TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Völzke, Holger T1 - Brittle failure of spent fuel claddings under long-term dry interim storage conditions – Preliminary analysis N2 - The evaluation of cladding integrity is a major issue to be demonstrated in Germany for extended interim storage periods up to 100 years and subsequent transportation considering operational and accidental conditions with respect to reactor operation, cask drying and dry interim storage. The chemical reaction between the zirconium fuel cladding and the cooling water in water-cooled reactors produces hydrogen and zirconium oxide. Hydrogen diffuses into the cladding and precipitates as zirconium hydrides when the solubility limit is reached, preferably oriented in hoop direction. At high temperatures during vacuum drying procedures, the hydrides can dissolve. Over a succeeding period of slow cooling with existing hoop stress the hydrides precipitate again, but partly reoriented along the radial direction of the cladding. This change of microstructure in combination with a decreasing temperature (0.5...2 K/year) during (extended) interim storage and additional mechanical load by handling procedures or under accident conditions could lead to a potential cladding embrittlement and consequently increased failure probability. The current research project BRUZL (Fracture mechanical analysis of spent fuel claddings under long-term dry interim storage conditions) has been launched by BAM to investigate potential sudden brittle failure of spent fuel claddings at small deformation under long-term dry interim storage conditions and is presented. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2019 AN - OPUS4-48868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - EURAD WP 8 Task 3 Overview: Behaviour of nuclear fuel and cladding after discharge N2 - Task 3 of Work package 8 (Spent Fuel Characterization) of the European Joint Programme on Radioactive Waste Management (EURAD) investigates the behaviour of nuclear fuel and cladding after discharge. The aim of the work is to understand and describe the be-haviour of spent nuclear fuel (SNF), irradiated cladding, fuel/cladding chemical interaction (FCCI) and ageing under conditions of extended interim storage, transportation and em-placement in a final disposal system. BAM contributes to the project as partner and leads Task 3. The presentation gives an overview of the project status, main achievements in experimental work and modelling studies, deviations from the plan, delays and challenges ahead. T2 - EURAD Work Package 8 (SFC) Annual Meeting CY - Wettingen, Switzerland DA - 31.10.2023 KW - Nuclear fuel KW - Cladding KW - Discharge PY - 2023 AN - OPUS4-59148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - Spent Fuel Characterization - Current Activities at BAM N2 - The European Joint Programme on Radioactive Waste Management (EURAD) is working on Spent Fuel Characterization (SFC) in its work package (WP) 8. Inspired by the EURAD activities, the International Atomic Energy Agency (IAEA) established an international Coordinated Research Project (CRP) on SFC. The EURAD WP SFC participants are collaborating as a team on the IAEA CRP on SFC. The EURAD WP SFC project consists of four tasks. Task 3 investigates the behaviour of nuclear fuel and cladding after discharge. The aim of these activities is to understand and describe the evolution of the cladding-pellet system and its ageing under conditions of extended interim storage, transportation and emplacement in a final disposal system. At a Consultancy Meeting, BAM as contributor to Task 3 presented current results of the failure analysis of irradiated ZIRLO® claddings under conditions of the Ring Compression Test. T2 - IAEA Consultancy Meeting on the Coordinated Research Project on Spent Fuel Characterization CY - Online meeting DA - 12.09.2023 KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization KW - Extended Interim Storage PY - 2023 AN - OPUS4-58276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 AN - OPUS4-60324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Gaddampally, Mohan Reddy A1 - Völzke, Holger T1 - Fracture Mechanics Analysis of Spent Fuel Claddings during Long-Term Dry Interim Storage T2 - PATRAM 2022 Proceedings N2 - The prevention of brittle fracture of spent fuel claddings during long-term dry interim storage is based on experimental investigations, numerical analyses and assessment methods for predicting the mechanical behavior and determining limiting conditions. The ring compression test (RCT) is an established experimental method for characterizing cladding material. Test results for various high-burnup pressure water reactor zirconium-based fuel cladding alloys (e.g., ZIRLO®, M5®) are publicly available. To reduce the effort associated with irradiated samples in hot cells, it is helpful to perform studies on unirradiated surrogate cladding material. Based on such experimental data, load-displacement curves were numerically analyzed for selected cladding materials. In the presence of radial hydrides, a sample may suddenly fail by fracture even at small deformations. Noticeable load drops in the RCT occur associated to unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting neighboring hydrides. The failure process was simulated by cohesive zones controlled by the fracture energy and the cohesive strength. A modeling approach is presented in which the radial hydride morphology is taken into account. Based on the developed fracture mechanics approach with cohesive zone modeling, not only the deformation behavior but also the failure behavior of irradiated as well as unirradiated claddings with radial hydrides under RCT loading conditions can be adequately described. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2022) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Extended Interim Storage KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization PY - 2023 SP - 1 EP - 8 AN - OPUS4-59146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Fracture mechanical analysis of a cylindrical cast iron cask T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) N2 - The safety evaluation of cask components made of ductile cast iron includes investigations to prevent brittle fracture. Generally, ductile cast iron is endangered by brittle fracture especially at low temperatures (down to -40°C) and in combination with existing crack-like material defects. An applicable method is the assessment of fracture resistance using fracture mechanics according to the IAEA guidelines. The approach is based on the prevention of fracture initiation. For application of these principles for drop loads, account must be taken both of dynamic stresses within the component and dynamic material behavior. Basically, the dynamic stress intensity factor of postulated pre-existing crack-like defects is compared with the dynamic fracture toughness of the material. Applicable numerical and experimental methods for the safety assessment of cask components are demonstrated for the case of an artificially pre-cracked cylindrical cast iron cask which undergoes dynamic loading conditions as result of the hard impact between the cask and a concrete target. The proposed evaluation procedure is a combination of numerical and experimental steps. Exemplarily, the calculated stress intensity factor is compared with measured fracture toughness values from single edge notched bending specimens. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) CY - New Orleans, LA, USA DA - 04.08.2019 KW - Ductile Cast Iron KW - Brittle Fracture KW - Cylindrical Cask PY - 2019 SP - Paper 1209, 1 EP - 7 AN - OPUS4-48914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Völzke, Holger T1 - Brittle failure of spent fuel claddings under long-term dry interim storage conditions – Preliminary analysis T2 - Proceedings of the IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors N2 - The evaluation of cladding integrity is a major issue to be demonstrated in Germany for extended interim storage periods up to 100 years and subsequent transportation considering operational and accidental conditions with respect to reactor operation, cask drying and dry interim storage. The chemical reaction between the zirconium fuel cladding and the cooling water in water-cooled reactors produces hydrogen and zirconium oxide. Hydrogen diffuses into the cladding and precipitates as zirconium hydrides when the solubility limit is reached, preferably oriented in hoop direction. At high temperatures during vacuum drying procedures, the hydrides can dissolve. Over a succeeding period of slow cooling with existing hoop stress the hydrides precipitate again, but partly reoriented along the radial direction of the cladding. This change of microstructure in combination with a decreasing temperature (0.5...2 K/year) during (extended) interim storage and additional mechanical load by handling procedures or under accident conditions could lead to a potential cladding embrittlement and consequently increased failure probability. The current research project BRUZL (Fracture mechanical analysis of spent fuel claddings under long-term dry interim storage conditions) has been launched by BAM to investigate potential sudden brittle failure of spent fuel claddings at small deformation under long-term dry interim storage conditions and is presented. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2019 SP - Paper IAEA-CN-272/49, 1 EP - 8 AN - OPUS4-48869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions T2 - Proceedings of the IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 SP - 1 EP - 10 AN - OPUS4-60323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -