TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Völzke, Holger T1 - Brittle failure of spent fuel claddings under long-term dry interim storage conditions – Preliminary analysis N2 - The evaluation of cladding integrity is a major issue to be demonstrated in Germany for extended interim storage periods up to 100 years and subsequent transportation considering operational and accidental conditions with respect to reactor operation, cask drying and dry interim storage. The chemical reaction between the zirconium fuel cladding and the cooling water in water-cooled reactors produces hydrogen and zirconium oxide. Hydrogen diffuses into the cladding and precipitates as zirconium hydrides when the solubility limit is reached, preferably oriented in hoop direction. At high temperatures during vacuum drying procedures, the hydrides can dissolve. Over a succeeding period of slow cooling with existing hoop stress the hydrides precipitate again, but partly reoriented along the radial direction of the cladding. This change of microstructure in combination with a decreasing temperature (0.5...2 K/year) during (extended) interim storage and additional mechanical load by handling procedures or under accident conditions could lead to a potential cladding embrittlement and consequently increased failure probability. The current research project BRUZL (Fracture mechanical analysis of spent fuel claddings under long-term dry interim storage conditions) has been launched by BAM to investigate potential sudden brittle failure of spent fuel claddings at small deformation under long-term dry interim storage conditions and is presented. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2019 AN - OPUS4-48868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai A1 - Völzke, Holger T1 - Brittle failure of spent fuel claddings under long-term dry interim storage conditions – Preliminary analysis N2 - The evaluation of cladding integrity is a major issue to be demonstrated in Germany for extended interim storage periods up to 100 years and subsequent transportation considering operational and accidental conditions with respect to reactor operation, cask drying and dry interim storage. The chemical reaction between the zirconium fuel cladding and the cooling water in water-cooled reactors produces hydrogen and zirconium oxide. Hydrogen diffuses into the cladding and precipitates as zirconium hydrides when the solubility limit is reached, preferably oriented in hoop direction. At high temperatures during vacuum drying procedures, the hydrides can dissolve. Over a succeeding period of slow cooling with existing hoop stress the hydrides precipitate again, but partly reoriented along the radial direction of the cladding. This change of microstructure in combination with a decreasing temperature (0.5...2 K/year) during (extended) interim storage and additional mechanical load by handling procedures or under accident conditions could lead to a potential cladding embrittlement and consequently increased failure probability. The current research project BRUZL (Fracture mechanical analysis of spent fuel claddings under long-term dry interim storage conditions) has been launched by BAM to investigate potential sudden brittle failure of spent fuel claddings at small deformation under long-term dry interim storage conditions and is presented. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2019 SP - Paper IAEA-CN-272/49, 1 EP - 8 AN - OPUS4-48869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Fracture mechanical analysis of a cylindrical cast iron cask N2 - The safety evaluation of cask components made of ductile cast iron includes investigations to prevent brittle fracture. Generally, ductile cast iron is endangered by brittle fracture especially at low temperatures (down to -40°C) and in combination with existing crack-like material defects. An applicable method is the assessment of fracture resistance using fracture mechanics according to the IAEA guidelines. The approach is based on the prevention of fracture initiation. For application of these principles for drop loads, account must be taken both of dynamic stresses within the component and dynamic material behavior. Basically, the dynamic stress intensity factor of postulated pre-existing crack-like defects is compared with the dynamic fracture toughness of the material. Applicable numerical and experimental methods for the safety assessment of cask components are demonstrated for the case of an artificially pre-cracked cylindrical cast iron cask which undergoes dynamic loading conditions as result of the hard impact between the cask and a concrete target. The proposed evaluation procedure is a combination of numerical and experimental steps. Exemplarily, the calculated stress intensity factor is compared with measured fracture toughness values from single edge notched bending specimens. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) CY - New Orleans, LA, USA DA - 04.08.2019 KW - Ductile Cast Iron KW - Brittle Fracture KW - Cylindrical Cask PY - 2019 SP - Paper 1209, 1 EP - 7 AN - OPUS4-48914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -