloga, J. A1 - Schuppan, D. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Chemical modification by peroxynitrite enhances TLR4 activation of the grass pollen allergen Phl p 5 N2 - The chemical modification of aeroallergens by reactive oxygen and nitrogen species (ROS/RNS) may contribute to the growing prevalence of respiratory allergies in industrialized countries. Post-translational modifications can alter the immunological properties of proteins, but the underlying mechanisms and effects are not well understood. In this study, we investigate the Toll-like receptor 4 (TLR4) activation of the major birch and grass pollen allergens Bet v 1 and Phl p 5, and how the physiological oxidant peroxynitrite (ONOO–) changes the TLR4 activation through protein nitration and the formation of protein dimers and higher oligomers. Of the two allergens, Bet v 1 exhibited no TLR4 activation, but we found TLR4 activation of Phl p 5, which increased after modification with ONOO– and may play a role in the sensitization against this grass pollen allergen. We attribute the TLR4 activation mainly to the two-domain structure of Phl p 5 which may promote TLR4 dimerization and activation. The enhanced TLR4 signaling of the modified allergen indicates that the ONOO–-induced modifications affect relevant protein-receptor interactions. This may lead to increased sensitization to the grass pollen allergen and thus contribute to the increasing prevalence of allergies in the Anthropocene, the present era of globally pervasive anthropogenic influence on the environment. KW - Bet v 1 KW - Birch pollen allergen KW - Phl p 5 KW - Grass pollen KW - Phleum pratense KW - Betula pendula KW - Nitration KW - Nitrotyrosine KW - Protein nitration KW - Toll-like receptor 4 KW - Allergy KW - Enhancement KW - Oligomerization KW - Dimerization KW - TLR4 activation KW - Air pollution KW - Nitrogen oxides KW - Inflammation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570298 DO - https://doi.org/10.3389/falgy.2023.1066392 VL - 4 SP - 1 EP - 7 PB - Frontiers Media SA CY - Lausanne, Switzerland AN - OPUS4-57029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beslic, D. A1 - Tscheuschner, Georg A1 - Renard, B. Y. A1 - Weller, Michael G. A1 - Muth, Thilo T1 - Comprehensive evaluation of peptide de novo sequencing tools for monoclonal antibody assembly N2 - Monoclonal antibodies are biotechnologically produced proteins with various applications in research, therapeutics and diagnostics. Their ability to recognize and bind to specific molecule structures makes them essential research tools and therapeutic agents. Sequence information of antibodies is helpful for understanding antibody–antigen interactions and ensuring their affinity and specificity. De novo protein sequencing based on mass spectrometry is a valuable method to obtain the amino acid sequence of peptides and proteins without a priori knowledge. In this study, we evaluated six recently developed de novo peptide sequencing algorithms (Novor, pNovo 3, DeepNovo, SMSNet, PointNovo and Casanovo), which were not specifically designed for antibody data. We validated their ability to identify and assemble antibody sequences on three multi-enzymatic data sets. The deep learning-based tools Casanovo and PointNovo showed an increased peptide recall across different enzymes and data sets compared with spectrum-graph-based approaches. We evaluated different error types of de novo peptide sequencing tools and their performance for different numbers of missing cleavage sites, noisy spectra and peptides of various lengths. We achieved a sequence coverage of 97.69–99.53% on the light chains of three different antibody data sets using the de Bruijn assembler ALPS and the predictions from Casanovo. However, low sequence coverage and accuracy on the heavy chains demonstrate that complete de novo protein sequencing remains a challenging issue in proteomics that requires improved de novo error correction, alternative digestion strategies and hybrid approaches such as homology search to achieve high accuracy on long protein sequences. KW - De novo peptide sequencing KW - Bioinformatics KW - Benchmarking study KW - Monoclonal antibody KW - Mass spectrometry KW - Sequence coverage KW - Light chains KW - Heavy chains KW - IgG KW - Immunoglobulins KW - Error correction KW - Sequencing algorithm KW - Preprocessing KW - Missing fragmentation sites KW - Deep learning-based tools PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570363 DO - https://doi.org/10.1093/bib/bbac542 VL - 24 IS - 1 SP - 1 EP - 12 PB - Oxford University Press AN - OPUS4-57036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano-Martín, D. A1 - Tuma, Dirk A1 - Kipphardt, Heinrich A1 - Khanipour, Peyman A1 - Chamorro, C. R. T1 - Thermodynamic characterization of the (H2 + C3H8) system significant for the hydrogen economy: Experimental (p, rho, T) determination and equation-of-state modelling N2 - For the gradual introduction of hydrogen in the energy market, the study of the properties of mixtures of hydrogen with typical components of natural gas (NG) and liquefied petroleum gas (LPG) is of great importance. This work aims to provide accurate experimental (p, rho, T) data for three hydrogen-propane mixtures with nominal compositions (amount of substance, mol/mol) of (0.95 H2 + 0.05 C3H8), (0.90 H2 + 0.10 C3H8), and (0.83 H2 + 0.17 C3H8), at temperatures of 250, 275, 300, 325, 350, and 375 K, and pressures up to 20 MPa. A single-sinker densimeter was used to determine the density of the mixtures. Experimental density data were compared to the densities calculated from two reference equations of state: the GERG-2008 and the AGA8-DC92. Relative deviations from the GERG-2008 EoS are systematically larger than those from the AGA8-DC92. They are within the ±0.5% band for the mixture with 5% of propane, but deviations are higher than 0.5% for the mixtures with 10% and 17% of propane, especially at low temperatures and high pressures. Finally, the sets of new experimental data have been processed by the application of two different statistical equations of state: the virial equation of state, through the second and third virial coefficients, B(T, x) and C(T, x), and the PC-SAFT equation of state. KW - Hydrogen-containing gas mixture KW - Density data KW - Equation of state KW - Virial coefficients PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570056 DO - https://doi.org/10.1016/j.ijhydene.2022.11.170 SN - 0360-3199 VL - 48 IS - 23 SP - 8645 EP - 8667 PB - Elsevier B. V. CY - Amsterdam AN - OPUS4-57005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tang, Chi-Long A1 - Seeger, Stefan A1 - Röllig, Mathias T1 - Improving the comparability of FFF-3D printing emission data by adjustment of the set extruder temperature N2 - Fused filament fabrication (FFF) is a material extrusion-based technique often used in desktop 3D printers. Polymeric filaments are melted and are extruded through a heated nozzle to form a 3D object in layers. The extruder temperature is therefore a key parameter for a successful print job but also one of the main emission driving factors as harmful pollutants (e.g., ultrafine particles) are formed by thermal polymer degradation. The awareness of potential health risks has increased the number of emission studies in the past years. However, studies usually refer their calculated emission data to the printer set extruder temperature for comparison purposes. In this study, we used a thermocouple and an infrared camera to measure the actual extruder temperature and found significant temperature deviations to the displayed set temperature among printer models. Our result shows that printing the same filament feedstocks with three different printer models and with identical printer set temperature resulted in a variation in particle emission of around two orders of magnitude. A temperature adjustment has reduced the variation to approx. one order of magnitude. Thus, it is necessary to refer the measured emission data to the actual extruder temperature as it poses a more accurate comparison parameter for evaluation of the indoor air quality in user scenarios or for health risk assessments. KW - Ultrafine particles KW - Infrared thermography KW - Thermocouple KW - Indoor air quality KW - FFF-3D printer PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572842 DO - https://doi.org/10.1016/j.aeaoa.2023.100217 VL - 18 SP - 100217 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -