TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 AN - OPUS4-49013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 UR - https://www.inmm.org/INMM-Resources/Proceedings-Presentations/PATRAM-Proceedings.aspx SP - 1 EP - 10 AN - OPUS4-49016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Wille, Frank T1 - Ongoing research & development about metal and elastomer seals at BAM N2 - Packages for the transport and storage of radioactive materials are often sealed with elastomer or metal seals. These seals are basic components to meet the leak tightness criteria for these kind of packages. An overview over ongoing research and development concerning metal and elastomer seals is given in the presentation. Introductions in the fundamental functionality of elastomer and metal seals are presented. Ageing processes are shown for both components regarding to different ageing effects. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Seal KW - Seals KW - Metal seal KW - Elastomer seal KW - Long term investigation KW - Helical spring KW - Aluminum seal KW - Silver seal KW - Component test KW - Useable resilience KW - Leakage rate KW - Compression set KW - Low temperature investigation KW - Ageing KW - Radioactive KW - Transport KW - Storage KW - IAEA PY - 2018 AN - OPUS4-46881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Investigations of the burning behavior of transport package impact limiters and thermal effects onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. A first computational simulation of transport package temperatures taking into account the results of the conducted fire test was performed. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Impact limiter KW - Shock absorber KW - Smoldering KW - Smouldering KW - Burning KW - Thermal testing KW - BAM TTS KW - Combustion KW - Fire KW - Energy release KW - Thermal simulation KW - Heat emission KW - Radioactive KW - Transport KW - IAEA KW - Wood KW - Spruce wood KW - Lid temperature PY - 2018 AN - OPUS4-46882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Spent fuel behavior under Transport Conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - ENSA KW - SNL KW - Real transport KW - IAEA KW - Drop test KW - Multi-Modal Transportation Test KW - Radioactive KW - ACT KW - NCT KW - Hot cell KW - Activity release KW - Fuel rod KW - Fuel rods KW - Burn-up KW - Cladding alloy KW - Criticality safety analysis KW - Containment analysis KW - Fuel assemblies KW - Spent fuel PY - 2018 AN - OPUS4-46880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of the containment system of transport casks for spent fuel and high radioactive waste. The containment systems of such transport casks usually include bolted lids with metallic or elastomeric seals. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions and open points of the transferability of scaled test results to the fullscale design of the containment system will be discussed. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15. Mai 2018 KW - Transport packages KW - Radioactve KW - Seals KW - Leakage rate PY - 2018 AN - OPUS4-46734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jaunich, Matthias T1 - Editorial N2 - Dear Readers, a new year started for all of us (as I write these lines, possibly it was already some time ago when these lines are finally available) and this is the time for the so-called New Year’s resolutions. Setting goals and changing our behavior as well in a private as in a professional context. For Scientists the resolutions may comprise tasks like finalizing a longago started publication, picking up the loose ends of an application for funding or just bringing the running projects in a greater structure. KW - Editorial KW - Polymer Testing PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.01.010 SN - 0142-9418 VL - 74 SP - A1 PB - Elsevier AN - OPUS4-47406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Considerations on spent fuel behavior for transport after extended storage N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behavior of high burn-up spent fuel assemblies (> approx. 50 GWd/tHM, value averaged over the fuel assembly) under transport conditions is analyzed with regard to the assumptions which are used in the Containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. Additionally, the gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated. Considerations and knowledge gaps for the transport after extended interim storage are issues of growing interest. In this context, practical approaches are discussed based on the experience of BAM within the safety assessment of packages approved for transport of spent nuclear fuel. KW - Transport packages for radioactive material KW - Spent nuclear fuel PY - 2018 VL - 83 IS - 6 SP - 488 EP - 494 PB - Hanser AN - OPUS4-47359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Fire test KW - Propane gas KW - Calorimetric test KW - IAEA fire testing PY - 2019 SP - Paper 1141, 1 EP - 10 AN - OPUS4-48840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -