TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed acoustic sensing to monitor ground motion/movement at multi-frequency bands JF - Journal of Lightwave Technology N2 - A novel distributed acoustic sensing technique is proposed that exploits both phase and amplitude of the Rayleigh backscattered light to quantify the environmental variation. The system employs a wavelength-scanning laser and an imbalanced Mach-Zehnder interferometer to acquire the reflection spectra and the phase of the detected light, respectively. Fading-free and low-frequency measurements are realized via the crosscorrelation of the reflection spectra. The discrete crosscorrelation is used to circumvent the nonlinear frequency sweeping of the laser. Based on the phase of the backscattered light, it is possible to quantify fast environmental variations. The whole system requires no hardware modification of the existing system and its functionality is experimentally validated. The proposed system has the potential to monitor ground motion/movement at very low frequency band like subsidence around mining areas and at high frequency band like earthquakes and vibrations induced by avalanches. KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing KW - Ground motion detection KW - Subsidence monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596129 DO - https://doi.org/10.1109/JLT.2024.3358495 SP - 1 EP - 8 PB - Optical Society und IEEE Photonics Society AN - OPUS4-59612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trogadas, P. A1 - Cho, J. I. S. A1 - Rasha, L. A1 - Lu, X. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Shearing, P. R. A1 - Brett, D. J. L. A1 - Coppens, M. O. T1 - A nature-inspired solution for water management in flow fields for electrochemical devices JF - Energy & Environmental Science N2 - A systematic, nature-inspired chemical engineering approach is employed to solve the issue of flooding in electrochemical devices. The mechanism of passive water transport utilized by lizards living in arid environments is leveraged to design flow-fields with a microchannel structure on their surface, through which capillary pressure rapidly removes the water generated in the electrochemical device. This water management strategy is implemented in proton exchange membrane fuel cells (PEMFCs) with a lunginspired flow-field, which ensures uniform distribution of reactants across the catalyst layer. Jointly, this nature-inspired approach results in flood-free, stable operation at 100% RH and a B60% increase in current (B1.9 A cm-2) and peak power density (B650 mW cm−2) compared to current PEMFCs with a flood-prone, serpentine flow-field (B0.8 A cm-2 and 280 mW cm-2, respectively). This significant advance allows for PEMFC operation at fully humidified conditions. KW - Neutron imaging KW - X-ray tomography KW - Fuel cell PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596662 DO - https://doi.org/10.1039/d3ee03666a VL - 17 SP - 2007 EP - 2017 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Huang, J. A1 - Szymoniak, Paulina A1 - Bojdys, M. J. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Structure and molecular mobility of phosphinine-based covalent organic frameworks – glass transition of amorphous COFs JF - Materials Advances N2 - Two-dimensional covalent organic frameworks (COFs) based on phosphinine and thiophene building blocks have been synthesized with two different side groups. The materials are denoted as CPSF-MeO and CPSF-EtO where CxxF correspond to the covalent framework, whereas P and S are related to heteroatoms phosphorous and sulfur. MeO and EtO indicate the substituents, i.e. methoxy and ethoxy. Their morphologies were studied by scanning electron microcopy and X-ray scattering. The absence of crystalline reflexes in the X-ray pattern reveal that both materials are amorphous and can be considered as glasses. Furthermore, N2 adsorption measurements indicate substantial Brunauer–Emmett–Teller (BET) surface area values pointing to the formation of three-dimensional pores by stacking of the aromatic 2D layer. An analysis of the porosity of both COFs showed a mean radius of the pores to be of ca. 4 nm, consistent with their chemical structure. The COFs form nanoparticles with a radius of around 100 nm. The thermal behavior of the COFs was further investigated by fast scanning calorimetry. These investigations showed that both COFs undergo a glass transition. The glass transition temperature of CPSF-EtO is found to be ca. 100 K higher than that for CPSF-MeO. This large difference in the glass transition is discussed to be due to a change in the interaction of the COF sheets induced by the longer ethoxy group. It might be assumed that for CPSF-EtO more individual COF sheets assemble to larger stacks than for CPSF-MeO. This agrees with the much larger surface area value found for CPSF-EtO compared to CPSF-MeO. To corroborate the results obtained be fast scanning calorimetry dielectric measurements were conducted which confirm the occurrence of a dynamic glass transition. The estimated temperature dependence of the relaxation rates of the dielectric relaxation and their absolute values agrees well with the data obtained by fast scanning calorimetry. Considering the fragility approach to the glass transition, it was further found that CPSF-MeO is a fragile glass former whereas CPSF-EtO behaves as a strong glass forming material. This difference in the fragility points also to distinct differences in the interaction between the 2D COF molecules in both materials. KW - Covalent Organic frameworks PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596770 DO - https://doi.org/10.1039/d3ma01123b SP - 1 EP - 10 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of Polyglycolide via Polycondensation: A Reinvestigation JF - Macromolecular Chemistry and Physics N2 - The Na salt of chloroacetic acid is condensed in suspension. Furthermore,glycolic acid is condensed in bulk or in concentrated solution by means of SnCl2 or 4-toluene sulfonic acid (TSA) as catalysts. The temperatures are varied from 160 to 200°C and the time from 1 to 5 days. Low molar mass cyclic poly(glycolic acid) (PGA) is detected by means of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry in most PGAs. A predominance of certain cycles having an even number of repeat units is observed suggesting a thermodynamically favored formation of extended-ring crystals. Extremely high melting temperatures (up to 237.5°C)and high melting enthalpies are found for polycondensations with TSA in 1,2-dichlorobenzene. KW - MALDI TOF MS KW - Polycondensation KW - Polyglycolide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596856 DO - https://doi.org/10.1002/macp.202300397 IS - 2300397 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-59685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. T1 - Cyclic polyglycolides via ring-expansion polymerization with cyclic tin catalysts JF - European Polymer Journal N2 - Glycolide was polymerized in bulk with two cyclic catalysts − 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzepane (SnBiph). The monomer/initiator ratio, temperature (140 – 180 °C) and time (1–––4 days) were varied. The MALDI TOF mass spectra exclusively displayed peaks of cyclic polyglycolide (PGA) and revealed an unusual “saw-tooth pattern” in the mass range below m/z 2 500 suggesting formation of extended ring crystallites. The DSC measurements indicated increasing crystallinity with higher temperature and longer time, and after annealing for 4 d at 160 °C a hitherto unknown and unexpected glass transition was found in the temperature range of 170–185 °C. Linear PGAs prepared by means of metal alkoxides under identical conditions did not show the afore-mentioned features of the cyclic PGAs, neither in the mass spectra nor in the DSC measurements. All PGAs were also characterized by SAXS measurements, which revealed relatively small L-values suggesting formation of thin crystallites in all cases with little influence of the reaction conditions. KW - Polyglycolide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Crystals PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595541 DO - https://doi.org/10.1016/j.eurpolymj.2024.112811 SN - 0014-3057 VL - 207 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-59554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tukhmetova, Dariya A1 - Lisec, Jan A1 - Vogl, Jochen A1 - Meermann, Björn T1 - Development of an Online Isotope Dilution CE/ICP–MS Method for the Quantification of Sulfur in Biological Compounds JF - Analytical Chemistry N2 - We report an analytical methodology for the quantification of sulfur in biological molecules via a speciesunspecific postcolumn isotope dilution (online ID) approach using capillary electrophoresis (CE) coupled online with inductively coupled plasma−mass spectrometry (online ID CE/ICP−MS). The method was optimized using a mixture of standard compounds including sulfate, methionine, cysteine, cystine, and albumin, yielding compound recoveries between 98 and 105%. The quantity of sulfur is further converted to the quantity of the compounds owing to the prior knowledge of the sulfur content in the molecules. The limit of detection and limit of quantification of sulfur in the compounds were 1.3−2.6 and 4.1−8.4 mg L−1, respectively, with a correlation coefficient of 0.99 within the concentration range of sulfur of 5−100 mg L−1. The capability of the method was extended to quantify albumin in its native matrix (i.e., in serum) using experimentally prepared serum spiked with a pure albumin standard for validation. The relative expanded uncertainty of the method for the quantification of albumin was 6.7% (k = 2). Finally, we tested the applicability of the method on real samples by the analysis of albumin in bovine and human sera. For automated data assessment, a software application (IsoCor) which was developed by us in a previous work was developed further for handling of online ID data. The method has several improvements compared to previously published setups: (i) reduced adsorption of proteins onto the capillary wall owing to a special capillary-coating procedure, (ii) baseline separation of the compounds in less than 30 min via CE, (iii) quantification of several sulfur species within one run by means of the online setup, (iv) SI traceability of the quantification results through online ID, and (v) facilitated data processing of the transient signals using the IsoCor application. Our method can be used as an accurate approach for quantification of proteins and other biological molecules via sulfur analysis in complex matrices for various fields, such as environmental, biological, and pharmaceutical studies as well as clinical diagnosis. Sulfur is an essential element in living organisms, where it plays important roles in various biological processes, such as protein synthesis, enzyme activity, and antioxidant defense. However, the biological effects of different sulfur species can vary widely, and imbalances in sulfur speciation have been observed in a range of diseases, including cancer, Alzheimer’s disease, and diabetes.1−3 The accurate quantification of sulfur and its species in biological samples requires sensitive and selective analytical techniques. In recent years, separation techniques coupled online with inductively coupled plasma−mass spectrometry (ICP−MS) have emerged as powerful online analytical tools complementary to molecular spectrometric methods for speciation analysis of biological compounds. External calibration4−9 and isotope dilution (ID)10−15 are common calibration approaches applied for online quantification of sulfur species in complex samples. The ID analysis is advantageous over. KW - Analytical Chemistry KW - CE/MC-ICP-MS KW - species-specific isotope information PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594736 DO - https://doi.org/10.1021/acs.analchem.3c03553 SN - 0003-2700 SP - 1 EP - 8 PB - American Chemical Society (ACS) AN - OPUS4-59473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Lay, Vera A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Behrens, Matthias T1 - Enhancing the Performance of a Large Aperture Ultrasound System (LAUS): A Combined Approach of Simulation and Measurement for Transmitter–Receiver Optimization JF - Enhancing the Performance of a Large Aperture Ultrasound System (LAUS): A Combined Approach of Simulation and Measurement for Transmitter–Receiver Optimization N2 - The Large Aperture Ultrasound System (LAUS) developed at BAM is known for its ability to penetrate thick objects, especially concrete structures commonly used in nuclear waste storage and other applications in civil engineering. Although the current system effectively penetrates up to ~9 m, further optimization is imperative to enhance the safety and integrity of disposal structures for radioactive or toxic waste. This study focuses on enhancing the system’s efficiency by optimizing the transducer spacing, ensuring that resolution is not compromised. An array of twelve horizontal shear wave transducers was used to find a balance between penetration depth and resolution. Systematic adjustments of the spacing between transmitter and receiver units were undertaken based on target depth ranges of known reflectors at depth ranges from 5 m to 10 m. The trade-offs between resolution and artifact generation were meticulously assessed. This comprehensive study employs a dual approach using both simulations and measurements to investigate the performance of transducer units spaced at 10 cm, 20 cm, 30 cm, and 40 cm. We found that for depths up to 5 m, a spacing of 10 cm for LAUS transducer units provided the best resolution as confirmed by both simulations and measurements. This optimal distance is particularly effective in achieving clear reflections and a satisfactory signal-to-noise ratio (SNR) in imaging scenarios with materials such as thick concrete structures. However, when targeting depths greater than 10 m, we recommend increasing the distance between the transducers to 20 cm. This increased spacing improves the SNR in comparison to other spacings, as seen in the simulation of a 10 m deep backwall. Our results emphasize the critical role of transducer spacing in achieving the desired SNR and resolution, especially in the context of depth imaging requirements for LAUS applications. In addition to the transducer spacing, different distances between individual sets of measurement positions were tested. Overall, keeping the minimal possible distance between measurement position offsets provides the best imaging results at greater depths. The proposed optimizations for the LAUS in this study are primarily relevant to applications on massive nuclear structures for nuclear waste management. This research highlights the need for better LAUS efficiency in applications such as sealing structures, laying the foundation for future technological advances in this field. KW - Engineered barrier system KW - Phased array technique KW - Ultrasonic testing KW - Non-destructive testing in civil engineering KW - Seismic migration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592426 DO - https://doi.org/10.3390/s24010100 VL - 24 IS - 1 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-59242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of high molecular mass polyglycolides via ring-opening polymerization with simultaneous polycondensation(ROPPOC) by means of tin and zinc catalysts JF - Polymers for Advanced Technologies N2 - Glycolide was polymerized in bulk by means of four different ROPPOC catalysts: tin(II) 2-ethylhexanoate (SnOct2), dibutyltin bis(pentafluoro-phenoxide) (BuSnOPF),zinc biscaproate (ZnCap), and zinc bis(pentafluoro-phenyl sulfide) (ZnSPF). The temperature was varied between 110 and 180°C and the time between 3 h and 7 days. For the few polyglycolides (PGAs) that were soluble extremely high molecular masses were obtained. The MALDI TOF mass spectra had all a low signal-to-noise ration and displayed the peaks of cyclic PGAs with a“saw-tooth pattern ”indicating formation of extended-ring crystallites in the mass range below m/z 2500. The shape of DSC curves varied considerably with catalyst and reaction conditions, whereas the long-distance values measured by SAXS were small and varied little with the polymeriza-tion conditions. KW - MALDI TOF MS KW - Polyglycolide KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598221 DO - https://doi.org/10.1002/pat.6365 VL - 35 IS - 4 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-59822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiele, Isabel A1 - Santolin, Lara A1 - Meyer, Klas A1 - Machatschek, Rainhard A1 - Bölz, Uwe A1 - Tarazona, Natalia A. A1 - Riedel, Sebastian L. T1 - Microbially synthesized poly(hydroxybutyrate-co-hydroxyhexanoate) with low to moderate hydroxyhexanoate content: Properties and applications JF - International Journal of Biological Macromolecules N2 - Plastic pollution is the biggest environmental concern of our time. Breakdown products like micro- and nanoplastics inevitably enter the food chain and pose unprecedented health risks. In this scenario, bio-based and biodegradable plastic alternatives have been given a momentum aiming to bridge a transition towards a more sustainable future. Polyhydroxyalkanoates (PHAs) are one of the few thermoplastic polymers synthesized 100 % via biotechnological routes which fully biodegrade in common natural environments. Poly(hydroxybutyrate-cohydroxyhexanoate) [P(HB-co-HHx)] is a PHA copolymer with great potential for the commodity polymers industry, as its mechanical properties can be tailored through fine-tuning of its molar HHx content. We have recently developed a strategy that enables for reliable tailoring of the monomer content of P(HB-co-HHx). Nevertheless, there is often a lack of comprehensive investigation of the material properties of PHAs to evaluate whether they actually mimic the functionalities of conventional plastics. We present a detailed study of P(HB-co-HHx) copolymers with low to moderate hydroxyhexanoate content to understand how the HHx monomer content influences the thermal and mechanical properties and to link those to their abiotic degradation. By increasing the HHx fractions in the range of 2 – 14 mol%, we impart an extension of the processing window and application range as the melting temperature (Tm) and glass temperature (Tg) of the copolymers decrease from Tm 165 ◦C to 126 ◦C, Tg 4 ◦C to − 5.9 ◦C, accompanied by reduced crystallinity from 54 % to 20 %. Elongation at break was increased from 5.7 % up to 703 % at 14 mol% HHx content, confirming that the range examined was sufficiently large to obtain ductile and brittle copolymers, while tensile strength was maintained throughout the studied range. Finally, accelerated abiotic degradation was shown to be slowed down with an increasing HHx fraction decreasing from 70 % to 55 % in 12 h. KW - Molecular Biology KW - General Medicine KW - Biochemistry KW - Structural Biology PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595636 DO - https://doi.org/10.1016/j.ijbiomac.2024.130188 VL - 263 SP - 1 EP - 9 PB - Elsevier B.V. AN - OPUS4-59563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Balderas‐Xicohténcatl, Rafael A1 - Al Shakhs, Ali N. A1 - Berenguer‐Murcia, Ángel A1 - Buckley, Craig E. A1 - Cazorla‐Amorós, Diego A1 - Charalambopoulou, Georgia A1 - Couturas, Fabrice A1 - Cuevas, Fermin A1 - Fairen‐Jimenez, David A1 - Heinselman, Karen N. A1 - Humphries, Terry D. A1 - Kaskel, Stefan A1 - Kim, Hyunlim A1 - Marco‐Lozar, Juan P. A1 - Oh, Hyunchul A1 - Parilla, Philip A. A1 - Paskevicius, Mark A1 - Senkovska, Irena A1 - Shulda, Sarah A1 - Silvestre‐Albero, Joaquin A1 - Steriotis, Theodore A1 - Tampaxis, Christos A1 - Hirscher, Michael A1 - Maiwald, Michael T1 - Establishing ZIF‐8 as a reference material for hydrogen cryoadsorption: An interlaboratory study JF - ChemPhysChem N2 - AbstractHydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal‐organic framework ZIF‐8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF‐8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF‐8 pellets, which we want to propose as a reference material. KW - Physical and theoretical chemistry KW - Atomic and molecular physics, and optics PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594788 DO - https://doi.org/10.1002/cphc.202300794 SN - 1439-7641 SP - 1 EP - 7 PB - Wiley CY - Weinheim AN - OPUS4-59478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -