TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing N2 - eavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - IAEA KW - Combustion Chamber KW - Smouldering KW - Wood PY - 2024 AN - OPUS4-60227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing N2 - Heavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Fire KW - Combustion KW - Smouldering PY - 2024 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8 SP - 215 EP - 222 PB - Springer Nature Switzerland AG CY - Gewerbestrasse 11, 6330 Cham, Switzerland AN - OPUS4-60226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Temperature and Heat Flux Measurements in Fire Testing N2 - Packages for the transport of Spent Nuclear Fuel and high active radioactive waste are designed to withstand severe accidents. Specific mechanical and thermal tests are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials in order to cover these hypothetical severe accidents. The thermal test mainly consists of a 30 minute fully engulfing fire. Components such as the package impact limiters can lead to supplementary energy release during the thermal test as they might continue burning after the fire phase. Local heat flux into the package can occur. Measurement of heat flux into the package is of importance to evaluate component temperatures and review their acceptance. The usability of heat flux sensors and temperature measurement equipment has to be tested to apply them in impact limiter fire testing. Further questions arise such as :“Is the infrared camera a useful tool to determine heat flux at the boundary surface?” T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor PY - 2021 AN - OPUS4-55659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of three large scale fire reference tests conducted in BAM fire test facility N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the Surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind Speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a Radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Fire KW - Testing KW - Large scale testing KW - Calorimeter KW - Heat flux PY - 2020 SP - 1 EP - 9 PB - ASME CY - New York AN - OPUS4-51192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Fire test KW - Propane gas KW - Calorimetric test KW - IAEA fire testing PY - 2019 SP - Paper 1141, 1 EP - 10 AN - OPUS4-48840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Cohesive Zone Modelling Approach on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which may result in embrittlement of the cladding material and eventually a sudden failure of cladding under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. An iterative inverse analysis method is used for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which can reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. T2 - 7th GRS Workshop on the Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 24.05.2023 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-58553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Failure Analysis on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Since the cladding is the first barrier for the spent fuel pellets, its integrity must be demonstrated until the end of interim storage and subsequent transportation. An established method for characterizing the cladding material is the ring compression test, in which a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a load case where the fuel rod is crushed. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which result in embrittlement of the cladding material and eventually a possible sudden failure of cladding integrity under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. Therefore, the study of hydride morphology plays an important role in describing the brittle failure behaviour of the claddings. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. Typical hydride morphologies are shown. An iterative inverse analysis method is described for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which is able to reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. This project as part of the European Joint Programme on Radioactive Waste Management has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847593. T2 - BAM-Kolloquium der Abteilung 3 CY - Berlin, Germany DA - 05.06.2023 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-57598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Investigations on a Welding Seam of a Thick-Walled Transport Package N2 - Untersuchung einer Schweißnaht mit verschiedenen Codes. Vergleiche von experimentellen und numerischen Ergebnissen T2 - Technical Exchange IRSN – BAM: Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-56055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Polyurethane Foam in Impact Limiters - Experimental and Numerical Analysis N2 - Transport containers with radioactive material are usually shipped in Germany with wooden-filled impact limiters. Alternative energy-absorbing materials for this purpose can be polyurethane foam, for example. In order to perform adequate simulations with PU foam, experimental and numerical investigations must be carried out. With the help of a series of experimental test runs, a material model is developed, tested and compared in LS-Dyna. T2 - Technical Exchange IRSN – BAM: Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Polyurethane Foam, Impact Limiters, PU-Foam PY - 2021 AN - OPUS4-53261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Polyurethane Foam for Impact Limiters - Theory and Experimental Data N2 - Transport containers with radioactive material are usually shipped in Germany with wooden-filled impact limiters. Alternative energy-absorbing materials for this purpose can be polyurethane foam, for example. In order to adequately determine the characteristics for a selected PU foam, various experimental investigations must be carried out. Classically, PU foam specimens are tested under uniaxial compression, confined compression and a tensile test. Using the experimental data and selected material models from the literature, the parameters can be determined to describe and apply material models. T2 - Technical Exchange Sandia – BAM: Transport & Storage of Packages for Radioactive Material CY - Online meeting DA - 31.08.2021 KW - Polyurethane Foam KW - Impact Limiters KW - PU-Foam PY - 2021 AN - OPUS4-53262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musloff, André A1 - Werner, Jan T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 13.05.2024 KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification KW - IAEA Regu-lations PY - 2024 UR - https://link.springer.com/book/9783031591761 AN - OPUS4-60104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Welding KW - Fracture Mechanics KW - Transport Package PY - 2023 AN - OPUS4-57695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Wille, Frank T1 - Potential Effects of Battery and Hydrogen Fires regarding Regulatory Requirements N2 - Introduction and Necessity of the Investigation The IAEA regulations for the safe transport of radioactive material (IAEA SSR-6) define the safety requirements for different package types and consider different transport conditions. The accident conditions of transport specify different mechanical and thermal tests based on investigations of real accident scenarios. Considering the rapid development of new boundary conditions of transport such as electric mobility and the use of hydrogen as energy source for trucks and other kind of vehicles, potential effects of battery and hydrogen fires in transport accidents should be investigated. The aim is to evaluate the existing test requirements developed and derived decades ago, whether they are covering the current transport situation. This concept paper will briefly present the reasons for detailed investigations as bases for a coordinated research project under the roof of the IAEA. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Fire KW - Battery KW - Hydrogen KW - IAEA Regulations PY - 2024 AN - OPUS4-60338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gleim, Tobias A1 - Chen, Hefeng ED - Kleiber, M. ED - Onate, E. T1 - High-Order Accurate Methods for the Numerical Analysis of a Levitation Device N2 - This paper establishes different axisymmetric and two-dimensional models for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the Maxwell equations are presented and compared and discussed in the example. A high order finite element discretization using Galerkin’s method in space and the generalized Newmark−alpha method in time are developed for the electro-magneto-mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. KW - Maxwell equations KW - Levitation KW - High-Order KW - Accurate-Numerical-Methods KW - Generalized Newmark-alpha PY - 2020 DO - https://doi.org/10.1007/s11831-020-09427-z SN - 1134-3060 VL - 28 IS - 3 SP - 1517 EP - 1543 PB - Springer Nature AN - OPUS4-50734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Chen, Hefeng T1 - Numerical Analysis for an Electro‐Magneto‐Mechanical Phenomenon with High‐Order Accurate Methods N2 - This paper establishes an axisymmetric model for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the MAXWELL equations are presented and compared and discussed in the example. A high order finite element discretization using GALERKIN's method in space and the generalized NEWMARK‐α method in time are developed for the electro‐magneto‐mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. T2 - International Association for Applied Mathematics and Mechanics CY - Kassel, Germany DA - 16.03.2020 KW - High-Order Methods KW - Electro-Magneto-Mechanical KW - Levitation Device PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520720 DO - https://doi.org/10.1002/pamm.202000018 VL - 20 IS - 1 SP - e202000018 PB - Wiley‐VCH GmbH CY - Online AN - OPUS4-52072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Strbske Pleso, Slowakei DA - 13.05.2024 KW - IAEA Regu-lations KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification PY - 2024 UR - https://link.springer.com/book/9783031591761 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 VL - 1 SP - 1 EP - 8 PB - Springer Cham AN - OPUS4-60101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Komann, Steffen A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations [1]. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-55374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -