TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Drop tests assessment of internal shock absorbers for packages loaded with encapsulations for damaged spent nuclear fuel N2 - Damaged spent nuclear fuel (DSNF) can be loaded in German dual-purpose casks (DPC) for transport and interim storage. Encapsulations are needed to guarantee a safe handling and a tight closure, separated from the package enclosure. These encapsulations shall be durable and leak-tight for a long storage period, because they are usually not accessible within periodical inspections of the DPC. Due to the general design of DPCs for standard fuel assemblies, specific requirements have to be considered for the design of encapsulations for DSNF to ensure the loading in existing package designs. Especially the primary lid system of a DPC is designed for maximum loads due to the internal impact of the content during drop test conditions. The main difference of encapsulations for damaged spent nuclear fuel is that they have usually a much higher stiffness than standard fuel assemblies. Therefore the design of an internal shock absorber, e.g. at the head of an encapsulation is required to reduce mechanical loads to the primary lid system during impacts. BAM as part of the German competent authority system is responsible for the safety assessment of the mechanical and thermal package design, the release of radioactive material and the quality assurance of package manufacturing and operation. Concerning the mechanical design of the encapsulation BAM was involved in the comprehensive assessment procedure during the package design approval process. An internal shock absorber was developed by the package designer with numerical analyses and experimental drop tests. Experimental drop tests are needed to cover limiting parameters regarding, e.g. temperature and wall thickness of the shock absorbing element to enable a detailed specification of the whole load-deformation behavior of the encapsulation shock absorber. The paper gives an overview of the assessment work by BAM and points out the main findings which are relevant for an acceptable design of internal shock absorbers. The physical drop tests were planned on the basis of pre-investigations of the applicant concerning shape, dimension and material properties. In advance of the final drop tests the possible internal impact behavior had to be analyzed and the setup of the test facility had to be validated. The planning, performance and evaluation of the final drop tests were witnessed and assessed by BAM. In conclusion it could be approved that the German encapsulation system for damaged spent nuclear fuel with shock absorbing components can be handled similar to standard fuel assemblies in existing package designs. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Drop tests KW - Internal shock absorber KW - Design assessment of RAM packages KW - Encapsulations for damaged spent nuclear fuel PY - 2020 AN - OPUS4-51550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Drop tests assessment of internal shock absorbers for packages loaded with encapsulations for damaged spent nuclear fuel N2 - Damaged spent nuclear fuel (DSNF) can be loaded in German dual-purpose casks (DPC) for transport and interim storage. Encapsulations are needed to guarantee a safe handling and a tight closure, separated from the package enclosure. These encapsulations shall be durable and leak-tight for a long storage period, because they are usually not accessible within periodical inspections of the DPC. Due to the general design of DPCs for standard fuel assemblies, specific requirements have to be considered for the design of encapsulations for DSNF to ensure the loading in existing package designs. Especially the primary lid system of a DPC is designed for maximum loads due to the internal impact of the content during drop test conditions. The main difference of encapsulations for damaged spent nuclear fuel is that they have usually a much higher stiffness than standard fuel assemblies. Therefore the design of an internal shock absorber, e.g. at the head of an encapsulation is required to reduce mechanical loads to the primary lid system during impacts. BAM as part of the German competent authority system is responsible for the safety assessment of the mechanical and thermal package design, the release of radioactive material and the quality assurance of package manufacturing and operation. Concerning the mechanical design of the encapsulation BAM was involved in the comprehensive assessment procedure during the package design approval process. An internal shock absorber was developed by the package designer with numerical analyses and experimental drop tests. Experimental drop tests are needed to cover limiting parameters regarding, e.g. temperature and wall thickness of the shock absorbing element to enable a detailed specification of the whole load-deformation behavior of the encapsulation shock absorber. The paper gives an overview of the assessment work by BAM and points out the main findings which are relevant for an acceptable design of internal shock absorbers. The physical drop tests were planned on the basis of pre-investigations of the applicant concerning shape, dimension and material properties. In advance of the final drop tests the possible internal impact behavior had to be analyzed and the setup of the test facility had to be validated. The planning, performance and evaluation of the final drop tests were witnessed and assessed by BAM. In conclusion it could be approved that the German encapsulation system for damaged spent nuclear fuel with shock absorbing components can be handled similar to standard fuel assemblies in existing package designs. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Encapsulations for damaged spent nuclear fuel KW - Drop tests KW - Internal shock absorber KW - Design assessment of RAM packages PY - 2020 SP - 1 EP - 9 AN - OPUS4-51546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank ED - Müller, Lars T1 - Assessment experience on packages loaded with damaged spent nuclear fuel for transport after storage N2 - In 2017 the first German package approval certificate was issued for a dual purpose cask (DPC) design with encapsulated damaged spent nuclear fuel. At the Bundesanstalt für Materialforschung und -prüfung (BAM) a comprehensive assessment procedure was carried out with respect to the mechanical and thermal design, the containment design and quality assurance for manufacturing and operation. Main objective of this procedure was to verify the Package Design Safety Report (PDSR) fulfils the requirements according to the IAEA regulations SSR-6. Until now only standard spent nuclear fuel assemblies were designated for interim storage and transports. Due to nuclear phase out in Germany all other kinds of SNF in particular damaged fuel has to be packed. Therefore specific requirements have to be considered in accordance with international experiences written in IAEA technical reports. In Germany damaged spent nuclear fuel (DSNF) needs a tight encapsulation with special encapsulations and clearly defined properties. Due to the limited amount of DSNF these encapsulations are designed for storage and transport in existing packages. From the assessment experience it has been seen, corresponding PDSR need an extensively expansion to cover the design of these encapsulations and their influences on the package. Then such well-defined encapsulations can be handled like standard fuel assemblies. The main difference to standard package components is, encapsulations with permanent closure achieve their specified condition not after manufacturing but only during operation after loading and closing. Thus specific handling instruction and test procedures are necessary especially for welding, where BAM is able to survey the quality of this first part of operation. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2018 SP - Paper 18524, 1 EP - 8 AN - OPUS4-45258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Qiao, Linan T1 - Applicability of developed calculation models to predict long-term behavior of metal seals – Necessary scope of tests N2 - The long-term sealing behavior of metal seals, assembled in the lid system of casks for transportation and storage of radioactive materials, has been investigated. For that purpose, phenomenological models describing the time- and temperature dependent behavior have been introduced by BAM since 2016, e.g. by using the time-temperature superposition principle. Results have shown that these models describe the relaxation behavior adequately and are suitable for extrapolations. In this work, the applicability of these models is checked by analyzing the necessary scope of tests, which must be carried out to get sufficient information about the long-term behavior of metal seals based on short-term tests. T2 - Waste Management Conference CY - Phoenix, Arizona, USA DA - 03.03.2019 KW - Metal seal KW - Time-temperature superposition principle KW - Transportation and storage cask KW - Long-term interim storage PY - 2019 SP - 19311, 1 EP - 6 AN - OPUS4-48353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Hydrogen Fire Testing N2 - In this presentation we present a new hydrogen-based test rig for an ongoing feasibility study of using hydrogen as an energy source for the thermal testing of transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. In the first step of the feasibility study, the temperature, structure, and radiation of various hydrogen flames are surveyed. In future works, the results will make it possible to design burner frames that are suitable for fire reference tests in order to make comparisons with pool and propane fires used in assessment procedures today. In parallel comparative numerical simulations are conducted to model the thermal behaviour of hydrogen flames using the software package Ansys®. On the one hand, the numerical simulations support the experiments by providing an overview of numerous parameters and the measuring range; on the other hand, they will help with the design of the burner frame in future work. This paper gives an overview in the design and capabilities of the test rig. Furthermore, the results of the parameter studies show that burner geometry and mass flow provide a significant design margin for the thermal shape of the hydrogen flames. In addition, the results of the initial numerical calculations will be used to determine the necessary sensors, the positions, and their operating range. Only the optimal interaction allows a controlled system that permits user-defined hydrogen fires. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Hydrogen PY - 2024 AN - OPUS4-60341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Development of a Hydrogen Fire Test Rig for Thermal Testing N2 - A new hydrogen-based test rig is being developed for a feasibility study on the use of hydrogen as an energy source for thermal testing in accordance with the IAEA SSR-6 guidelines for transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions (SSR-6 & SSG-26) does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - IAEA Fire KW - H2 Fire KW - IAEA Regulations PY - 2024 AN - OPUS4-60554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Development of a Hydrogen Fire Test Rig for Thermal Testing N2 - A new hydrogen-based test rig is being developed for a feasibility study on the use of hydrogen as an energy source for thermal testing in accordance with the IAEA SSR-6 guidelines for transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions (SSR-6 & SSG-26) does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. T2 - 1st JF BMUV Förderprogramm CY - Berlin, Germany DA - 22.05.2024 KW - IAEA Fire KW - H2 Fire KW - IAEA Regulations PY - 2024 AN - OPUS4-60555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Drop test KW - Internal gaps KW - IAEA PY - 2021 AN - OPUS4-54744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material. T2 - SNL BAM Workshop CY - Albuquerque, NM, USA DA - 14.03.2018 KW - Type-B Package KW - Thermal Test PY - 2018 AN - OPUS4-45313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Type-B Package KW - Accident Conditions of Transport KW - Thermal Test PY - 2018 AN - OPUS4-45310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Type-B Package KW - Thermal Test PY - 2018 SP - Paper 18257, 1 EP - 11 AN - OPUS4-45311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Internal gaps KW - Drop test KW - IAEA PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-60996 SP - 1 EP - 6 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Nehrig, Marko A1 - Wille, Frank ED - Saegusa, Toshiari ED - Sert, Gilles ED - Völzke, Holger ED - Wille, Frank T1 - Internal Pressure build-up of Waste Packages with Wet Contents Under Fire Impact N2 - Intermediate level waste often contains residual water or other liquids. The liquids can be decomposed due to radiolysis and can also vaporize especially under fire impact. These pressure generating processes are described. One example for the pressure determination inside a closed cask is discussed using two different approaches: analytical and CFD KW - Wet Content KW - Pressure build-up KW - Type-B Package PY - 2018 SN - 978-981-3234-03-1 SP - 195 EP - 209 PB - World Scientific Publishing CY - Singapore ET - Erste AN - OPUS4-45301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas T1 - Friction coefficients for wood-wood and wood-steel contacts N2 - The friction at the interfaces between pieces of wood and steel is of crucial importance for the impact and energy absorption in impact limiters of transport casks for radioactive material. Here, the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C for a wood-wood combination. T2 - Sandia-BAM Workshop CY - Berlin, Germany DA - 21.11.2022 KW - Wood KW - Friction KW - Transport cask PY - 2022 AN - OPUS4-56342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Finite element simulation of the crush of package components made of encapsulated wood N2 - Typical transport packages used in Germany are equipped with encapsulated wooden impact limiting devices. We would like to present the current status regarding the development of a Finite Element (FE) material model for the crush of wood for the FE-code LS-DYNA. The crush of is a phenomenon governed by macroscopic fracture. Here, we would like to reproduce fracture and failure mechanisms over the continuous volume. In a first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface. For the use for longitudinal compression of wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Wood KW - FEM PY - 2018 AN - OPUS4-45093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Komann, Steffen A1 - Gröke, Carsten A1 - Wille, Frank T1 - Assessment of Quality Management for Transport Packages not requiring Authority Design Approval N2 - The poster presents the german approach for the assessment of quality management systems for transport packages for radioactive material not requiring authority design approval. As legal basis the IAEA regulations, the ADR as well as the GGVSEB are highlighted and examples for these transport packages are given. The GGR 016 is mentioned, main duties and responsibilities as well as the manufacturing and quality surveillance system are described. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Quality KW - Type A KW - Competent authority PY - 2018 AN - OPUS4-45095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Wille, Frank A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Schilling, Olaf A1 - Günther, Uve A1 - Darnstädt, Andreas T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 AN - OPUS4-49056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gröke, Carsten T1 - Maintenance and periodic inspections for packagings not requiring CA-approval N2 - In this presentation the main requirements of BAM-GGR 016 regarding maintenance and periodic inspections were explained. BAM ensures during acceptance of the quality management program that specific and relevant instructions for maintenance and periodic inspections are developed and handed to the operator of the packaging. Examples are given. T2 - FORO Iberoamericano CY - Madrid, Spain DA - 25.11.2019 KW - Maintenance KW - Periodic inspections KW - Radioactive material KW - Package PY - 2019 AN - OPUS4-50049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GOVDOC A1 - Neumann, Martin T1 - Measures for quality and ageing management for non-competent authority approved package designs for the transport of radioactive material N2 - The BAM-GGR 016 explains the requirements of ADR, RID, ADN and IMDG for management systems for design, manufacturing, testing, documentation, use, maintenance, and inspection of packagings for package designs for the transport of radioactive material not requiring competent authority approval for all designs of exempted packages, packages type IP-1, IP-2, IP-3 and type A. KW - Transport KW - Not requiring competent authority approval KW - Radioactive material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597214 VL - BAM-GGR 016 SP - 1 EP - 25 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin ET - Revision 1 AN - OPUS4-59721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Feldkamp, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Transport of HLW canisters on sea vessels N2 - Germany had been transporting spent fuel to the reprocessing plant in Sellafield and La Hague for decades until around 2005. Resulting from the obligation to take back the vitrified high-level waste from reprocessing six CASTOR® HAW28M filled with 168 canisters with radioactive waste in vitrified form were transported from Sellafield to the interim storage facility Biblis in 2020. Rail wagons were used for the transport to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. BAM was involved in the authority assessment of the conditions for the sea transport. For the first transport BAM required among others, assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask in order to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of IMDG code and its supplement INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - RAMTrans 2024 CY - London, GB DA - 14.05.2024 KW - Transport KW - Spent nuclear fuel KW - Ship KW - Sea KW - High level waste PY - 2024 AN - OPUS4-60091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 AN - OPUS4-57702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Gröke, Carsten A1 - Neumeyer, Tino T1 - Design assessment, approval of management systems and ageing aspects of transport packages for radioactive material not requiring competent authority approval of design N2 - Most transports of radioactive materials are carried out with packages not requiring competent authority approval of design. These encompass – in accordance with the IAEA SSR-6 [1] regulations – packages of the classification excepted, Industrial packages Type 1, 2 and 3 and Type A packages. Currently an upsurge in number and variation of these package designs can be seen in Germany, resulting from the phase out of nuclear energy in Germany as well as e. g. increased use of radioactive material for medical purposes. A design assessment regarding the package safety is required in the international IAEA SSR-6 [1] regulations. BAM operates facilities for the performance of all regulatory tests required such as drop towers for a wide range of package masses and dimensions, fire test, leak tightness measurements and pressure test facilities. Experiences with several package types are shown. Additionally, IAEA SSR-6 [1] requires the establishment of a management system for design, manufacture, maintenance, and repair of the packaging as well as for the preparation, consigning, loading, carriage, unloading and receipt of the package. Relevant for Germany, BAM has published guidance material on the process of management system acceptance in the technical guide BAM-GGR 016 [2]. The requirements encompass quality management plans for the manufacturing of packages including independent manufacturing surveillance and specific instructions for operation, maintenance, and repair of packagings. Examples for management system specifics and requirements are given. Since the latest edition of the IAEA SSR-6 [1] regulations an ageing evaluation including systematic ageing management measures are required for all kind of package types. BAM is going to update the guidance material BAM-GGR 016 [2] to support the stakeholders with relevant information to fulfil the ageing aspect for packages not requiring competent authority approval. The paper explains how the ageing aspect may be included in the safety evaluation process and the management system measures and will give an outlook for the future guidance material. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Radioactive material KW - Type A package KW - Management system KW - Tests KW - Non-approved PY - 2023 AN - OPUS4-57704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Finite element simulation of the crush of package components made of encapsulated wood N2 - Typical transport packages used in Germany are equipped with encapsulated wooden impact limiting devices. We would like to present the current status regarding the development of a Finite Element (FE) material model for the crush of wood for the FE-code LS-DYNA. The crush of is a phenomenon governed by macroscopic fracture. Here, we would like to reproduce fracture and failure mechanisms over the continuous volume. In a first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface. For the use for longitudinal compression of wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Wood KW - FEM PY - 2018 SP - Paper 18517, 1 EP - 12 AN - OPUS4-45091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Feldkamp, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Transport of HLW canisters on sea vessels N2 - Germany had been transporting spent fuel to the reprocessing plant in Sellafield and La Hague for decades until around 2005. Resulting from the obligation to take back the vitrified high-level waste from reprocessing six CASTOR® HAW28M filled with 168 canisters with radioactive waste in vitrified form were transported from Sellafield to the interim storage facility Biblis in 2020. Rail wagons were used for the transport to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. BAM was involved in the authority assessment of the conditions for the sea transport. For the first transport BAM required among others, assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask in order to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of IMDG code and its supplement INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Transport KW - Spent nuclear fuel KW - Ship KW - Sea KW - High level waste PY - 2024 SP - 1 EP - 8 AN - OPUS4-60092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas T1 - Friction coefficients for wood-wood and wood-steel high pressure contact under temperatures between -40 °C and 90 °C N2 - Wood is widely used in impact limiters of Transport casks for radioactive material. Encapsulated by an outer and inner Steel structure, spruce wood is offen applied in layers of altemating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard component. In order to get detailed Information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature ränge between -40 °C and 90 °C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40 °C to 0.22 for 90 °C for wood-steel combinations and from 0.3 at -40 °C to 0.24 at 90 °C to for a wood-wood combination. KW - Wood KW - Friction KW - Transport cask KW - Radioactive material PY - 2023 DO - https://doi.org/10.24053/TuS-2023-0007 SN - 0724-3472 VL - 70 IS - 2 SP - 5 EP - 12 PB - expert verlag AN - OPUS4-57787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 SP - 1 EP - 11 AN - OPUS4-57334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Gröke, Carsten A1 - Neumeyer, Tino T1 - Design assessment, approval of management systems and ageing aspects of transport packages for radioactive material not requiring competent authority approval of design N2 - Most transports of radioactive materials are carried out with packages not requiring competent authority approval of design. These encompass – in accordance with the IAEA SSR-6 regulations – packages of the classification excepted, Industrial packages Type 1, 2 and 3 and Type A packages. Currently an upsurge in number and variation of these package designs can be seen in Germany, resulting from the phase out of nuclear energy in Germany as well as e. g. increased use of radioactive material for medical purposes. A design assessment regarding the package safety is required in the international IAEA SSR-6 regulations. BAM operates facilities for the performance of all regulatory tests required such as drop towers for a wide range of package masses and dimensions, fire test, leak tightness measurements and pressure test facilities. Experiences with several package types are shown. Additionally, IAEA SSR-6 requires the establishment of a management system for design, manufacture, maintenance, and repair of the packaging as well as for the preparation, consigning, loading, carriage, unloading and receipt of the package. Relevant for Germany, BAM has published guidance material on the process of management system acceptance in the technical guide BAM-GGR 016. The requirements encompass quality management plans for the manufacturing of packages including independent manufacturing surveillance and specific instructions for operation, maintenance, and repair of packagings. Examples for management system specifics and requirements are given. Since the latest edition of the IAEA SSR-6 regulations an ageing evaluation including systematic ageing management measures are required for all kind of package types. BAM is going to update the guidance material BAM-GGR 016 to support the stakeholders with relevant information to fulfil the ageing aspect for packages not requiring competent authority approval. The paper explains how the ageing aspect may be included in the safety evaluation process and the management system measures and will give an outlook for the future guidance material. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Typ KW - Radioactive material KW - Non-approved PY - 2023 SP - 1 EP - 8 AN - OPUS4-57703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Schilling, O. A1 - Kuschke, Christian A1 - Darnstädt, A. A1 - Schubert, Sven A1 - Günther, U. A1 - Wille, Frank T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the Producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 SP - Paper 1128, 1 AN - OPUS4-49059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Wolff, Dietmar T1 - R&D initiatives at BAM concerning spent nuclear fuel integrity during long term storage N2 - The presentation provides an overview about the understanding of fuel cladding failure mechanisms dominated by hydride embrittlement during long term dry storage. A currently launched research project focuses on the development of a fracture mechanics approach to describe brittle failure of fuel cladding during long term interim storage (BRUZL)“. Finally, the BAM contribution to the current European Joint Program (EJP) on radioactive waste management is illustrated. T2 - 2nd GRS Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Munich, Germany DA - 06.06.2018 KW - Spent fuel KW - Extended interim storage KW - Hydride precipitation KW - Fuel cladding integrity PY - 2018 AN - OPUS4-45329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven A1 - Keller, Christian T1 - A New Time-Temperature Equivalent Formulation for the Description of Thermo-rheologically Complex Behaviour N2 - Compared with the original time-temperature superposition (TTS) principle, an extended non-linear time-temperature equivalent (TTE) principle is suggested in this work. Results shown us, all application of TTS and most of the TTE parameters, for example, the Orr-Sherby-Dorn, Manson-Succop, Larson-Müller, Manson-Haferd, Mendelson-Roberts-Manson parameters and the more general ‘single metamodel’ from Haque–Stewart are special cases of the new suggested principle. The merits of this new method are discussed. T2 - 4th International Conference on Rheology and Modeling of Materials CY - Miskolc-Lillafüred, Hungary DA - 07.10.2019 KW - Scale/shift factor and form/stretchFactor of time-temperature relation KW - Time-temperature superposition/equivalent principle KW - Thermo-rheologically simple/complex behaviour PY - 2019 AN - OPUS4-50772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Keller, Christian A1 - Nagelschmidt, Sven A1 - Wolff, Dietmar T1 - Three-dimensional finite element analysis of O-ring metal seals considering manufacture tolerances N2 - Metal seals are widely used in various industrial branches with severe working conditions (e.g. high pressure, high temperature, corrosion, or radioactive radiation). For example, O-ring metal seals are applied in the closure lid system of transport and storage casks for radioactive materials to guarantee an approved specified leak-tightness and the safe enclosure of the radioactive inventory. Within safety assessments of those casks under normal or accident conditions during transport and long-term interim storage for several decades, numerical simulations of the thermo-mechanical behavior of metal seals by using finite element (FE) analyses are suitable and effective. In general, finite element codes provide the possibility to construct a complex three-dimensional (3D) modelling of metal seals with solid elements, cf., where all components of the metal seals are modeled in detail. This modelling is complex but allows the consideration of underlying physical effects such as elastic-plastic deformation, thermal expansion, creep/relaxation, friction and possible local damage. Therefore, this approach permits the investigation and understanding of the complex behavior of metal seals in detail which can hardly be measured for all seal components. In a prior work, the complex 3D modelling approach was applied to investigate the influence of each seal component on the global seal force by considering varying material properties and different seal diameters. In the present contribution, the influence of manufacturing tolerances is discussed. At first, the results of prior work are summarized. After that, the manufacturing tolerances of the studied O-ring metal seal types are described and the corresponding FE model with all individual components is introduced. Finally, the influence of varying manufacturing tolerances of each seal component on the global seal force is analyzed and discussed. T2 - The 2019 EMI International Conference CY - Lyon, France DA - 3. July 2019 KW - Finite element method KW - Metal seals KW - Material properties KW - Manufacturing tolerances PY - 2019 AN - OPUS4-48448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Herbrich, Uwe A1 - Nagelschmidt, Sven T1 - Describing Relaxation Behavior of Metal Seals Using Time-Temperature Superposition Principle N2 - In order to study the time- and temperature-dependent long-term behavior of metal seals, experimental investigations on special metal seals have been carried out at five different temperatures in a temperature range between 20 and 150°C for more than 7 years. Experimental results indicate a noticeable change of relevant sealing properties like seal force and usable resilience depending on time and temperature. In this study, the metal seals are treated as a homogeneous material block so that the identified decrease in seal force can be treated as a material relaxation effect. For the time-dependent behavior of seal force, an enhanced power-law model is introduced for the first time and is compared with the currently used power-law model. Additionally, regarding the influence of temperature, the timetemperature superposition principle is applied to metal seals for the first time with a clearly defined process. Thus, possible mistakes in the application of principle could be avoided. The introduced method is widely available for different applications regarding effects the principle with time and temperature. KW - Metal seals KW - Relaxation KW - Thermo-viscoplasticity KW - Time-temperature superposition PY - 2018 UR - https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0001424 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001424 SN - 0733-9399 VL - 144 IS - 4 SP - 04018016-1 EP - 04018016-8 PB - American Society of Civil Engineers AN - OPUS4-44676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Keller, Christian A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Three-dimensional finite element analysis of O-ring metal seals considering varying material properties and different seal diameters N2 - Metal seals of O-ring form are often used in lid-systems of transport and storage casks for radioactive waste in Germany. To investigate their mechanical behaviour, three dimensional (3D) finite element (FE) models were created using solid elements for all of the seal components. The material behaviour of each component is described with a unified static elastic-plastic material model. The total strain is defined as the sum of linear elastic strain and plastic strain with power-law hardening. The model was carefully validated by comparison of Simulation results with experimental results. The influence of material fluctuation of each seal component due to varying properties and the sensitivity of different seal diameters on the seal force are analysed and discussed. The results show that the material properties of helical spring have major influence on seal force and that the influence of seal diameters is negligible small in the studied range. This is very important to use the test results from seals with small diameter for the assessment of seal behaviour with larger diameter as used in transport and storage cask. KW - Sensitivity analysis KW - Transport and storage cask KW - O-ring metal seal KW - Lid-system KW - Finite element analysis KW - Stochastic variation of material properties PY - 2019 DO - https://doi.org/10.1016/j.ijpvp.2019.103953 VL - 176 SP - 102953 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-49263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543800 DO - https://doi.org/10.3390/ma15030726 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Tait, T. A1 - Johnson, M. A1 - Tso, C.-F. A1 - Izatt, C. T1 - Drop testing of a container for the storage, transport and disposal of intermediate level waste N2 - Impact tests were performed, as part of a corresponding container’s substantiation, during design development of a shielded container proposed for use at Sellafield for waste retrieval from the First Generation Magnox Storage Pond (FGMSP) in the UK. The mechanical test program comprised a 9m free drop test onto an unyielding target in a container long lid edge down orientation at ambient conditions. Further, a 0,5m free drop test onto a punch target was performed. Here, the container was orientated with the lid downwards in a way that the punch, a mild steel bar, impacts a filter lid. The test specimen was instrumented with strain gauges and accelerometers for the drop tests. Transient strains at selected points of the inner and outer container walls, at the shielding lid, as well as at the lid bolts were measured during the container’s impact. Furthermore, decelerations of the container body, container lid, and the skip were measured. The complex geometrical changes of the container due to impact were determined by optical 3d- deformation measures using the projected fringes method in combination with multi-image photogrammetry. This paper summarizes the performance of the drop tests and various drop test results in context with the design development as well as aspects regarding the associated Finite Element (FE) analyses and post-test evaluation. T2 - WM2018 Conference CY - Phoenix, Arizona, USA DA - 18.03.2018 KW - Drop testing KW - Container PY - 2018 AN - OPUS4-44859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from german research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLWM 2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Package testing KW - Drop test PY - 2019 AN - OPUS4-50620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from german research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - Workshop ORNL/BAM CY - Oak Ridge National Laboratory, TN, USA DA - 11.04.2019 KW - Package testing KW - Drop test PY - 2019 AN - OPUS4-50621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 AN - OPUS4-50623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive waste PY - 2023 AN - OPUS4-57731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of the bam fire test stand for testing a large transport package for radioactive materials N2 - Packages for the transport of spent nuclear fuel are designed to endure severe accidents. To obtain approval, these transport packages must adhere to the specification-based criteria of the international transport regulations SSR-6 of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, SSR-6 prescribes a mechanical test followed by a thermal fire test as part of different testing scenarios. To approve the latter test of the sequence, BAM performs calorimeter tests in advance with so-called fire reference packages for characterizing the actual fire and its impact on the package to be tested. Packages are designed with different geometry sizes depending on their purpose. For previous tests, the implemented test setups in the fire test stand were sufficiently dimensioned and could cover all requirements in this respect. However, to cover additional testing needs in the future, BAM is expanding the test setup for the purpose of testing significantly larger packages. In previous test setups one ring burner for propane surrounding the test specimen was sufficient. The limiting size in this configuration was the design height of the transport package to be tested. According to the thermal test of the IAEA-Regulations [1], a 30-minute fully engulfing 800°C pool fire or an equally severe fire, e.g., propane gas fire, must be applied to the transport package. Possible adjustments such as nozzle cross-section and propane mass flow can be adjusted to a certain extent. Further modifications, to cover significantly higher and larger packages all-around with a fully engulfing fire, must be accomplished with an additional, second burner ring. Both burner rings had the same dimensions and were mounted on top of each other at different heights to create a significantly larger volume of fire that completely engulfs the package including its impact limiter. To meet the IAEA regulatory boundary conditions, the enhanced fire test stand with the second burner ring is tested with a large fire reference package and will then be used for real-size transport packages after all parameters are successfully met. This fire reference package represents the external geometry of a generic transport cask for radioactive material and is equipped with numerous temperature sensors to record temperature curves at the interior wall surfaces. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Fire testing KW - Full-scale KW - Transport package PY - 2024 AN - OPUS4-60255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of the BAM Fire Test Stand for Testing a Large Transport Package for Radioactive Materials N2 - Packages for the transport of spent nuclear fuel are designed to endure severe accidents. To obtain approval, these transport packages must adhere to the specification-based criteria of the international transport regulations SSR-6 of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, SSR-6 prescribes a mechanical test followed by a thermal fire test as part of different testing scenarios. To approve the latter test of the sequence, BAM performs calorimeter tests in advance with so-called fire reference packages for characterizing the actual fire and its impact on the package to be tested. Packages are designed with different geometry sizes depending on their purpose. For previous tests, the implemented test setups in the fire test stand were sufficiently dimensioned and could cover all requirements in this respect. However, to cover additional testing needs in the future, BAM is expanding the test setup for the purpose of testing significantly larger packages. In previous test setups one ring burner for propane surrounding the test specimen was sufficient. The limiting size in this configuration was the design height of the transport package to be tested. According to the thermal test of the IAEA-Regulations [1], a 30-minute fully engulfing 800°C pool fire or an equally severe fire, e.g., propane gas fire, must be applied to the transport package. Possible adjustments such as nozzle cross-section and propane mass flow can be adjusted to a certain extent. Further modifications, to cover significantly higher and larger packages all-around with a fully engulfing fire, must be accomplished with an additional, second burner ring. Both burner rings had the same dimensions and were mounted on top of each other at different heights to create a significantly larger volume of fire that completely engulfs the package including its impact limiter. To meet the IAEA regulatory boundary conditions, the enhanced fire test stand with the second burner ring is tested with a large fire reference package and will then be used for real-size transport packages after all parameters are successfully met. This fire reference package represents the external geometry of a generic transport cask for radioactive material and is equipped with numerous temperature sensors to record temperature curves at the interior wall surfaces. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Fire testing KW - Full-scale KW - Transport package PY - 2024 SP - 1 EP - 7 AN - OPUS4-60253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 SP - Paper 19-A-1142,1 EP - 10 AN - OPUS4-50622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Schubert, Sven A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Introduction of an ageing management approach for packages for the transport of radioactive materials N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. For these package designs, the evaluation of ageing management is now mandatory for the maintenance of the package design approvals with a validity period of 5 years and beyond. The ageing management includes amongst others a gap analysis, the assessment of ageing effects and operational experiences during operation and interim storage. BAM works on the compilation of a guideline for implementation of paras 613A, 809(f) and 809(k) for packages requiring competent authority approval at the application procedure in Germany. The paper describes essential items of ageing mechanisms and will give a foresight to the ageing management evaluation by BAM. T2 - INMM & ESARDA Joint Annual Meeting CY - Online Meeting DA - 30.08.2021 KW - Ageing KW - Dual purpose casks KW - Transport of radaioactive materials KW - Ageing mechanisms KW - Interim storage KW - SSR-6 PY - 2021 AN - OPUS4-53197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Schubert, Sven A1 - Komann, Steffen A1 - Wille, Frank A1 - Neumann, Martin T1 - Introduction of An Ageing Management Approach for Dual Purpose Casks N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. T2 - BAM-IRSN Symposium 2021 CY - Online meeting DA - 08.09.2021 KW - Ageing KW - DPC KW - Interim storage KW - Ageing management PY - 2021 AN - OPUS4-53287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Schubert, Sven T1 - Assessment of ageing effects at BAM N2 - In Germany, spent nuclear fuel and vitrified high active waste is stored in dual purpose casks (DPC) at interim storage facilities. In order to ensure the transportability of the DPC to a final repository in future, the maintenance of the package design approval is realized. Therefore, the assessment of possible ageing effects during interim storage is necessary to ensure an evaluation of the transportability. The lecture presents BAM's current ageing evaluation concept in the field of trasnport law. T2 - IRSN-BAM Symposium - Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Ageing KW - DPC KW - Interim storage KW - Ageing management PY - 2020 AN - OPUS4-51718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Komann, Steffen A1 - Schubert, Sven A1 - Müller, Lars A1 - Wille, Frank A1 - Neumann, Martin A1 - Gröke, Carsten T1 - Experience regarding ageing management and maintenance of transport packages in Germany N2 - The presentation gives an overview about the current experiences of BAM regarding ageing management of transport packages in Germany. The concept of the BAM-GGR 023 for ageing management of transport packagings will be described. The fundamentals of BAM-GGR 023 will be shown, including the following key aspects: -the organization of an Ageing Management System (AMS), -the issue of an Ageing Management Plan (AMP), -the ageing evaluation as a part of the AMP, -the Ageing Surveillance Program (ASP) as a part of the AMP, -the Ageing Management Documentation (AMD). T2 - First Consultancy Meeting on Drafting the Safety Guide on Ageing Management and Maintenance of Radioactive Material Transport Packages CY - Vienna, Austria DA - 20.11.2023 KW - Ageing Management KW - Dual Purpose Cask KW - BAM-GGR 023 PY - 2023 AN - OPUS4-58863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Safety assessment of aged metal seals N2 - With our experiments we want to simulate a load situation which can result from a cask vertical drop test. The lid can lift a little for a very short moment and that can perhaps result in a little movement of the seal, a little rotation or a little lateral movement, so that the contact section can change. The aim of the project is to learn more about the sealing efficiency after the seal is compressed again. What we know from former component tests with non-aged seals is, that the leakage rate measured after one or more decompression /compression cycles with seal movement becomes significant higher. And this result is considered for specification of design leakage rates for release calculation in safety cases. In the recent years we all have learned more about the significant influence of temperature and time on seal behavior and so the plan was to do similar experiments with aged seals, just to get an idea about seal behavior and achievable leakage rates. What we did in detail is: We compressed Helicoflex-seals of both design types, with Aluminum and Silver outer jackets, in testflanges and aged them in an oven at a temperature of 125°C for 3 months to produce seal properties comparable with properties after several years use at more typical operating temperatures between 90 and 100°C. After this ageing procedure we opened the flanges completely, moved the seal a little to vary the contact area and compressed the flanges again. What we measured during all compression and decompression cycles was the load, the deformation and -as long as possible- the leakage rates. T2 - Workshop IRSN/BAM CY - Cadarache, France DA - 12.10.2022 KW - Transport KW - Radioactive KW - Seal behavior KW - Ageing PY - 2022 AN - OPUS4-56141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport and storage casks for spent fuel and highlevelradioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series.Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Leakage rate KW - Transport packages KW - Seals KW - Radioaktive PY - 2019 AN - OPUS4-49052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport and storage casks for spent fuel and highlevelradioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series.Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Leakage rate KW - Transport packages KW - Seals KW - Radioaktive PY - 2019 SP - Paper 1147, 1 AN - OPUS4-49053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The containment systems of transport casks for spent fuel and high radioactive waste usually include bolted lids with metallic or elastomeric seals. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of such containment system. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is also common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions of the transferability of scaled test results to the full size design of the containment system will be discussed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prag, Czech Republic DA - 15.08 2018 KW - Containment KW - Spent fuel KW - Leakage rate PY - 2018 VL - 7 SP - PVP2018-84089, 1 EP - 8 AN - OPUS4-46533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Ballheimer, Viktor A1 - Neumeyer, Tino A1 - Wille, Frank T1 - Application of leakage rates measured on scaled cask or component models to the package containment safety assessment N2 - The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport can have a significant effect on the leak tightness of the containment system of transport casks for spent fuel and high radioactive waste. The containment systems of such transport casks usually include bolted lids with metallic or elastomeric seals. Scaled cask models are often used for providing the required mechanical and thermal tests series. Leak tests have been conducted on those models. It is common practice to use scaled component tests to investigate the influence of deformations or displacements of the lids and the seals on the standard leakage rate as well as to study the temperature and time depending alteration of the seals. In this paper questions and open points of the transferability of scaled test results to the fullscale design of the containment system will be discussed. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15. Mai 2018 KW - Transport packages KW - Radioactve KW - Seals KW - Leakage rate PY - 2018 AN - OPUS4-46734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Radioaktive Stoffe KW - Beförderung KW - Zulassung KW - Strahlenschutz PY - 2023 AN - OPUS4-57781 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank T1 - Ageing aspect in design approval of special form radioactive material N2 - In accordance with the IAEA transport regulations, the design of special form radioactive material (SFRM) shall resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval includes besides the program for physical tests (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance, and inspection. SFRM source design plus management system shall ensure, that every specimen of the approved design is able to survive the severe mechanical and thermal tests at any time of its SFRM-working life. Due to the long-term use of SFRM designs in most cases, the assessment of the source ageing behavior is an important aspect in the approval procedure. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. Besides of radioactive content, corrosion is a main factor for possible SFRM design degradation. Although the IAEA Advisory Material SSG-26 already implies an indication of the need for considering ageing mechanisms, suitable amendments in the regulatory requirements of SSR-6 should be introduced to make the approval procedure more transparent and help to reduce rounds of questions by the authority. A supplementary requirement for considering of ageing mechanisms could be a helpful contribution to an international harmonization of the approval procedure. This paper will describe major influencing factors to be considered to assess the ageing behavior of a SFRM design and will identify the need for a regulatory specification of a SFRM-working life as basis for the assessment of the SFRM design regarding time-dependent weakening. A proposal for an explicit requirement for consideration of ageing mechanisms in safety assessment of SFRM, which should be considered in the ongoing SSR-6 revision cycle, will be explained. T2 - PATRAM22 Conference CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Ttransport KW - Radioactive material KW - Sealed sources KW - Ageing PY - 2023 SP - 1 EP - 6 AN - OPUS4-57786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. The specification of conservative package design leakage rates is one of the most important aspects in assessment. Metal seals of the Helicoflex® Type are usually used to ensure the required package tightness for both, storage, and transport of the cask before and after storage. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. After this ageing procedure the flanges were opened completely, the seals were moved a little to vary the contact area, and the flanges were compressed again. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. Details about test conditions and first results will be presented in the poster. T2 - RAMTrans 2024, 12th Internatiopnal Conference on the Transport , Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2024 KW - Seals KW - Ageing KW - Radioaktiv PY - 2024 AN - OPUS4-60112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. One of the fundamental aspects in assessment is the specification of conservative package design leakage rates. To ensure the required package tightness for both, storage, and transport of the cask before and after storage usually metal seals of the Helicoflex® Type are used. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. The poster presentation will show details about test conditions and first results. T2 - Interdisciplinary research symposium on the safety of nuclear disposal practices safeND2023 CY - Berlin, Germany DA - 13.09.2023 KW - Radioactive material KW - Sealing KW - Ageing KW - Leaktightnes PY - 2023 AN - OPUS4-58436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruiz-Hervias, J. A1 - Simbruner, Kai A1 - Cristobal-Beneyto, M. A1 - Perez-Gallego, D. A1 - Zencker, Uwe T1 - Failure mechanisms in unirradiated ZIRLO® cladding with radial hydrides N2 - The purpose of this paper is to investigate the relationship between hydride morphology, in particular the presence of radial hydrides (RHs), stress state and failure mechanisms associated with the ring compression test (RCT). Samples of ZIRLO®cladding were pre-hydrided and subjected to thermo-mechanical treatments to precipitate long radial hydrides. The results show that the reorientation treatment was very successful. A considerable fraction of RHs was generated, the radial hydride continuity factor being around 80 to 90% of the wall thickness. The samples with reoriented hydrides were tested using the RCT at room temperature. Macroscopic brittle failure was observed with sudden load drops for displacements around 0.5 mm, with a calculated “offset strain”between 0.5 and 1%. Crack nucleation occurs in RHs located in regions with the highest values of hoop stress. These locations are the inner diameter of cladding at the vertical plane of the sample (12 and 6 o’clock positions) and the outer diameter at the horizontal plane (3 and 9 o’clock positions). Noticeable load drops in the RCT are associated with unstable crack propagation events through the radial hydride network, the crack front reaching up to 90% of the wall thickness in some cases. The failure micro-mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth and coalescence in the Zr matrix, with ductile tearing patches connecting neighboring hydrides. The main conclusion is that radial hydride metrics is not the only parameter that determines cladding failure in the presence of RHs, but the interaction between the location and continuity of RHs and the stress normal to the hydride (the hoop stress in this case). Consequently, if a radial hydride is located at a position within the cladding where the hoop stress is small, a crack will not be initiated easily in the RCT. KW - ZIRLO® KW - Cladding Embrittlement KW - Radial Hydrides KW - Failure Mechanism KW - Ring compression test PY - 2021 DO - https://doi.org/10.1016/j.jnucmat.2020.152668 SN - 0022-3115 VL - 544 SP - 152668 PB - Elsevier B.V. AN - OPUS4-52000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Weber, Mike A1 - Quercetti, Thomas T1 - Approach for determining the length of the bar in compliance with the IAEA 1m puncture test N2 - The paper focuses on the preliminary determination of the bar length and the experimental performance of the 1m-puncture test in compliance with the guidelines of the IAEA under the given boundary conditions. Following aspects have to be considered concerning the determination of an appropriate length of the bar to obtain maximum damage to the specimen: the design of the package, its drop orientation and the impact point as well as a pre-damage of the package resulting from a previous 9m drop test. According to the Regulations the minimum length of the bar is defined as 20 cm, which has to be adapted to the outer surface of the package, especially to packages with large impact limiters. In this context, two main aspects are important: First, the realisation of a maximum puncture load applied to the package while no other component of the package has contact with the impact target. Second, the reduction of the risk of buckling and maximising the stiffness of the bar by a length which is as short as possible. In order to optimize the bar length, finite element calculations are often done by simulating the global behaviour of the package during the puncture test. The evaluation of the conducted puncture test regarding IAEA compliance is done by analysing deceleration measurements. The paper presents a possible approach to determine the length of the bar and the construction of a form-fitted connection to the target showing various examples of puncture tests. T2 - RAMTRANSPORT 2018 CY - London, UK DA - 16.05.2018 KW - Puncture test KW - Bar length KW - Numerical simulation PY - 2018 AN - OPUS4-45027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, O. A1 - Neumann, Martin A1 - Wolff, Dietmar A1 - Wille, Frank A1 - Darnstädt, A. T1 - System of Quality Assurance Measures in Manufacturing and Operation of Dual Purpose Casks for Spent Nuclear Fuel and High Level Waste in Germany N2 - German spent nuclear fuel and high level waste is stored in dry conditions in interim storage facilities until a final repository will be ready for operation in the future. Dual purpose casks are used for the packaging of the materials to ensure transportability at any time during long-term interim storage and fulfilling both requirements from interim storage as well as transport. Germany’s 2011 decision to phase out utilization of nuclear energy has led to a high demand for casks for decommissioning power plants as quickly as possible. Cask serial production will continue at a high level for the next few years. In the process, a system of quality assurance measures ensures that every cask reliably complies with design specification according the transport approval certificate and storage license. When the first casks were manufactured in Germany about 40 years ago, quality assurance was oriented towards pressure vessel and general nuclear manufacturing. The system was continuously adapted to the state of the art. In particular serial production, globalization of manufacturing and deep supplier chains had to be taken into account. The system of quality assurance measures applied today for cask manufacturing shall be presented here. The quality assurance measures can be categorized as system-related and design-related. With respect to transport regulations for example, they are independently approved and monitored by the competent authority BAM and its authorized inspection experts. The qualification of the applicant is reviewed first in the context of the design approval procedure and then periodically. The qualification of component and cask manufacturers is also checked at the start of manufacturing and then periodically. Before the start of manufacturing documents such as quality plans are pre-assessed. Manufacturing and inspection are then performed according to the pre-assessed documents. Cask manufacturing is completed by a final inspection before commissioning. Periodic inspections during operation ensure preservation of the properties specified in the approval certificate over package life time. The type and the time interval of periodic inspections depend on the use of the package. For transport after interim storage a system of specific tests and inspections is prescribed. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Radioactive material KW - Quality Assurance Measures KW - Dual Purpose Casks KW - Independent Surveillance PY - 2023 AN - OPUS4-57705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Komann, Steffen A1 - Neumann, Martin A1 - Wille, Frank T1 - Introduction of the German Ageing Management Guide for Packages for Transport of Radioactive Materials – BAM-GGR 023 N2 - BAM-GGR 023 was published in June 2022 BAM-GGR 023 gives guidance to applicants regarding ageing management for competent authority approved package designs Ageing management with evaluation of ageing mechanisms according to para 613A of IAEA SSR-6 (Rev. 1) and their effects are part of the general management system. Essential items are: AMS (systemic-related), AMP (package design-related) and AMD (package-related) There are different requirements for organization and extent of ageing management depending on type of use There are also different requirements for ageing evaluation depending on type of use for packaging/package, classification of components and their accessibility and replaceability T2 - PATRAM22 CY - Juan-les-Pins, France DA - 11.06.2023 KW - Package KW - Ageing KW - Mechanism KW - Management KW - Guide PY - 2023 AN - OPUS4-57821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Komann, Steffen A1 - Neumann, Martin A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Wille, Frank T1 - BAM-GGR 023 - Ageing Management for CA Approved RAM Transport Packages N2 - The consideration of ageing mechanisms is with integration into the IAEA-requirements now obligatory for the design of transport packages. For packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance are required. Therefore, these packages have been maintained during storage in a manner that all requirements specified in the IAEA-requirements and in the applicable certificates of approval have been fulfilled. BAM is the competent authority in Germany for evaluating the thermal and mechanical design of packages for the transport of radioactive materials. In this context, BAM also evaluates the aging mechanisms and aging effects occurring during the long-term storage period of such transport packages. BAM has developed a guideline for the implementation of ageing assessment and of the measures for ageing management into the approval procedure based on IAEA-requirements. The goal of the presented paper is to introduce this guideline and the general approach for ageing management requirements and to describe the application to a specific package design. The type and amount of the ageing management not only depend on the use of the packaging, but also on the accessibility of the components that are considered in the ageing assessment. The different operating phases of a packaging are considered for the ageing assessment, such as loading, interim storage or transport. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan. These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program and, if necessary, a gap analysis program shall be developed. The ageing management documentation ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 15.05.2024 KW - Radioactive Materials KW - Ageing Management KW - Transport Packages KW - Dual Purpose Casks PY - 2024 AN - OPUS4-60177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Komann, Steffen A1 - Neumann, Martin A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Wille, Frank T1 - Ageing management measures of transport packages for radioactive materials N2 - The consideration of ageing mechanisms is with integration into the IAEA-requirements now obligatory for the design of transport packages. For packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance are required. Therefore, these packages have been maintained during storage in a manner that all requirements specified in the IAEA-requirements and in the applicable certificates of approval have been fulfilled. BAM is the competent authority in Germany for evaluating the thermal and mechanical design of packages for the transport of radioactive materials. In this context, BAM also evaluates the aging mechanisms and aging effects occurring during the long-term storage period of such transport packages. BAM has developed a guideline for the implementation of ageing assessment and of the measures for ageing management into the approval procedure based on IAEA-requirements. The goal of the presented paper is to introduce this guideline and the general approach for ageing management requirements and to describe the application to a specific package design. The type and amount of the ageing management not only depend on the use of the packaging, but also on the accessibility of the components that are considered in the ageing assessment. The different operating phases of a packaging are considered for the ageing assessment, such as loading, interim storage or transport. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan. These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program and, if necessary, a gap analysis program shall be developed. The ageing management documentation ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 15.05.2024 KW - Radioactive Materials KW - Ageing Management KW - Transport Packages KW - Dual Purpose Casks PY - 2024 VL - 2024 SP - 1 EP - 8 PB - Nuclear Institute CY - London AN - OPUS4-60186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Introduction of the German ageing management guide for packages for transport of radioactive materials N2 - The consideration of ageing mechanisms is with integration of the new para 613A into IAEA SSR-6 (Rev. 1) now obligatory for the design of transport packages. In addition, para 809(f) requires for packages intended to be used for shipment after storage the consideration of the effects of ageing mechanisms during storage in safety analyses and the implementation of corresponding instructions for operation and maintenance. Para 503(e) requires that all packaging components and radioactive contents have been maintained during storage in a manner that all requirements specified in IAEA SSR-6 (Rev.1) and in the applicable certificates of approval have been fulfilled. The evaluation of ageing mechanisms and their effects including monitoring are part of BAM’s authority assessment tasks related to the mechanical and thermal package design and quality assurance aspects. BAM has compiled a guideline for the implementation of ageing assessment and of the measures for ageing management of the approval procedure based on requirements of IAEA SSR-6 (Rev.1). The guideline is applicable only for packages requiring a competent authority approval. The paper aims to describe the structure of the guideline and the general approach for ageing management requirements. The type and amount of measures for ageing management depend mainly on the use of the package and on the ageing effects for the component, which result from relevant ageing mechanisms during package operation time. The implementation of measures for ageing management is divided into three levels – systemic measures, package design related measures and documentation. The systemic measures are attributed to the general management system and define the whole activities for organization of ageing management like structure, responsibilities, documentation, reports and evaluation. The package design related measures are defined in an ageing management plan (AMP). These measures shall ensure that the anticipated changes of the package design under consideration of ageing effects still complies with the design approval specification. Therefore, an ageing surveillance program (ASP) and, if necessary, a gap analysis program shall be developed. The ageing management documentation (AMD) ensures the continuous documentation of the compliance of a specific package to the approved package design, comprising mainly records resulting from operation and surveillance. T2 - PATRAM22 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Guide KW - Ageing KW - Mechanism KW - Package KW - Management PY - 2023 SP - 1 EP - 10 PB - World Nuclear Transport Institute (WNTI) CY - London AN - OPUS4-57770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Introduction of an ageing management approach for packages for the transport of radioactive materials N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. For these package designs, the evaluation of ageing management is now mandatory for the maintenance of the package design approvals with a validity period of 5 years and beyond. The ageing management includes amongst others a gap analysis, the assessment of ageing effects and operational experiences during operation and interim storage. BAM works on the compilation of a guideline for implementation of paras 613A, 809(f) and 809(k) for packages requiring competent authority approval at the application procedure in Germany. The paper describes essential items of ageing mechanisms and will give a foresight to the ageing management evaluation by BAM. T2 - INMM & ESARDA Joint Annual Meeting CY - Online meeting DA - 30.08.2021 KW - Dual purpose casks KW - Ageing KW - SSR-6 KW - Interim storage KW - Ageing mechanisms KW - Transport of radaioactive materials PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/10383/presentation/964 SP - 1 EP - 6 PB - Institute of Nuclear Materials Management (INMM) CY - Mount Laurel, NJ AN - OPUS4-53180 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank T1 - Design Assessment of a Dual Purpose Cask for Damaged Spent Nuclear Fuel N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 AN - OPUS4-48692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank ED - Schönfelder, Thorsten T1 - Design assessment of a dual purpose cask for damaged spent nuclear fuel N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 SP - Paper 1204, 1 EP - 10 AN - OPUS4-48685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings ‒ Results of Ring Compression Tests N2 - An established method for characterizing cladding material is the Ring Compression Test (RCT), where a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a fuel rod load case and has shown a high susceptibility to failure under the occurrence of radial hydrides. Certain hydride morphologies and low temperature might even lead to brittle fracture at very small loads. The BAM research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) aims to study the results of quasi-static RCTs and to establish numerical models to gain an in-depth understanding of the stress state during such experiments. Using a fracture mechanical approach, cases of sudden failure during the RCT procedure are used to characterize the material behaviour and establish a failure criterion. As an integral part of the project BRUZL, quasi-static Ring Compression Tests have been performed to identify all experimental details, which might be helpful for numerical modelling. Unirradiated samples of the cladding material ZIRLO® have been subjected to hydrogen charging and a thermo-mechanical treatment for radial hydride reorientation. Sample preparation, testing procedures, and analysis results are presented. A numerical model has been established and an elastic-plastic material model was derived from as-received RCT samples by inverse finite element analyses. Cohesive zone modelling has been implemented to reproduce sudden load drops during RCT. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 4th GRS Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Online meeting DA - 03.06.2020 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2020 AN - OPUS4-51988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Billone, M. C. A1 - Zencker, Uwe A1 - Liu, Y. Y. A1 - Völzke, Holger T1 - Brittle Failure Analysis of High-Burnup PWR Fuel Cladding Alloys N2 - The general aim of this research is the development of methods for predicting mechanical behavior and identification of limiting conditions to prevent brittle failure of high-burnup (HBU) pressure water reactor (PWR) fuel cladding alloys. A finite element (FE) model of the ring compression test (RCT) was created to analyze the failure behavior of zirconium-based alloys with radial hydrides during the RCT. An elastic-plastic material model describes the zirconium alloy. The stress-strain curve needed for the elastic-plastic material model was derived by inverse finite element analyses. Cohesive zone modeling is used to reproduce sudden load drops during RCT loading. Based on the failure mechanism in non-irradiated ZIRLO® claddings, a micro-mechanical model was developed that distinguishes between brittle failure along hydrides and ductile failure of the zirconium matrix. Two different cohesive laws representing these types of failure are present in the same cohesive interface. The key differences between these constitutive laws are the cohesive strength, the stress at which damage initiates, and the cohesive energy, which is the damage energy dissipated by the cohesive zone. Statistically generated matrix-hydride distributions were mapped onto the cohesive elements and simulations with focus on the first load drop were performed. Computational results are in good agreement with the RCT results conducted on high-burnup M5® samples. It could be shown that crack initiation and propagation strongly depend on the specific configuration of hydrides and matrix material in the fracture area. T2 - 26th International Conference on Structural Mechanics in Reactor Technology - SMiRT 26 CY - Potsdam, Germany DA - 10.07.2022 KW - Cladding Embrittlement KW - Ring Compression Test KW - Cohesive Zone Modelling KW - Spent Nuclear Fuel PY - 2022 AN - OPUS4-55435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle failure analysis of spent fuel zirconium alloy claddings during long-term dry interim storage - Current approach at BAM N2 - Understanding the mechanical behaviour of fuel cladding is decisive for an extended dry interim storage period beyond the currently licensed period of 40 years in Germany and subsequent handling, transport, and disposal considering normal and accidental conditions. Since fuel cladding acts as the first barrier for spent fuel, its integrity should be demonstrated to enable safe and secure discharge and handling options after interim storage and subsequent transportation in preparation of final disposal. An established method for characterizing cladding material is the Ring Compression Test (RCT), where a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a fuel rod load case and has shown a high susceptibility to failure under the occurrence of radial hydrides. Certain hydride morphologies and low temperature might even lead to brittle fracture at very small loads. The BAM research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) aims to study the results of quasi-static RCTs and to establish numerical models to gain an in-depth understanding of the stress state during the experiments. Using a fracture mechanical approach, cases of sudden failure during the RCT procedure are used to characterize the material behaviour and establish a failure criterion. As an integral part of the project BRUZL, quasi-static Ring Compression Tests have been performed to identify all experimental details, which might be helpful for numerical modelling. Unirradiated samples of the cladding material ZIRLO® have been subjected to hydrogen charging and a thermo-mechanical treatment for radial hydride reorientation. Sample preparation, testing procedures, and analysis results are presented. A numerical model has been established and an elastic-plastic material model was derived from as-received RCT samples by inverse finite element analyses. Cohesive zone modelling has been implemented to reproduce sudden load drops during RCT. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - Kolloquium der Abteilung 3 CY - Online meeting DA - 05.11.2020 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2020 AN - OPUS4-51987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings - Micromechanically Motivated Cohesive Zone Modelling N2 - Since cladding acts as the first barrier for nuclear fuel, it is key to understand the degrading mechanisms leading to cladding embrittlement. Zirconium alloy based cladding samples subjected to simulated pre-storage drying conditions have shown high susceptibility to brittle failure under the occurrence of hoop stress and low temperature as expected after long-term interim storage. The stress state associated with a compressive pinch-load scenario is reproduced by the Ring Compression Test (RCT), which results in sudden failure at relatively small mechanical loads with high sensitivity to the presence of radial hydrides. As part of the BAM research project BRUZL (Fracture mechanics analysis of spent fuel claddings during long-term dry interim storage), static RCTs were conducted on non-irradiated, pre-hydrided ZIRLO® ring-shaped samples that were subjected to a radial hydride treatment. All samples failed in macroscopically brittle fashion with sudden load drops and severe crack propagation through almost the entire wall thickness. In a post-RCT examination of the fracture surfaces using scanning electron microscopy, radial hydrides could be identified as the weakest link of the structure. However, the microscopic failure mechanism is much more complex due to cracks initiating at different axial positions in depth direction of the ring, overlapping cracks, and arresting cracks. A considerable portion of the fracture surfaces appeared to have undergone plastic deformation of the zirconium matrix resulting in void growth and coalescence associated with ductile failure. The geometry of the ductile patches was measured, and the ductile surface fraction was determined. Based on these observations, a statistical model was developed that can reproduce the composition of the fracture surface as a one-dimensional projection. A micromechanically motivated cohesive zone model (CZM) was implemented in existing RCT finite element analysis (FEA) models with different constitutive laws for brittle hydrides and ductile matrix respectively. In this work, FEA results are presented for non-irradiated ZIRLO® and high-burnup M5® claddings. The impact of varying hydride-matrix combinations is discussed. Acknowledgement: The project was funded by the former Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 6th GRS Workshop on the Safety of Extended Dry Storage of Used Nuclear Fuel CY - Garching, Germany DA - 01.06.2022 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2022 AN - OPUS4-55023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings – Fracture Mechanical Evaluation and Failure Criteria N2 - The BAM research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) evaluates results of quasi-static Ring Compression Tests (RCT). Due to its simple realisation, the RCT is an established method for characterising the mechanical behaviour of fuel cladding, where a small tube sample is subjected to a compressive load and the relation between load and displacement is obtained. During tests at room temperature, unirradiated ZIRLO® samples with a distinct extend of radial hydrides have shown high susceptibility to sudden, brittle failure at relatively small loads. Hydride morphology and radial hydride metrics have been an integral part of the characterisation of degradation mechanisms of cladding. A software tool for the analysation of metallographic micrographs was developed. The program allows the automated calculation of hydride lengths, detection of continuous hydride structures, their statistical evaluation and visualisation. Numerical models have been established to reproduce experimental RCT results featuring an elastic-plastic material model, which was derived from inverse finite element analyses of as-received RCT samples. A cohesive zone model (CZM) is introduced to the model to reproduce load drops in the linear regime of the load vs. displacement curve. Using a traction-separation approach for the CZM, the cohesive parameters are fitted to match numerical and experimental results yielding the fracture mechanical material properties. Combining the three key aspects hydride morphology, fracture mechanics and RCT stress-state a failure criterion can be established as a result of the BRUZL project. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 5th GRS Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Online meeting DA - 09.06.2021 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2021 AN - OPUS4-53779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöland, A. A1 - Christensen, P. A1 - Zetterström Evins, L. A1 - Bosbach, D. A1 - Duro, L. A1 - Farnan, I. A1 - Metz, V. A1 - Zencker, Uwe A1 - Ruiz-Hervias, J. A1 - Rodriguez-Villagra, N. A1 - Kiraly, M. A1 - Schillebeeckx, P. A1 - Rochman, D. A1 - Seidl, M. A1 - Dagan, R. A1 - Verwerft, M. A1 - Herranz Puebla, L. E. A1 - Hordynskyi, D. A1 - Feria, F. A1 - Vlassopoulos, E. T1 - Spent nuclear fuel management, characterisation, and dissolution behaviour: progress and achievement from SFC and DisCo N2 - SFC is a work package in Eurad that investigates issues related to the properties of the spent nuclear fuel in the back-end of the nuclear fuel cycle. Decay heat, nuclide inventory, and fuel integrity (mechanical and otherwise), and not least the related uncertainties, are among the primary focal points of SFC. These have very significant importance for the safety and operational aspect of the back-end. One consequence is the operation economy of the back-end, where deeper understanding and quantification allow for significant optimization, meaning that significant parts of the costs can be reduced. In this paper, SFC is described, and examples of results are presented at about half-time of the work package, which will finish in 2024. The DisCo project started in 2017 and finished in November 2021 and was funded under the Horizon 2020 Euratom program. It investigated if the properties of modern fuel types, namely doped fuel, and MOX, cause any significant difference in the dissolution behavior of the fuel matrix compared with standard fuels. Spent nuclear fuel experiments were complemented with studies on model materials as well as the development of models describing the solid state, the dissolution process, and reactive transport in the near field. This research has improved the understanding of processes occurring at the interface between spent nuclear fuel and aqueous solution, such as redox reactions. Overall, the results show that from a long-term fuel matrix dissolution point of view, there is no significant difference between MOX fuel, Cr+Al-doped fuel, and standard fuels. KW - Spent nuclear fuel management KW - Spent fuel characterization KW - Dissolution behaviour PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572461 DO - https://doi.org/10.1051/epjn/2022029 SN - 2491-9292 VL - 9 SP - 1 EP - 12 PB - EDP Sciences CY - Les Ulis Cedex, France AN - OPUS4-57246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vlassopoulos, E. A1 - Caruso, S. A1 - Linnemann, Konrad A1 - Nasyrow, R. A1 - Gretter, R. A1 - Fongaro, L. A1 - Papaioannou, D. T1 - Mechanical integrity of spent nuclear fuel rods N2 - The properties of spent nuclear fuel (SNF) rods change significantly during their operation life in the reactor core. Further changes occur after their discharge mainly due to the heating-cooling processes and possible ageing associated with the cumulative effects of radioactive decay induce damage in the fuel. Such changes may affect the response of the SNF rods to mechanical solicitations corresponding to normal and accidental conditions. Research activities at JRC-KARLSRUHE aim at assessing the integrity of SNF rods and processes which might affect their mechanical properties during their interim storage, transport or other handling operations. JRC Hot Cell facilities have been fully adapted to fulfil the experimental goals. The number of experiments that can be performed, however, is limited and there is an acute need to model them, using this process to validate codes, to deeper understand and to extend the results gained at the JRC beyond the conditions that have been tested. For the experimental campaigns two devices for gravitational impact and 3-point bending tests were developed and installed in a hot cell. Segments of real SNF rods pressurized at their original pressures after discharge have been investigated. The setup is fully operational and new results are reported continuously. T2 - ANS Annual 2018 CY - Philadelphia, PA, USA DA - 17.06.2018 KW - Spent nuclear fuel KW - Mechanical testing KW - Hot cell testing PY - 2018 SP - 170 EP - 172 AN - OPUS4-44862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian A1 - Qiao, Linan T1 - Research at BAM on Metal Seal Performance and Fuel Rod Integrity N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) Winter Meeting 2020 CY - Online meeting DA - 09.11.2020 KW - Metal seal KW - Safety KW - Interim storage KW - Spent nuclear fuel KW - Fuel rod PY - 2020 AN - OPUS4-51615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wille, Frank A1 - Wolff, Dietmar T1 - Update on the German Spent Fuel Management Strategy N2 - The presentation provides an update on the German spent fuel Management strategy in the areas of transportation, dry interim storage and deep geological disposal. T2 - IAEA 18th TWG-NFCO CY - Online meeting DA - 07.09.2020 KW - Spent nuclear fuel KW - Final disposal KW - Safety KW - Transport and storage cask PY - 2020 AN - OPUS4-51616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Herold, C. T1 - Container requirements for high-level radioactive waste disposal in rock salt, claystone, and crystalline rock – Outcomes of the research project KoBrA N2 - Suitable containers for receiving high-level radioactive waste are a key elements of every repository system concerning different host rocks like rock salt, claystone and crystalline rock as being considered in Germany. The disposal container design is decisive regarding boundary conditions for the transport, emplacement techniques, and the operational and long-term safety assessment. The systematic derivation of the requirements to be placed on disposal containers forms the basis for a targeted, comprehensible and transparent development of containers that meet the requirements. The presentation summarizes the outcomes of the research project KoBrA. T2 - IGD-TP Symposium CY - Zurich, Switzerland DA - 20.09.2022 KW - Disposal KW - Container KW - Radioactive waste KW - Safety PY - 2022 AN - OPUS4-57021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Qualification of Nuclear Waste Packages - Needs and Challenges from BAM's Perspective N2 - This Presentation adresses the major needs and challenges of qualification processes for nuclear waste packages performed by BAM. Packages include those for high level radioactive waste like spent fuel as well as those for low and intermediate level waste to be disposed of in the Konrad repository. Beginning with the current German nuclear waste management policy design testing capabilities and experience at BAM is explained followed by illustrating the major strategic process to identify future challenges including specific R&D needs. T2 - 5th International Nuclear Decommissioning Summit CY - Berlin, Germany DA - 30.01.2018 KW - Radioactive KW - Container KW - Testing KW - Safety PY - 2018 AN - OPUS4-44750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Orellana Pérez, Teresa T1 - Ongoing R&D work at BAM N2 - The presentation provides an update on the German nuclear waste management policy towards final disposal and related reasearch at BAM. Topics include long term investigations of metal seals, investigations of fuel cladding failure mechanisms, and the development of requirements and concepts for high level radioactive waste and spent fuel disposal containers. T2 - EPRI Extended Storage Collaboration Program (ESCP) International Subcommittee Meeting 2018 CY - Munich, Germany DA - 05.06.2018 KW - Radioactive waste KW - Metal seal KW - Disposal container KW - Fuel cladding PY - 2018 AN - OPUS4-45328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Völzke, Holger A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Nehrig, Marko A1 - Wolff, Dietmar A1 - Wille, Frank T1 - Basic of Transport and Storage of Radioactive Materials N2 - Transport and storage of radioactive materials are performed in countries with policy of either closed or open nuclear fuel cycle. The related technologies have been established by accumulation of experiences and researches including demonstrative tests using full scale or scale models and analyses. Those are essential before commercialization, but are often costly and time consuming. Such demonstrative works should not be repeated meaninglessly, but can be shared through this kind of book and used by readers and the future generations to advance the technology effectively. This book systematically provides findings from lots of valuable researches on safety of transport and storage of radioactive materials under normal and accident conditions that have an impact on basis of safe regulations, designs, and operations. KW - Drop testing KW - Metal seals KW - Transport safety KW - Aging management KW - Package PY - 2018 SN - 978-981-3234-03-1 DO - https://doi.org/10.1142/10820 SP - 1 EP - 376 PB - Worlds Scientific Publishing Co Pte Ltd CY - Singapore AN - OPUS4-44867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Völzke, Holger A1 - Wolff, Dietmar ED - Saegusa, T. ED - Sert, G. ED - Völzke, Holger ED - Wille, Frank T1 - Long-term metal seal performance N2 - For the long-term storage of spent nuclear fuel and other high-Level radioactive waste, dual purpose casks for the transportation and storage are widely used. Usually, these casks consist of a thick-walled monolithic cask body and a bolted double barrier lid System equipped with metal seals (consisting of an inner helical spring and two outer metal layers with a total cross-section diameter between 5 and 10 mm) to ensure the long-term safe confinement of the radioactive inventory. Based on analytical and experimental studies, such metallic Systems have been qualified of storage periods of up to four decades so far as long as proper manufacturing and assembling conditions are met. More than 20 years of Operation experience with a permanently increasing number of casks has shown full compliance with the expectations. In the meantime many countries have to face a significant delay of establishing a high-level radioactive waste repository what leads to Need for extending interim storage periods for probably 60, 80 or 100 years. For that reason the long-term performance of metal seals for such time periods is of specific internst to demonstrate their sufficient safety function and specific investigations have already been launched, e.g. by BAM, to gain more experimental data and to develop validated models to extrapolate the seal performance to longer periods of time and or requested temperature levels. KW - Metal Seal KW - Container KW - Safety KW - radioactive waste PY - 2018 SN - 978-981-3234-03-1 SP - Chapter 20, 293 EP - 303 PB - World Scientific CY - Singapore AN - OPUS4-47669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Radioactive Waste KW - Elastomers KW - Aging KW - Experiment KW - Seal Behavior KW - Numerical Simulation KW - Leakage Rate KW - Coefficient of Friction PY - 2022 AN - OPUS4-57095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 AN - OPUS4-49013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Development and application of a finite element model representing the rapid partial release of elastomeric O-ring seals N2 - Due to their high versatility and recovery potential under several load conditions, seals made from elastomers are widely used as barrier seals in containers for low and intermediate level radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). In DPC, elastomer seals allow leakage rate measurements of metal barrier seals for demonstration of their proper assembly conditions and performance. For spent fuel and high level waste as well as for low and intermediate level waste, long time periods will be required before final disposal will be available. Therefore, the long-term behavior of elastomer seals can be an important issue when the cask’s suitability for an extended interim storage period has to be assessed. During the licensed interim storage duration, the requested leakage rate has to be maintained under any static and dynamic load conditions. A sufficient resilience, the capability of seals to compensate a (rapid) partial release was identified as an important end-of-lifetime criterion. In the framework of extensive aging and testing programs at BAM, specimen made from representative types of elastomer (EPDM, FKM) were aged for several years at different temperatures ranging from 23 °C to 150 °C. One aim of the experiments was to determine an end-of-lifetime criterion correlated to leakage as the point of seal failure. As the seals remained leak-tight under static conditions even after advanced material degradation, a more demanding leakage test set-up was constructed that allowed a rapid partial release of the seal. This device enables a release of the O-ring by approx. 0.2 mm from 25 % to 23 % compression in less than one second during the pressure rise measurement. If the resilience of the seal has decreased past a certain point, the seal cannot follow the decompression fast enough and a leak path can open. Using a finite element (FE) material model derived earlier from different material tests, this process was simulated with a 3D FE model, reproducing the essential characteristics of the test device. The FE-model enables the analyzation of the occurring global mechanisms if a leak path opens. The capability of the seals to follow the lifted flange and the subsequent run of compression force depending on the current state of aging are illustrated. The findings of the simulation are correlated and discussed with respect to the pressure rise measurements. T2 - ASME PVP 2019 CY - San Antonio, TX, USA DA - 14.07.2019 KW - Storage and transportation casks KW - Elastomeric seals KW - Rapid partial release KW - Leakage KW - Numerical simulation PY - 2019 AN - OPUS4-49017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical Approach to Determine the Correct Length for the IAEA Puncture Bar Drop Test N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Transport of radioactive materials KW - Mechanical assessment KW - Puncture bar test KW - Length of puncture bar KW - Numerical simulation PY - 2018 AN - OPUS4-45785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, GA, USA DA - 16.07.2023 KW - Final repository Konrad KW - Drop test KW - Target PY - 2023 AN - OPUS4-58565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Final repository Konrad KW - Drop test KW - Target PY - 2023 AN - OPUS4-58564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Nieslony, Gregor T1 - Consequences of an Imperfectly Mounted Reinforcement Cage in a Cylindrical Concrete Container During Mechanical Specimen Tests N2 - In 2007 the license for the German Konrad repository for low and intermediate level radioactive waste was finally confirmed. Since then, the site is improved, prepared and equipped for the currently planned start of waste package emplacement in 2029. Bundesanstalt fuer Materialforschung und -pruefung is regularly contracted by the Bundesgesellschaft für Endlagerung as the responsible authority for waste product control, waste container design testing, and waste package acceptance. In this context BAM is mainly responsible for design testing of various container types including the evaluation of quality assurance measures for container manufacturing. In addition to general requirements concerning container design, the casks have to withstand specific mechanical load scenarios. Drop tests from different heights under consideration of the most damaging drop orientation and a stacking test are two examples for necessary safety demonstrations. If the containers are made from concrete the reinforcement has the function to absorb tensile forces the concrete is not able to withstand by its own. Because of manufacturing imperfections of cylindrical concrete containers manufactured already decades ago, the reinforcement cages are not always exactly, asymmetrically positioned when they were poured. This inspired BAM to perform various ABAQUS® finite-element (FE) simulations by using the example of a simplified cylindrical container design with generic dimensions. On the basis of the calculated tensile and compressive stress distributions suggestions are derived on how a cylindrical concrete container with an imperfectly placed reinforcement cage has to be oriented for a drop or stacking test to ensure the most damaging test scenario. T2 - RAMTRANS 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Finite-element-analysis KW - Container design testing procedure KW - Reinforced concrete containers KW - Drop test KW - Stacking test KW - Imperfectly mounted reinforcement cage PY - 2024 AN - OPUS4-60120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 UR - https://www.inmm.org/INMM-Resources/Proceedings-Presentations/PATRAM-Proceedings.aspx SP - 1 EP - 10 AN - OPUS4-49016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine the correct puncture bar length for the IAEA puncture bar drop test N2 - Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages for the transport of radioactive material. According with the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. The most damaging puncture bar length can be estimated by iterative processes in numerical simulations. On the one hand, a sufficient puncture bar length has to guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - ASME Pressure Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Length of puncture bar KW - Mechanical assessment KW - Numerical simulation KW - Puncture bar test KW - Transport of radioactive materials PY - 2018 SP - PVP2018-84614, 1 EP - 7 AN - OPUS4-46538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Völzke, Holger A1 - Zencker, Uwe A1 - Herz, A. A1 - Kreienmeyer, M. T1 - Design of a Drop Test Target with Reproducible Properties for Konrad Prototype Testing N2 - Beginning in 1976 the former iron ore mine Konrad was geologically investigated concerning its suitability as a location for a German final repository for low and intermediate level waste. After a comprehensive licensing procedure it was approved and is now being prepared and equipped for the planned start of storage in 2027. At the end of the 1980s, the requirements for waste containers for storage in this repository were defined for the first time on the basis of an incident analysis of the on-site handling procedures, beginning with the unloading of the packages after the arrival at the site up to the final positioning in the underground storage galleries. A 5-meter drop onto the rock ground of the mine was identified as the covering case for high mechanical requirements (ABK II container class). In contrast to the 9-meter drop according to the IAEA Regulations for the Safe Transport of Radioactive Material, the 5-meter drop is performed onto a hard but not essentially unyielding target. The container is typically not protected by an impact limiter. The requirements for a potential test facility are described in the regulations for the Konrad repository. The mechanical strength of the target is defined as a concrete strength equivalent to the identified properties of the rock ground of the mine. Since 1991 BAM has consistently used precast reinforced concrete slabs as target for drop tests in the framework of licensing procedures as well as in research projects. While the original design fulfilled the requirement for the integrity of the concrete slab in most cases, it failed when drop tests onto an edge of a container were performed. A redesigned concrete slab developed in a research project and suggested as a reference target in 2009 has been successfully used in Konrad licensing procedures since then. The paper gives a brief overview of the historical development and it describes BAM’s efforts and approaches to continuously guarantee a concrete slab of defined quality and to provide a test setup for valid drop tests from the applicants and the authorities view. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Target KW - Drop test KW - Final repository Konrad PY - 2023 SP - 1 EP - 11 AN - OPUS4-58563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Brandt, Guido A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Coefficients of Friction in Dependence on Aging State of Elastomers – Experimental Identification and Numerical Simulation of the Experiment N2 - Elastomer seals are mounted as barrier seals in lid systems of containers designed for transport and disposal of negligible heat generating radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). When the behavior of mounted seals under normal and hypothetical accident conditions of disposal and transport is to be simulated, a comprehensive knowledge of their complex mechanical properties at every state of aging is necessary. In previous works, BAM’s efforts in experimental investigations on specimen artificially aged at different temperatures and times and the implementation of the found results in finite element material models were presented. Additionally, our approaches to reproduce the aging process itself and to extrapolate the results of artificially accelerated aging to longer times were presented. Numerical simulations have shown that the behavior of the seal during mounting and one-sided pressurizing and the resulting performance values such as leakage rate strongly depend on the coefficient of friction (COF) between flange and seal. The friction coefficient, in turn, depends on the aging state of the elastomer material as several publications suggest (see below). Dynamic COF between an exemplary ethylene propylene diene rubber (EPDM) material and a stainless steel ball were determined by using a self-designed linear oscillation tribometer. Unaged and artificially aged EPDM specimen stored for 30 days and 100 days at a temperature of 150 °C were tested. A stainless steel ball (d=10 mm) is brought in contact with the specimen’s surface und loaded by normal forces of 2.5 N, 5 N, 10 N and 20 N. During a reciprocating movement of the EPDM sheet, the horizontal force/friction force is continuously measured, and the COF can be derived. It is well known that friction is a complex phenomenon especially in soft materials. It cannot be excluded that the measured friction force is influenced by additional force components, resulting from the ball’s grooving through the elastomer’s surface. This force depends on the penetration depth of the ball and on the resistance of the elastomer in its different states of aging. The latter results from microstructural changes i.e., chain scission and additional crosslinking that occur during aging which in turn influence the softening or hardening of the material. A finite element (FE) ABAQUS® model was developed to reproduce the measurement process. It should help to better understand the physical mechanisms and to quantify the percentage of measured forces resulting from real friction on the one hand and forces resulting from unintended side effects that could falsify the result on the other hand. The behavior of the elastomer in its different states of aging is reproduced by a FE material model already presented in previous works of BAM. T2 - ASME 2022 Pressure Vessels & Piping Conference (PVP2022) CY - Las Vegas, NV, USA DA - 17.02.2022 KW - Numerical Simulation KW - Radioactive Waste KW - Elastomers KW - Aging KW - Seal Behavior KW - Leakage Rate KW - Coefficient of Friction KW - Experiment PY - 2022 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-57093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, Marianne A1 - Apel, Andreas A1 - Ballheimer, Viktor A1 - Sterthaus, Jens T1 - Recent developments in standards and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. Another standard with relevance to the load attachment of packages is ISO 10276. This standard deals with trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology and proposed revised text for the ISO standard for international discussion. The paper describes relevant tie-down aspects, gives background argumentation, and tries to support harmonized application of the revised IAEA guidance material and future ISO 10276 standard. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Acceleration KW - Package design KW - ISO KW - Ladungssicherung PY - 2018 AN - OPUS4-45293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Apel, Andreas A1 - Nehrig, Marko T1 - Revision of IAEA Guidance Material for Package Load Attachment Points N2 - For transport operations according IAEA regulations SSR-6, the package shall be securely stowed and the package shall be capable to withstand specific effects, e.g. accelerations, during routine transport conditions. The supporting IAEA Advisory Material SSG-26 provides information how to do that. General information and detailed load factors for use in safety demonstrations are provided. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration factors vary between different countries and lead to difficulties during the validation of foreign approval certificates. The background of the existing guidance including specified load values was not clear enough. The application of specified values and the boundary conditions, i.e. transport conditions, seemed to be improvable. The IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and, on the other hand the criteria which have to be considered for the attachment points. In addition, complementary questions relative to the operational aspects were discussed. Revised load values for different transport modes were proposed. The values are derived from standards and include safety factors now. As a result of those discussions, the international working group wrote new guidance material for stowage in transport, addressing all the previously quoted topics. T2 - WM2018 Conference CY - Phoenix, Arizona, USA DA - 18.03.2018 KW - Acceleration values KW - IAEA regulations KW - Routine conditions of transport PY - 2018 AN - OPUS4-44866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Apel, Andreas A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standart and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 AN - OPUS4-49096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Retaining Competence for Safe Transports of Radioactive Material N2 - The nuclear phase out in Germany will lead to a challenge finding skilled staff for all areas in nuclear business. Transport of spent fuel and high-level nuclear waste is an ongoing task over the next decades during the decommissioning of nuclear power plants and after the interim storage. The international regulations were adapted and address the issue of transports after storage now. The topic of aging and assessment of the development of the state-of-art technology are in focus. German research funds are supporting the investigations of future challenges of transport and storage of the nuclear heritage. BAM is involved and works on several topics related to the aging issue of packages. The behaviour of spent fuel claddings, long-term behaviour of metal and elastomeric gaskets and sensor/monitoring techniques of waste disposal are examples of research fields. T2 - 7th Nuclear Decommissioning & Waste Management Summit 2020 CY - London, UK DA - 12.02.2020 KW - Aging management KW - Transport KW - Spent fuel behaviour KW - Disposal PY - 2020 AN - OPUS4-50987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette T1 - Spent fuel behavior under Transport Conditions N2 - German packages for the transport of spent nuclear fuel are assessed with respect to specific transport conditions which are defined in the safety regulations of the International Atomic Energy Agency. In general, gastight fuel rods constitute the first barrier of the containment system. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of the fuel assemblies are important inputs for the evaluation of the package safety under transport conditions. The objective of this paper is to discuss the methodologies accepted by German authority BAM for the evaluation of spent fuel behavior within the package design approval procedure. Specific test conditions will be analyzed with regard to assumptions to be used in the activity release and criticality safety analysis. In particular the different failure modes of the fuel rods, which can cause release of gas, volatiles, fuel particles or fragments, have to be properly considered in these assumptions. The package as a mechanical system is characterized by a complex set of interactions, e.g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity together with the limited knowledge about the material properties and the variation of the fuel assemblies regarding cladding material, burn-up and the operation history makes an exact mechanical analysis of the fuel rods nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally, and require a conservative approach. In this context some practical approaches based on experiences by BAM within safety assessment of packages for transport of spent fuel will be discussed. Ongoing research activities to investigate SNF mechanical behavior in view of gas and fissile material release under transport loads are presented. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - ENSA KW - SNL KW - Real transport KW - IAEA KW - Drop test KW - Multi-Modal Transportation Test KW - Radioactive KW - ACT KW - NCT KW - Hot cell KW - Activity release KW - Fuel rod KW - Fuel rods KW - Burn-up KW - Cladding alloy KW - Criticality safety analysis KW - Containment analysis KW - Fuel assemblies KW - Spent fuel PY - 2018 AN - OPUS4-46880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test facilities for transport and storage packages at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Transport KW - Drop testing KW - Fire test KW - IAEA KW - Package PY - 2023 AN - OPUS4-58088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -