TY - JOUR A1 - Diercks, Philipp A1 - Gläser, Dennis A1 - Lünsdorf, Ontje A1 - Selzer, Michael A1 - Flemisch, Bernd A1 - Unger, Jörg F. T1 - Evaluation of tools for describing, reproducing and reusing scientific workflows N2 - In the field of computational science and engineering, workflows often entail the application of various software, for instance, for simulation or pre- and postprocessing. Typically, these components have to be combined in arbitrarily complex workflows to address a specific research question. In order for peer researchers to understand, reproduce and (re)use the findings of a scientific publication, several challenges have to be addressed. For instance, the employed workflow has to be automated and information on all used software must be available for a reproduction of the results. Moreover, the results must be traceable and the workflow documented and readable to allow for external verification and greater trust. In this paper, existing workflow management systems (WfMSs) are discussed regarding their suitability for describing, reproducing and reusing scientific workflows. To this end, a set of general requirements for WfMSs were deduced from user stories that we deem relevant in the domain of computational science and engineering. On the basis of an exemplary workflow implementation, publicly hosted at GitHub (https://github.com/BAMresearch/NFDI4IngScientificWorkflowRequirements), a selection of different WfMSs is compared with respect to these requirements, to support fellow scientists in identifying the WfMSs that best suit their requirements. KW - FAIR KW - Reproducibility KW - Scientific workflows KW - Tool comparison KW - Workflow management PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584832 DO - https://doi.org/10.48694/inggrid.3726 VL - 1 IS - 1 SP - 1 EP - 27 AN - OPUS4-58483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bekemeier, Simon A1 - Caldeira Rêgo, C. R. A1 - Mai, H. L. A1 - Sikia, Ujjal A1 - Waseda, O. A1 - Apel, M. A1 - Arendt, F. A1 - Aschemann, A. A1 - Bayerlein, Bernd A1 - Courant, R. A1 - Dziwis, G. A1 - Fuchs, F. A1 - Giese, U. A1 - Junghanns, K. A1 - Kamal, M. A1 - Koschmieder, L. A1 - Leineweber, S. A1 - Luger, M. A1 - Lukas, M. A1 - Maas, J. A1 - Mertens, J. A1 - Mieller, Björn A1 - Overmeyer, L. A1 - Pirch, N. A1 - Reimann, J. A1 - Schröck, S. A1 - Schulze, P. A1 - Schuster, J. A1 - Seidel, A. A1 - Shchyglo, O. A1 - Sierka, M. A1 - Silze, F. A1 - Stier, S. A1 - Tegeler, M. A1 - Unger, Jörg F. A1 - Weber, M. A1 - Hickel, Tilmann A1 - Schaarschmidt, J. T1 - Advancing Digital Transformation in Material Science: The Role of Workflows Within the MaterialDigital Initiative N2 - The MaterialDigital initiative represents a major driver toward the digitalization of material science. Next to providing a prototypical infrastructure required for building a shared data space and working on semantic interoperability of data, a core focus area of the Platform MaterialDigital (PMD) is the utilization of workflows to encapsulate data processing and simulation steps in accordance with findable, accessible, interoperable, and reusable principles. In collaboration with the funded projects of the initiative, the workflow working group strives to establish shared standards, enhancing the interoperability and reusability of scientific data processing steps. Central to this effort is the Workflow Store, a pivotal tool for disseminating workflows with the community, facilitating the exchange and replication of scientific methodologies. This article discusses the inherent challenges of adapting workflow concepts, providing the perspective on developing and using workflows in the respective domain of the various funded projects. Additionally, it introduces the Workflow Store’s role within the initiative and outlines a future roadmap for the PMD workflow group, aiming to further refine and expand the role of scientific workflows as a means to advance digital transformation and foster collaborative research within material science. KW - Digitalisation KW - FAIR principles KW - MaterialDigital KW - Scientific workflows KW - Semantic interoperability PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624088 DO - https://doi.org/10.1002/adem.202402149 SN - 1527-2648 IS - 2402149 SP - 1 EP - 25 PB - Wiley-VCH GmbH AN - OPUS4-62408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -