TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings - Micromechanically Motivated Cohesive Zone Modelling N2 - Since cladding acts as the first barrier for nuclear fuel, it is key to understand the degrading mechanisms leading to cladding embrittlement. Zirconium alloy based cladding samples subjected to simulated pre-storage drying conditions have shown high susceptibility to brittle failure under the occurrence of hoop stress and low temperature as expected after long-term interim storage. The stress state associated with a compressive pinch-load scenario is reproduced by the Ring Compression Test (RCT), which results in sudden failure at relatively small mechanical loads with high sensitivity to the presence of radial hydrides. As part of the BAM research project BRUZL (Fracture mechanics analysis of spent fuel claddings during long-term dry interim storage), static RCTs were conducted on non-irradiated, pre-hydrided ZIRLO® ring-shaped samples that were subjected to a radial hydride treatment. All samples failed in macroscopically brittle fashion with sudden load drops and severe crack propagation through almost the entire wall thickness. In a post-RCT examination of the fracture surfaces using scanning electron microscopy, radial hydrides could be identified as the weakest link of the structure. However, the microscopic failure mechanism is much more complex due to cracks initiating at different axial positions in depth direction of the ring, overlapping cracks, and arresting cracks. A considerable portion of the fracture surfaces appeared to have undergone plastic deformation of the zirconium matrix resulting in void growth and coalescence associated with ductile failure. The geometry of the ductile patches was measured, and the ductile surface fraction was determined. Based on these observations, a statistical model was developed that can reproduce the composition of the fracture surface as a one-dimensional projection. A micromechanically motivated cohesive zone model (CZM) was implemented in existing RCT finite element analysis (FEA) models with different constitutive laws for brittle hydrides and ductile matrix respectively. In this work, FEA results are presented for non-irradiated ZIRLO® and high-burnup M5® claddings. The impact of varying hydride-matrix combinations is discussed. Acknowledgement: The project was funded by the former Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 6th GRS Workshop on the Safety of Extended Dry Storage of Used Nuclear Fuel CY - Garching, Germany DA - 01.06.2022 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2022 AN - OPUS4-55023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Embrittlement of Spent Fuel Claddings – Fracture Mechanical Evaluation and Failure Criteria N2 - The BAM research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) evaluates results of quasi-static Ring Compression Tests (RCT). Due to its simple realisation, the RCT is an established method for characterising the mechanical behaviour of fuel cladding, where a small tube sample is subjected to a compressive load and the relation between load and displacement is obtained. During tests at room temperature, unirradiated ZIRLO® samples with a distinct extend of radial hydrides have shown high susceptibility to sudden, brittle failure at relatively small loads. Hydride morphology and radial hydride metrics have been an integral part of the characterisation of degradation mechanisms of cladding. A software tool for the analysation of metallographic micrographs was developed. The program allows the automated calculation of hydride lengths, detection of continuous hydride structures, their statistical evaluation and visualisation. Numerical models have been established to reproduce experimental RCT results featuring an elastic-plastic material model, which was derived from inverse finite element analyses of as-received RCT samples. A cohesive zone model (CZM) is introduced to the model to reproduce load drops in the linear regime of the load vs. displacement curve. Using a traction-separation approach for the CZM, the cohesive parameters are fitted to match numerical and experimental results yielding the fracture mechanical material properties. Combining the three key aspects hydride morphology, fracture mechanics and RCT stress-state a failure criterion can be established as a result of the BRUZL project. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 5th GRS Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Online meeting DA - 09.06.2021 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2021 AN - OPUS4-53779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Cohesive Zone Modelling Approach on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which may result in embrittlement of the cladding material and eventually a sudden failure of cladding under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. An iterative inverse analysis method is used for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which can reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. T2 - 7th GRS Workshop on the Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 24.05.2023 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-58553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Failure Analysis on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Since the cladding is the first barrier for the spent fuel pellets, its integrity must be demonstrated until the end of interim storage and subsequent transportation. An established method for characterizing the cladding material is the ring compression test, in which a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a load case where the fuel rod is crushed. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which result in embrittlement of the cladding material and eventually a possible sudden failure of cladding integrity under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. Therefore, the study of hydride morphology plays an important role in describing the brittle failure behaviour of the claddings. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. Typical hydride morphologies are shown. An iterative inverse analysis method is described for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which is able to reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. This project as part of the European Joint Programme on Radioactive Waste Management has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847593. T2 - BAM-Kolloquium der Abteilung 3 CY - Berlin, Germany DA - 05.06.2023 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-57598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions T2 - Proceedings of the IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 SP - 1 EP - 10 AN - OPUS4-60323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Brittle Failure Limits of Spent Fuel Claddings Subjected to Long-Term Dry Interim Storage Conditions N2 - The mechanical properties of spent fuel claddings can be adversely affected under the conditions of long-term dry interim storage, so that the failure limits may be reached in case of mechanical loads during handling or transport after storage. Pre-storage drying and the early stage of interim storage can expose the cladding to higher temperatures and higher tensile hoop stresses than those associated with in-reactor operation and pool storage. During slow cooling of a cladding tube under internal pressure, radial hydrides may precipitate in zirconium-based cladding alloys. This can lead to embrittlement of the material and sudden failure of the cladding integrity under mechanical stress. In order to prevent brittle failure, numerical methods are being developed to predict the mechanical behaviour and identify limiting conditions. Experimental investigations, numerical analyses and evaluation methods are discussed. An established experimental method for characterising cladding materials is the Ring Compression Test (RCT). Some test results on irradiated cladding tubes after operation in pressure water reactors are publicly available. However, it is helpful to carry out studies on unirradiated surrogate claddings with similar material properties to reduce the effort associated with irradiated samples in hot cells and to perform material tests with a wider range of parameters. On the basis of such experimental data, load-displacement curves have been numerically analysed for a selection of cladding materials. Radial hydrides can cause a sample to break suddenly due to fracture even at low deformation. Noticeable load drops in the RCT are caused by unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting adjacent hydrides. The cohesive zone approach was used to simulate the failure process taking into account the radial hydride morphology. The developed method can adequately describe both the deformation and failure behaviour of irradiated as well as unirradiated claddings of zirconium-based alloys with radial hydrides under RCT conditions. Limiting conditions can be expressed in terms of fracture energy and cohesive strength. T2 - IAEA International Conference on the Management of Spent Fuel from Nuclear Power Plants - Meeting the Moment CY - Vienna, Austria DA - 10.06.2024 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2024 AN - OPUS4-60324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -