TY - CONF A1 - Gröke, Carsten A1 - Neumann, Martin A1 - Komann, Steffen A1 - Wille, Frank T1 - Requirements for Package Design Testing and Quality Assurance Measures for Packages not Requiring Competent Authority Design Approval N2 - Übersicht über die gefahrgutrechtlichen Anforderungen zur Bauartprüfung und dem Qualitätsmanagement für Verpackungen für nicht zulassungspflichtige Versandstücke. T2 - KONTEC 2019 CY - Dresden, Germany DA - 27.03.2019 KW - Bauartprüfung KW - Qualitätsmanagement KW - Nicht zulassungspflichtig PY - 2019 AN - OPUS4-56352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: Experiment and modelling JF - Continuum mechanics and thermodynamics N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125∘C and 150∘C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression stress relaxation KW - Compression set KW - IRHD microhardness KW - Modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545910 DO - https://doi.org/10.1007/s00161-022-01093-9 SN - 1432-0959 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-54591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - A numerical approach to correlate compression stress relaxation and compression set of elastomer O-rings with tightness T2 - Proceedings of the ASME 2021 Pressure Vessels & Piping Conference (PVP2021) N2 - The excellent mechanical properties of elastomer seals at a wide range of temperatures as well as their high versatility and recovery potential under several load conditions make these materials well suitable for the application in containers designed for transport and disposal of negligible heat generating radioactive waste. While a seal exchange at defined intervals is typical in many conventional applications, it is impossible or at least hard to perform when principles of minimization of radiation exposure have to be considered which prohibit an avoidable cask handling. An extensive knowledge of the change of the elastomer properties during aging and the availability of reliable end-of-lifetime criteria to guarantee the safe enclosure of the radioactive material for the required time are mandatory. As BAM is involved in most of the national cask licensing procedures and in the evaluation of cask-related long-term safety issues, great efforts have already been made and are still ongoing to scientifically support this task. Among other representative types of elastomers, specimen made from ethylene propylene diene rubber (EPDM) were tested before, during and after aging to capture the with respect to application most important of their complex mechanical properties. Exemplary results of these investigations were used to calibrate material models implemented in the commercial finite element software ABAQUS/Standard®. The finite element model already presented in previous works uses a sequential temperature displacement coupling. The calculated compression stress relaxation (CSR) and compression set (CS) values do satisfactorily match the experimental results. In many investigations performed at BAM both values (CSR and CS) were identified as key indicators of elastomer’s long-term performance. However, the possibility to correlate these equivalent indicators with performance values such as tightness and leakage rate, measurable in the mounted state, is an important goal of our future work. In the presented study the ABAQUS® feature of “pressure penetration” is introduced in the suggested finite element model for this purpose. It provides the possibility to simulate the penetration of a gas into a possible gap between flange and O-ring causing an opening of a leakage path. Three dimensional and axis-symmetric finite element models were generated to represent flat and grooved flanges of different dimensions. The sensitivity of the feature to several input parameters is investigated and the observed behavior of the O-ring is correlated with the results of performed leakage tests. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Elastomer KW - Tightness KW - Leakage KW - Compression set KW - Compression stress relaxation PY - 2021 SN - 978-0-7918-8535-2 DO - https://doi.org/10.1115/PVP2021-61976 SP - 1 EP - 8 PB - American Society of Mechanical Engineers (ASME) CY - New York, NY, USA AN - OPUS4-54422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior JF - Materials N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543800 DO - https://doi.org/10.3390/ma15030726 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomer O-rings and PE neutron shielding materials for radioactive waste containers N2 - Our institution BAM in Berlin, Germany is concerned with research and testing of materials in the context of safety in chemistry and technology. Our working group is involved in the licensing procedures of casks for radioactive waste. Besides, we’re doing research on aging and lifetime prediction of elastomer O-rings and investigate degradation and thermal expansion of PE neutron shielding materials. T2 - Polymers in nuclear applications CY - Online meeting DA - 01.12.2021 KW - Rubber KW - Polyethylene KW - Thermal expansion KW - Lifetime KW - Degradation PY - 2021 UR - https://energiforsk.se/media/30631/bam_material_aging_analysis.pdf AN - OPUS4-54191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - EURAD WP 8 (SFC) - Task 3: Behaviour of nuclear fuel and cladding after discharge N2 - The European Joint Programme on Radioactive Waste Management (EURAD) deals in work package (WP) 8 with Spent Fuel Characterization (SFC). Inspired by the EURAD activities, an international Coordinated Research Project (CRP) on SFC was established by the International Atomic Energy Agency (IAEA). The EURAD WP SFC participants are collaborating as a team on the IAEA CRP on SFC. The EURAD WP SFC project is divided into four tasks. Task 3 investigates the behaviour of nuclear fuel and cladding after discharge. The aim of these activities is to understand and describe the evolution of the cladding-pellet system and its ageing under conditions of extended interim storage, transportation and emplacement in a final disposal system. During an IAEA consultancy meeting, BAM as leader of Task 3 reported on the current status of the research work. T2 - IAEA Consultancy Meeting on the Coordinated Research Project on Spent Fuel Characterization CY - Online meeting DA - 28.06.2021 KW - Nuclear Fuel KW - Cladding KW - Spent Fuel Characterization KW - Extended Interim Storage KW - Final Disposal PY - 2021 AN - OPUS4-52909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: experiment and modelling N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and an ageing temperature of 125 °C. To exclude possible diffusion limited oxidation (DLO) effects that can distort the data, IRHD micro hardness measurements were performed over the cross-section of compressed O-rings. Continuous stress relaxation measurements were conducted on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. T2 - ACEX-14th International Conference on Advanced Computational Engineering and Experimenting CY - Malta DA - 04.07.2021 KW - Compression stress relaxation KW - Compression set KW - IRHD micro hardness KW - Modelling PY - 2021 AN - OPUS4-52968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical Simulation of Spent Fuel Segments under Transport Loads T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 SN - 978-1-51088-669-8 SP - 1 EP - 7 AN - OPUS4-52046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical simulation of spent fuel segments under transport loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different Transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under Transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a segment of a spent fuel assembly are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Explicit dynamic finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. A beam element formulation is used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The load applied is gathered from experimental drop tests with spent fuel casks performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel Assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 AN - OPUS4-52047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Wille, Frank T1 - Fire Testing - Current Activities N2 - The presentation gives an overview over three current fire testing activities for testing transport packages for the transport of high-level radioactive material. Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smoldering and influence the cask thermal behavior with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. A new test is designed to examine pressure build up and possible mechanical failures in an undamaged impact limiter with a diameter of 1.9 m. The test is designed to measure heat flux from the impact limiter in case of its ignition and burning. To furthermore examine the burning behavior of steel encapsulated wood piles, tests are prepared with wood fire containers and an infrared ignition source. A fire reference package for calorimetric tests was designed. The fire reference package design consists of a closed steel sheet cylinder with a length of 1,500 mm, an exterior diameter of 1,050 mm, and a wall thickness of 10 mm. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The measured local steel sheet temperatures allow the determination of local as well as overall integral heat fluxes versus time and versus surface temperature. Currently, tests are planned with a new and relatively small fire reference package design. The new design will have a steel sheet cylinder with a length of 182 mm, an exterior diameter of 120 mm. Additionally heat flux sensors will be used in the new fire reference package test design. The propane gas fire will be adjusted with respect to the outcome of the fire tests to meet the requirements of the IAEA-fire. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor KW - Propane gas fire KW - Wood fire PY - 2021 AN - OPUS4-53242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -