TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of the bam fire test stand for testing a large transport package for radioactive materials N2 - Packages for the transport of spent nuclear fuel are designed to endure severe accidents. To obtain approval, these transport packages must adhere to the specification-based criteria of the international transport regulations SSR-6 of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, SSR-6 prescribes a mechanical test followed by a thermal fire test as part of different testing scenarios. To approve the latter test of the sequence, BAM performs calorimeter tests in advance with so-called fire reference packages for characterizing the actual fire and its impact on the package to be tested. Packages are designed with different geometry sizes depending on their purpose. For previous tests, the implemented test setups in the fire test stand were sufficiently dimensioned and could cover all requirements in this respect. However, to cover additional testing needs in the future, BAM is expanding the test setup for the purpose of testing significantly larger packages. In previous test setups one ring burner for propane surrounding the test specimen was sufficient. The limiting size in this configuration was the design height of the transport package to be tested. According to the thermal test of the IAEA-Regulations [1], a 30-minute fully engulfing 800°C pool fire or an equally severe fire, e.g., propane gas fire, must be applied to the transport package. Possible adjustments such as nozzle cross-section and propane mass flow can be adjusted to a certain extent. Further modifications, to cover significantly higher and larger packages all-around with a fully engulfing fire, must be accomplished with an additional, second burner ring. Both burner rings had the same dimensions and were mounted on top of each other at different heights to create a significantly larger volume of fire that completely engulfs the package including its impact limiter. To meet the IAEA regulatory boundary conditions, the enhanced fire test stand with the second burner ring is tested with a large fire reference package and will then be used for real-size transport packages after all parameters are successfully met. This fire reference package represents the external geometry of a generic transport cask for radioactive material and is equipped with numerous temperature sensors to record temperature curves at the interior wall surfaces. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Fire testing KW - Full-scale KW - Transport package PY - 2024 AN - OPUS4-60255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Heavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Fire KW - Combustion KW - Smouldering PY - 2024 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8 SP - 215 EP - 222 PB - Springer Nature Switzerland AG CY - Gewerbestrasse 11, 6330 Cham, Switzerland AN - OPUS4-60226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of the BAM Fire Test Stand for Testing a Large Transport Package for Radioactive Materials T2 - Proceedings of RAMTrans 2024 N2 - Packages for the transport of spent nuclear fuel are designed to endure severe accidents. To obtain approval, these transport packages must adhere to the specification-based criteria of the international transport regulations SSR-6 of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, SSR-6 prescribes a mechanical test followed by a thermal fire test as part of different testing scenarios. To approve the latter test of the sequence, BAM performs calorimeter tests in advance with so-called fire reference packages for characterizing the actual fire and its impact on the package to be tested. Packages are designed with different geometry sizes depending on their purpose. For previous tests, the implemented test setups in the fire test stand were sufficiently dimensioned and could cover all requirements in this respect. However, to cover additional testing needs in the future, BAM is expanding the test setup for the purpose of testing significantly larger packages. In previous test setups one ring burner for propane surrounding the test specimen was sufficient. The limiting size in this configuration was the design height of the transport package to be tested. According to the thermal test of the IAEA-Regulations [1], a 30-minute fully engulfing 800°C pool fire or an equally severe fire, e.g., propane gas fire, must be applied to the transport package. Possible adjustments such as nozzle cross-section and propane mass flow can be adjusted to a certain extent. Further modifications, to cover significantly higher and larger packages all-around with a fully engulfing fire, must be accomplished with an additional, second burner ring. Both burner rings had the same dimensions and were mounted on top of each other at different heights to create a significantly larger volume of fire that completely engulfs the package including its impact limiter. To meet the IAEA regulatory boundary conditions, the enhanced fire test stand with the second burner ring is tested with a large fire reference package and will then be used for real-size transport packages after all parameters are successfully met. This fire reference package represents the external geometry of a generic transport cask for radioactive material and is equipped with numerous temperature sensors to record temperature curves at the interior wall surfaces. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Fire testing KW - Full-scale KW - Transport package PY - 2024 SP - 1 EP - 7 AN - OPUS4-60253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions T2 - Proceedings of the IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 SP - 1 EP - 10 AN - OPUS4-60323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 AN - OPUS4-60324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Wille, Frank T1 - Potential Effects of Battery and Hydrogen Fires regarding Regulatory Requirements N2 - Introduction and Necessity of the Investigation The IAEA regulations for the safe transport of radioactive material (IAEA SSR-6) define the safety requirements for different package types and consider different transport conditions. The accident conditions of transport specify different mechanical and thermal tests based on investigations of real accident scenarios. Considering the rapid development of new boundary conditions of transport such as electric mobility and the use of hydrogen as energy source for trucks and other kind of vehicles, potential effects of battery and hydrogen fires in transport accidents should be investigated. The aim is to evaluate the existing test requirements developed and derived decades ago, whether they are covering the current transport situation. This concept paper will briefly present the reasons for detailed investigations as bases for a coordinated research project under the roof of the IAEA. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Fire KW - Battery KW - Hydrogen KW - IAEA Regulations PY - 2024 AN - OPUS4-60338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Hydrogen Fire Testing N2 - In this presentation we present a new hydrogen-based test rig for an ongoing feasibility study of using hydrogen as an energy source for the thermal testing of transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. In the first step of the feasibility study, the temperature, structure, and radiation of various hydrogen flames are surveyed. In future works, the results will make it possible to design burner frames that are suitable for fire reference tests in order to make comparisons with pool and propane fires used in assessment procedures today. In parallel comparative numerical simulations are conducted to model the thermal behaviour of hydrogen flames using the software package Ansys®. On the one hand, the numerical simulations support the experiments by providing an overview of numerous parameters and the measuring range; on the other hand, they will help with the design of the burner frame in future work. This paper gives an overview in the design and capabilities of the test rig. Furthermore, the results of the parameter studies show that burner geometry and mass flow provide a significant design margin for the thermal shape of the hydrogen flames. In addition, the results of the initial numerical calculations will be used to determine the necessary sensors, the positions, and their operating range. Only the optimal interaction allows a controlled system that permits user-defined hydrogen fires. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Hydrogen PY - 2024 AN - OPUS4-60341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing N2 - eavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - IAEA KW - Combustion Chamber KW - Smouldering KW - Wood PY - 2024 AN - OPUS4-60227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -