TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings - Micromechanically Motivated Cohesive Zone Modelling N2 - Since cladding acts as the first barrier for nuclear fuel, it is key to understand the degrading mechanisms leading to cladding embrittlement. Zirconium alloy based cladding samples subjected to simulated pre-storage drying conditions have shown high susceptibility to brittle failure under the occurrence of hoop stress and low temperature as expected after long-term interim storage. The stress state associated with a compressive pinch-load scenario is reproduced by the Ring Compression Test (RCT), which results in sudden failure at relatively small mechanical loads with high sensitivity to the presence of radial hydrides. As part of the BAM research project BRUZL (Fracture mechanics analysis of spent fuel claddings during long-term dry interim storage), static RCTs were conducted on non-irradiated, pre-hydrided ZIRLO® ring-shaped samples that were subjected to a radial hydride treatment. All samples failed in macroscopically brittle fashion with sudden load drops and severe crack propagation through almost the entire wall thickness. In a post-RCT examination of the fracture surfaces using scanning electron microscopy, radial hydrides could be identified as the weakest link of the structure. However, the microscopic failure mechanism is much more complex due to cracks initiating at different axial positions in depth direction of the ring, overlapping cracks, and arresting cracks. A considerable portion of the fracture surfaces appeared to have undergone plastic deformation of the zirconium matrix resulting in void growth and coalescence associated with ductile failure. The geometry of the ductile patches was measured, and the ductile surface fraction was determined. Based on these observations, a statistical model was developed that can reproduce the composition of the fracture surface as a one-dimensional projection. A micromechanically motivated cohesive zone model (CZM) was implemented in existing RCT finite element analysis (FEA) models with different constitutive laws for brittle hydrides and ductile matrix respectively. In this work, FEA results are presented for non-irradiated ZIRLO® and high-burnup M5® claddings. The impact of varying hydride-matrix combinations is discussed. Acknowledgement: The project was funded by the former Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 6th GRS Workshop on the Safety of Extended Dry Storage of Used Nuclear Fuel CY - Garching, Germany DA - 01.06.2022 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2022 AN - OPUS4-55023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Fire Reference Tests for Qualification of IAEA Fire N2 - A small cylindrical fire reference package was designed. A fire test setup was created using the fire reference package in accordance with IAEA standards. Four propane gas fire tests were conducted to determine heat fluxes into the fire reference package. The initial test setup was modified to create the final design of the fire test facility. This allowed for the heat flux to be adjusted to meet the regulatory IAEA fire qualification criteria. Furthermore, a numerical model of the fire reference package was created using boundary conditions derived from the experimental data. The simulation results demonstrated good agreement with the experimental data and provided additional insights. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Fire KW - IAEA KW - Propane PY - 2022 AN - OPUS4-57251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Experimental and numerical investigation of prestressed bolt connections under lateral displacements T2 - Transactions of SMIRT 26 (26th conference on Structural Mechanics in Reactor Technology) N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The packages are assessed to specific transport conditions which are specified in the IAEA safety standards SSR-6 (IAEA 2018). These transport conditions, especially the so-called accident conditions of transport, imply high dynamic loading on the lids and the bolt connections of the package. The response of the lid systems on the mechanical accident conditions is generally investigated by experimental drop tests or numerically, e.g., by finite element analyses. The interpretation of the drop test results for the verification of the numerical models is often not obvious due to the complex superposition of different effects in the real tests. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connections under loadings typical for these drop tests. In this context an experimental test set-up was developed to investigate the response of a single bolt connection under a prescribed lateral displacement of clamped parts. The bolt is instrumented by strain gauges to get the pretensional, the torsional and the bending stress in the bolt shank. Furthermore, the lateral movement and the tilt of the bolt head is measured during the test. A finite element model of the test set-up has been created in Abaqus FEA (Simulia 2021). The very detailed instrumentation of the test set-up shall give the opportunity to investigate and validate the numerical model. The aim of this paper is to give an overview about the proposed research project and to present first results. T2 - SMIRT 26 (26th conference on Structural Mechanics in Reactor Technology) CY - Potsdam, Germany DA - 10.07.2022 KW - Bolt connections KW - Finite element anaylsis KW - Experimental testing KW - Transport package for radioactive materials PY - 2022 UR - https://www.lib.ncsu.edu/resolver/1840.20/40614 SP - 1 EP - 7 PB - IASMiRT AN - OPUS4-59378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Caruso, Stefano A1 - Vlassopoulos, Efstathios A1 - Dagan, Ron A1 - Fiorito, Luca A1 - Herm, Michel A1 - Jansson, Peter A1 - Kromar, Marjan A1 - Király, Márton A1 - Leppanen, Jaakko A1 - Feria Marquez, Francisco A1 - Metz, Volker A1 - Papaioannou, Dimitrios A1 - Herranz, Luis Enrique A1 - Rochman, Dimitri A1 - Schillebeeckx, Peter A1 - Seidl, Marcus A1 - Hernandez Solis, Augusto A1 - Stankovskiy, Alexey A1 - Alvarez Velarde, Francisco A1 - Verwerft, Marc A1 - Rodriguez Villagra, Nieves A1 - Zencker, Uwe A1 - Žerovnik, Gasper T1 - EURAD - Work Package 8 - Deliverable 8.1 - State-of-the-art report N2 - A state-of-the-art (SOTA) review on characterisation of spent nuclear fuel (SNF) properties in terms of source term and inventory assessment (neutron, gamma-ray emission, decay heat, radionuclide inventory, elemental content) and in terms of out-of-core fuel performance (cladding performance and fuel integrity in view of the safety criteria for SNF interim storage, transport and canister packaging) using several numerical and experimental approaches and methodologies is presented. This SOTA report is a result of the spent fuel characterisation (SFC) work package as part of the European Joint Programme on Radioactive Waste Management (EURAD), which offers an overview of the status of knowledge in the field of SNF characterisation and assessment during the pre-disposal phase. The document aims to focus on the current safety-significant gaps and related challenges, providing a direct link to the goals of the mandated actors of EURAD. The report is expected to be used by all EURAD colleagues in their national programmes as a key resource for knowledge management programmes and to contribute to demonstrating and documenting the state-of-the-art. KW - Radioactive waste management KW - Spent fuel characterisation KW - Extended interim storage KW - Predisposal PY - 2022 UR - https://www.ejp-eurad.eu/publications/eurad-d81-state-art-report SP - 1 EP - 112 PB - Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) CY - Châtenay-Malabry AN - OPUS4-59154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Simulation of compression set of epdm o-rings during aging T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference PVP2022 N2 - It is common practice in the application of finite element analysis to model compression set (CS) of elastomers during aging with two different material models according to the two-network theory of Tobolsky. The theory relies on the existence of two networks. The first one represents the original network after vulcanization and is sensitive to chain scission. The second network accounts for the formation of additional crosslinking during aging. Besides the use of user subroutines to describe the two-network model, an element overlay technique is also needed as the full set of both material behaviors did not exist for assignment to a single element. This element overlay technique is valuable for research and developmental purposes but makes extension to industrial usage quite challenging. Our goal is to simulate the CS of elastomers after long-term aging in a commercial finite element software with no need for extra subroutine codes or mesh superposition. Ethylene propylene diene (EPDM) O-rings were aged in a compressed state at 75 °C, 100 °C, 125 °C and 150 °C for up to 183 days. Investigations of the experimental test results were used to identify material models and their parameters to develop a finite element model to simulate CS. The model was implemented in the finite element software ABAQUS/Standard® with a sequential temperature-displacement coupling. Regarding the influence of temperature, the Arrhenius equation is adopted for the time-temperature relationship. The activation energy value that is required for the simulation is firstly determined from shifting the experimental CS results with the time-temperature superposition technique and plotting the shift factors in an Arrhenius diagram. The experiments were compared with the simulation results. Afterwards different activation energies were used in the simulation and discussed. A suitable choice of the activation energy value with regard to the reference temperature and the test temperature is presented. With the chosen activation energies, the match between numerical CS values after long-term aging and the experimental results was improved. T2 - ASME 2022 Pressure Vessels & Piping Conference CY - Las Vegas, USA DA - 17.07.2022 KW - Simulation KW - Compression set KW - EPDM KW - Aging PY - 2022 SP - 1 EP - 9 AN - OPUS4-57370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -