TY - CONF A1 - Auster, Jürgen A1 - Müller, Karsten A1 - Gründer, Klaus-Peter T1 - Dynamic impact tests on materials & components of RAM packages - Advanced experimental and measurement methods N2 - In accident scenarios of transport packages or hypothetical crashes of containers in a storage facility or repository, the materials resistance against dynamic failure of the involved components is a deciding factor for package and container integrity during the handling, transport and storage for each type of radioactive material. For example, different dynamic impact tests on containers and components like lid sealing systems and specimens made of ductile cast iron and shock-absorbing materials are carried out by BAM. In order to perform dynamic impact tests with packages and its parts BAM operates two free-fall drop test facilities with maximum capacities of 200 t and 55 t, and a test bench for guided drop tests. This latter drop test machine enables a clearly specified component loading by a precisely positioned test object or drop weight and has been used recently for numerous investigations. The paper gives an overview of the wide range of experimental testing methods carried out within guided Impact and bending tests. Examples of methodological challenges are presented, especially such experimental analysis of dynamic impact conditions. In addition to known applied methods of dynamic, non-contact displacement measurements like high-speed 3-D surface deformation a recently patented 2-D tracking method is presented. By means of in-situ determination of fracture parameters with relevance to the materials stress intensity factor, the method has been successfully applied for a typical specimen geometry. Also shown are the possibility of detecting in-situ He-leakage rates on laterally impact loaded lid sealing systems as well as a method of acceleration sensor-temperature control under test conditions in the low temperature range. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Dynamic impact tests KW - Materials KW - RAM packages KW - Advanced experimental KW - Measurement methods PY - 2019 AN - OPUS4-49062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Auster, Jürgen A1 - Müller, Karsten A1 - Gründer, K.-P. T1 - Dynamic impact tests on materials & components of RAM packages - Advanced experimental and measurement methods T2 - Proceedings of the 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - In accident scenarios of transport packages or hypothetical crashes of containers in a storage facility or repository, the materials resistance against dynamic failure of the involved components is a deciding factor for package and container integrity during the handling, transport and storage for each type of radioactive material. For example, different dynamic impact tests on containers and components like lid sealing systems and specimens made of ductile cast iron and shock-absorbing materials are carried out by BAM. In order to perform dynamic impact tests with packages and its parts BAM operates two free-fall drop test facilities with maximum capacities of 200 t and 55 t, and a test bench for guided drop tests. This latter drop test machine enables a clearly specified component loading by a precisely positioned test object or drop weight and has been used recently for numerous investigations. The paper gives an overview of the wide range of experimental testing methods carried out within guided Impact and bending tests. Examples of methodological challenges are presented, especially such experimental analysis of dynamic impact conditions. In addition to known applied methods of dynamic, non-contact displacement measurements like high-speed 3-D surface deformation a recently patented 2-D tracking method is presented. By means of in-situ determination of fracture parameters with relevance to the materials stress intensity factor, the method has been successfully applied for a typical specimen geometry. Also shown are the possibility of detecting in-situ He-leakage rates on laterally impact loaded lid sealing systems as well as a method of acceleration sensor-temperature control under test conditions in the low temperature range. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Dynamic impact tests KW - Materials KW - RAM packages KW - Advanced experimental KW - Measurement methods PY - 2019 SP - Paper 1374, 1 EP - 10 AN - OPUS4-49067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Wille, Frank ED - Saegusa, Toshiari ED - Sert, Gilles ED - Völzke, Holger ED - Wille, Frank T1 - Internal cask content collision during drop tests T2 - Basic of Transport and Storage of Radioactive Materials N2 - The interaction between the package lid system and internal Content during mechanical drop testing is a decisive matter in evaluating Impact loads and the safety of the package. In the case of movable contents ist impact onto the inner side of the package lid can cause additional load peaks on the lid and the lid bolts. Some aspects of this issue were discussed on the basis of experimental results from instrumented drop tests with transport casks and on the basis of analytical approaches. KW - Transport casks KW - Drop tests KW - Internal collision PY - 2018 SN - 978-981-3234-03-1 SP - Chapter 7, 103 EP - 120 PB - World Scientific Publishing CY - Singapore ET - 1 AN - OPUS4-47539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg A1 - Puskar, Ljiljana A1 - Schade, U. A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Bär, Sylke T1 - Photolytically and Thermally Initiated Destruction on the Stability of (Ultra)High Molecular Polyethylene N2 - THz and mid IR spectroscopy of high-molecular PE (HMW) and ultra high-molecular PE (UHMW) reveals modifications of the molecular structure. Characteristic absorption bands are changed if the two materials are exposed by γ-Co60 radiation up to 600 kGy and subsequently stored at an annealing temperature of 398 K until for 729 days. UHMW-PE and HMW-PE behave differently during the ageing process because of their molecular weight and inherent structure distinctions. The spectroscopic data offer characteristic absorption bands, which have been used to describe the complete ageing process in more detail. For instance, the integral absorption in the B1u THz-region can be used to describe quantitatively the reduction of crystallinity. The formation of trans vinylene unsaturation and the decay of vinyl during ageing can be observed in detail in the mid IR range. T2 - 9th International Workshop on Terahertz Technology and Applications CY - Kaiserslautern, Germany DA - 03.03.2020 KW - Degradation KW - MID IR Spectroscopy PY - 2020 AN - OPUS4-50555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bletzer, Claus T1 - CONFIRE Temperture development during fire test of a final storagr container Typ V N2 - This presentation focusses on the thermal test of a typical storage container design for the German final storage repository KONRAD. The preparation of the container, the conduction of the fire test itself and results like the temperature evolution and as-sumptions for thermal material properties are shown. As thermal test final storage containers have to be exposed to a fire of 800 °C (1472 °F) for 1 hour according to the final storage conditions provided by the federal com-pany for radioactive waste disposal (BGE). The here discussed cask contains a steel covered concrete layer of a thickness of 100/150 mm. Heating up concrete is a highly nonlinear process since the vaporization of residual water consumes high amounts of thermal energy and produce vast amounts of steam. The constantly measured temperatures provide the basis to adjust common models of thermal properties for concrete esp. for FEAs. Finally in a later step this will allow predictions of similar designed container with different sizes. T2 - SNL BAM Workshop CY - Albuquerque, NM, USA DA - 14.03.2018 KW - KONRAD KW - Fire testing KW - Concrete KW - Final storage KW - Thermal properties PY - 2018 AN - OPUS4-45427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Caruso, Stefano A1 - Vlassopoulos, Efstathios A1 - Dagan, Ron A1 - Fiorito, Luca A1 - Herm, Michel A1 - Jansson, Peter A1 - Kromar, Marjan A1 - Király, Márton A1 - Leppanen, Jaakko A1 - Feria Marquez, Francisco A1 - Metz, Volker A1 - Papaioannou, Dimitrios A1 - Herranz, Luis Enrique A1 - Rochman, Dimitri A1 - Schillebeeckx, Peter A1 - Seidl, Marcus A1 - Hernandez Solis, Augusto A1 - Stankovskiy, Alexey A1 - Alvarez Velarde, Francisco A1 - Verwerft, Marc A1 - Rodriguez Villagra, Nieves A1 - Zencker, Uwe A1 - Žerovnik, Gasper T1 - EURAD - Work Package 8 - Deliverable 8.1 - State-of-the-art report N2 - A state-of-the-art (SOTA) review on characterisation of spent nuclear fuel (SNF) properties in terms of source term and inventory assessment (neutron, gamma-ray emission, decay heat, radionuclide inventory, elemental content) and in terms of out-of-core fuel performance (cladding performance and fuel integrity in view of the safety criteria for SNF interim storage, transport and canister packaging) using several numerical and experimental approaches and methodologies is presented. This SOTA report is a result of the spent fuel characterisation (SFC) work package as part of the European Joint Programme on Radioactive Waste Management (EURAD), which offers an overview of the status of knowledge in the field of SNF characterisation and assessment during the pre-disposal phase. The document aims to focus on the current safety-significant gaps and related challenges, providing a direct link to the goals of the mandated actors of EURAD. The report is expected to be used by all EURAD colleagues in their national programmes as a key resource for knowledge management programmes and to contribute to demonstrating and documenting the state-of-the-art. KW - Radioactive waste management KW - Spent fuel characterisation KW - Extended interim storage KW - Predisposal PY - 2022 UR - https://www.ejp-eurad.eu/publications/eurad-d81-state-art-report SP - 1 EP - 112 PB - Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA) CY - Châtenay-Malabry AN - OPUS4-59154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Debruyne, M. A1 - Eckert, B. A1 - Wille, Frank A1 - Gauthier, F. A1 - Le Bars, I. A1 - Cordier, N. A1 - Jouve, A.-C. T1 - Assessment of safety demonstrations relative to packages containing UF6 T2 - Proceedings of 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials N2 - Specific attention should be paid on safety demonstrations transmitted by applicants in the case of approval request for the package designs containing enriched UF6. Concerning the shipment of enriched UF6, the package designs consist in general of a filled 30B cylinder surrounded by an overpack. The description of the content, considering the UF6 origin, i.e. natural or reprocessed, shall be clearly justified especially when the UF6 isotopic composition exceeds the limits specified in ASTM standards. Concerning the containment of the UF6, the applicant shall demonstrate in all conditions of Transport the leak-tightness of the valve and plug of the cylinders filled with enriched UF6. In this regard, when justifications are based on numerical calculations, the absence of contact between These components of the cylinder and the internal surfaces of the overpack after the regulatory drop tests shall be shown. In particular, absence of contact between the valve and any other component of the packaging shall be confirmed to respect the current IAEA regulations [3]. If complementary calculations show a contact between the plug and the internal surfaces of the overpack, additional tests are required to confirm that the strength resulting from this contact will not affect the plug leak-tightness. It can be noticed that the future revision of the IAEA regulations will include additional provision in case of contact of the plug with any other component of the packaging. In addition, the applicant shall demonstrate that the melting temperature of the valve, including the tinned joint, will not be exceeded during the regulatory fire test. Furthermore, the representativeness of the ballast used to simulate the behaviour of the UF6 loaded within the cylinder shall be justified if drop tests are performed. Finally, specific provisions relative to the use of plugs and the maintenance of cylinders should be included in the safety analysis reports. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Uranhexaflourid KW - Package safety KW - Valve KW - Drop testing KW - Radioactive material PY - 2018 SP - 18523, 1 EP - 8 AN - OPUS4-45295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Droste, Bernhard A1 - Wolff, Dietmar A1 - Bevilacqua, A. A1 - Reiche, I. A1 - Harvey, J. A1 - Hirose, M. A1 - Kumano, Y. A1 - McConnell, P. A1 - Saegusa, T. A1 - Einziger, R. ED - González-Espartero, A. T1 - Methodology for a Safety Case of a Dual Purpose Cask for Storage and Transport of Spent Fuel T2 - IAEA TECDOC SERIES N2 - Spent nuclear fuel which is generated in the operation of nuclear reactors needs to be safely managed following its removal from the reactor core. On-site power reactor storage pools were designed on the assumption that after a short period of time spent nuclear fuel would be removed for reprocessing and disposal or further storage elsewhere. The amount of highly radioactive spent fuel that needs to be stored over longer periods of time is growing and additional storage capacity is required. One of the widely used options for additional storage capacity is the use of casks for dry storage of spent fuel. Among various existing dry storage concepts, several Member States are utilizing a concept of dual purpose casks (DPCs). This publication provides practical advice on the structure and contents of a DPC integrated safety case with reference to existing IAEA requirements relevant to the licensing and use of transport and storage casks for spent fuel. KW - Dual Purpose Cask KW - Spent Fuel KW - Storage KW - Transport PY - 2020 UR - https://www.iaea.org/publications/10966/methodology-for-a-safety-case-of-a-dual-purpose-cask-for-storage-and-transport-of-spent-fuel SN - 978-92-0-131620-2 SN - 1011–4289 SP - 1 EP - 109 PB - IAEA Publishing Section CY - Vienna, Austria AN - OPUS4-51962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask T2 - Proceedings of the ASME 2018 Pressure Vessels an Piping Conference N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Wille, Frank T1 - Fire Testing - Current Activities N2 - The presentation gives an overview over three current fire testing activities for testing transport packages for the transport of high-level radioactive material. Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smoldering and influence the cask thermal behavior with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. A new test is designed to examine pressure build up and possible mechanical failures in an undamaged impact limiter with a diameter of 1.9 m. The test is designed to measure heat flux from the impact limiter in case of its ignition and burning. To furthermore examine the burning behavior of steel encapsulated wood piles, tests are prepared with wood fire containers and an infrared ignition source. A fire reference package for calorimetric tests was designed. The fire reference package design consists of a closed steel sheet cylinder with a length of 1,500 mm, an exterior diameter of 1,050 mm, and a wall thickness of 10 mm. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The measured local steel sheet temperatures allow the determination of local as well as overall integral heat fluxes versus time and versus surface temperature. Currently, tests are planned with a new and relatively small fire reference package design. The new design will have a steel sheet cylinder with a length of 182 mm, an exterior diameter of 120 mm. Additionally heat flux sensors will be used in the new fire reference package test design. The propane gas fire will be adjusted with respect to the outcome of the fire tests to meet the requirements of the IAEA-fire. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor KW - Propane gas fire KW - Wood fire PY - 2021 AN - OPUS4-53242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of three large scale fire reference tests conducted in BAM fire test facility N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the Surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind Speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a Radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Pressure Vessels & Piping Virtual Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Fire KW - Testing KW - Convection coefficient KW - Large scale fire testing KW - Propane gas fire test facility PY - 2020 AN - OPUS4-51194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Thermal testing KW - Convection coefficient KW - IAEA fire KW - Propane gas fire test facility PY - 2019 AN - OPUS4-48841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Experimental investigation of heat flux into a fire reference package and determination of propane gas fire characteristics N2 - In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - Workshop BAM – Sandia National Laboratories CY - Berlin, Germany DA - 01.07.2019 KW - Thermal testing KW - Fire testing KW - Propane gas fire KW - IAEA KW - Convection KW - Radiation KW - Slug KW - Calorimeter PY - 2019 AN - OPUS4-48597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of Three Large-Scale Fire Reference Tests Conducted in Propane Gas Fire Test Facility N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Abteilungskolloquium 3.3 CY - Online meeting DA - 03.12.2020 KW - Fire KW - Heat flux KW - Convection coefficient KW - Adiabatic surface temperature KW - IAEA PY - 2020 AN - OPUS4-51778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Heat Flux from Wood Filled Impact Limiter under Fire Conditions N2 - Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smouldering and influence the cask thermal behaviour with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. T2 - 9th International Scientific Conference - wood & fire safety 2020 CY - Online meeting DA - 02.11.2020 KW - Fre KW - Smouldering KW - Wood PY - 2020 AN - OPUS4-51517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference package - Results of large-scale fire tests N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - IRSN-BAM Symposium - Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Fire reference KW - Calorimetric test KW - Propane KW - Heat flux KW - Propane gas fire test facility PY - 2020 AN - OPUS4-51686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Investigations of the burning behavior of transport package impact limiters and thermal effects onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. A first computational simulation of transport package temperatures taking into account the results of the conducted fire test was performed. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Impact limiter KW - Shock absorber KW - Smoldering KW - Smouldering KW - Burning KW - Thermal testing KW - BAM TTS KW - Combustion KW - Fire KW - Energy release KW - Thermal simulation KW - Heat emission KW - Radioactive KW - Transport KW - IAEA KW - Wood KW - Spruce wood KW - Lid temperature PY - 2018 AN - OPUS4-46882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Wille, Frank T1 - Ongoing research & development about metal and elastomer seals at BAM N2 - Packages for the transport and storage of radioactive materials are often sealed with elastomer or metal seals. These seals are basic components to meet the leak tightness criteria for these kind of packages. An overview over ongoing research and development concerning metal and elastomer seals is given in the presentation. Introductions in the fundamental functionality of elastomer and metal seals are presented. Ageing processes are shown for both components regarding to different ageing effects. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Seal KW - Seals KW - Metal seal KW - Elastomer seal KW - Long term investigation KW - Helical spring KW - Aluminum seal KW - Silver seal KW - Component test KW - Useable resilience KW - Leakage rate KW - Compression set KW - Low temperature investigation KW - Ageing KW - Radioactive KW - Transport KW - Storage KW - IAEA PY - 2018 AN - OPUS4-46881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Fire Reference Tests for Qualification of IAEA Fire N2 - A small cylindrical fire reference package was designed. A fire test setup was created using the fire reference package in accordance with IAEA standards. Four propane gas fire tests were conducted to determine heat fluxes into the fire reference package. The initial test setup was modified to create the final design of the fire test facility. This allowed for the heat flux to be adjusted to meet the regulatory IAEA fire qualification criteria. Furthermore, a numerical model of the fire reference package was created using boundary conditions derived from the experimental data. The simulation results demonstrated good agreement with the experimental data and provided additional insights. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Fire KW - IAEA KW - Propane PY - 2022 AN - OPUS4-57251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Fire Reference Test PY - 2024 AN - OPUS4-59680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing N2 - eavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - IAEA KW - Combustion Chamber KW - Smouldering KW - Wood PY - 2024 AN - OPUS4-60227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Combustion Chamber Design for Encapsulated Wood-Component Testing T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Heavy-weight packages for the safe transport of radioactive material are equippedwith impact limiters often built ofwood-filled steel sheet structures to fulfil the requirements of the International Atomic Energy Agency (IAEA) regulations. The requirements definemechanical tests followed by a thermal test, including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Impact limiters are a package component mainly designed for the packages to withstand severe mechanical accident scenarios. In drop tests the impact limiters absorb the kinetic energy during impact of the package. The package must then - with its pre-damaged impact limiters - endure a thermal test defined precisely in the IAEA regulations as a 30-min fully engulfing 800 °C-fire. After the fire, a wood-filled impact limiter may continue to release thermal energy from an ongoing combustion process, defining relevant package temperatures. The energy flow from a possible burning impact limiter to the package is important for the safety evaluation of transport packages. To investigate the combustion behaviour of densely packed layers of spruce wood, encapsulated in pre-damaged cylindrical metal enclosures, a test set-up has been realised. The set-up consists of a combustion chamber to perform these tests under defined boundary conditions. The temperature development of the test specimens will be observed fromoutside with a thermographic imager, with HD-Cameras, and the mass loss will be measured during the entire test. Airflow conditions in the combustion chamber are analysed using Computational Fluid Dynamics (CFD) calculations in OpenFOAM. The planned combustion test setup is described. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2024 KW - Fire KW - Combustion KW - Smouldering PY - 2024 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 DO - https://doi.org/10.1007/978-3-031-59177-8 SP - 215 EP - 222 PB - Springer Nature Switzerland AG CY - Gewerbestrasse 11, 6330 Cham, Switzerland AN - OPUS4-60226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Temperature and Heat Flux Measurements in Fire Testing N2 - Packages for the transport of Spent Nuclear Fuel and high active radioactive waste are designed to withstand severe accidents. Specific mechanical and thermal tests are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials in order to cover these hypothetical severe accidents. The thermal test mainly consists of a 30 minute fully engulfing fire. Components such as the package impact limiters can lead to supplementary energy release during the thermal test as they might continue burning after the fire phase. Local heat flux into the package can occur. Measurement of heat flux into the package is of importance to evaluate component temperatures and review their acceptance. The usability of heat flux sensors and temperature measurement equipment has to be tested to apply them in impact limiter fire testing. Further questions arise such as :“Is the infrared camera a useful tool to determine heat flux at the boundary surface?” T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor PY - 2021 AN - OPUS4-55659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility T2 - Transactions of SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of three large scale fire reference tests conducted in BAM fire test facility T2 - Pressure Vessels & Piping Conference 2020 N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the Surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind Speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a Radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Fire KW - Testing KW - Large scale testing KW - Calorimeter KW - Heat flux PY - 2020 SP - 1 EP - 9 PB - ASME CY - New York AN - OPUS4-51192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Fire test KW - Propane gas KW - Calorimetric test KW - IAEA fire testing PY - 2019 SP - Paper 1141, 1 EP - 10 AN - OPUS4-48840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Cohesive Zone Modelling Approach on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which may result in embrittlement of the cladding material and eventually a sudden failure of cladding under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. An iterative inverse analysis method is used for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which can reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. T2 - 7th GRS Workshop on the Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 24.05.2023 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-58553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Failure Analysis on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Since the cladding is the first barrier for the spent fuel pellets, its integrity must be demonstrated until the end of interim storage and subsequent transportation. An established method for characterizing the cladding material is the ring compression test, in which a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a load case where the fuel rod is crushed. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which result in embrittlement of the cladding material and eventually a possible sudden failure of cladding integrity under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. Therefore, the study of hydride morphology plays an important role in describing the brittle failure behaviour of the claddings. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. Typical hydride morphologies are shown. An iterative inverse analysis method is described for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which is able to reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. This project as part of the European Joint Programme on Radioactive Waste Management has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847593. T2 - BAM-Kolloquium der Abteilung 3 CY - Berlin, Germany DA - 05.06.2023 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-57598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Investigations on a Welding Seam of a Thick-Walled Transport Package N2 - Untersuchung einer Schweißnaht mit verschiedenen Codes. Vergleiche von experimentellen und numerischen Ergebnissen T2 - Technical Exchange IRSN – BAM: Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-56055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Polyurethane Foam in Impact Limiters - Experimental and Numerical Analysis N2 - Transport containers with radioactive material are usually shipped in Germany with wooden-filled impact limiters. Alternative energy-absorbing materials for this purpose can be polyurethane foam, for example. In order to perform adequate simulations with PU foam, experimental and numerical investigations must be carried out. With the help of a series of experimental test runs, a material model is developed, tested and compared in LS-Dyna. T2 - Technical Exchange IRSN – BAM: Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Polyurethane Foam, Impact Limiters, PU-Foam PY - 2021 AN - OPUS4-53261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias T1 - Polyurethane Foam for Impact Limiters - Theory and Experimental Data N2 - Transport containers with radioactive material are usually shipped in Germany with wooden-filled impact limiters. Alternative energy-absorbing materials for this purpose can be polyurethane foam, for example. In order to adequately determine the characteristics for a selected PU foam, various experimental investigations must be carried out. Classically, PU foam specimens are tested under uniaxial compression, confined compression and a tensile test. Using the experimental data and selected material models from the literature, the parameters can be determined to describe and apply material models. T2 - Technical Exchange Sandia – BAM: Transport & Storage of Packages for Radioactive Material CY - Online meeting DA - 31.08.2021 KW - Polyurethane Foam KW - Impact Limiters KW - PU-Foam PY - 2021 AN - OPUS4-53262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musloff, André A1 - Werner, Jan T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 13.05.2024 KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification KW - IAEA Regu-lations PY - 2024 UR - https://link.springer.com/book/9783031591761 AN - OPUS4-60104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Welding KW - Fracture Mechanics KW - Transport Package PY - 2023 AN - OPUS4-57695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Wille, Frank A1 - Wille, Frank T1 - Potential Effects of Battery and Hydrogen Fires regarding Regulatory Requirements N2 - Introduction and Necessity of the Investigation The IAEA regulations for the safe transport of radioactive material (IAEA SSR-6) define the safety requirements for different package types and consider different transport conditions. The accident conditions of transport specify different mechanical and thermal tests based on investigations of real accident scenarios. Considering the rapid development of new boundary conditions of transport such as electric mobility and the use of hydrogen as energy source for trucks and other kind of vehicles, potential effects of battery and hydrogen fires in transport accidents should be investigated. The aim is to evaluate the existing test requirements developed and derived decades ago, whether they are covering the current transport situation. This concept paper will briefly present the reasons for detailed investigations as bases for a coordinated research project under the roof of the IAEA. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Fire KW - Battery KW - Hydrogen KW - IAEA Regulations PY - 2024 AN - OPUS4-60338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gleim, Tobias A1 - Chen, Hefeng ED - Kleiber, M. ED - Onate, E. T1 - High-Order Accurate Methods for the Numerical Analysis of a Levitation Device JF - Archives of Computational Methods in Engineering N2 - This paper establishes different axisymmetric and two-dimensional models for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the Maxwell equations are presented and compared and discussed in the example. A high order finite element discretization using Galerkin’s method in space and the generalized Newmark−alpha method in time are developed for the electro-magneto-mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. KW - Maxwell equations KW - Levitation KW - High-Order KW - Accurate-Numerical-Methods KW - Generalized Newmark-alpha PY - 2020 DO - https://doi.org/10.1007/s11831-020-09427-z SN - 1134-3060 VL - 28 IS - 3 SP - 1517 EP - 1543 PB - Springer Nature AN - OPUS4-50734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Chen, Hefeng T1 - Numerical Analysis for an Electro‐Magneto‐Mechanical Phenomenon with High‐Order Accurate Methods T2 - Proceedings in Applied Mathematics & Mechanics N2 - This paper establishes an axisymmetric model for a levitation device. Therein, the Maxwell equations are combined with the balance of linear momentum. Different possible formulations to describe the MAXWELL equations are presented and compared and discussed in the example. A high order finite element discretization using GALERKIN's method in space and the generalized NEWMARK‐α method in time are developed for the electro‐magneto‐mechanical approach. Several studies on spatial and temporal discretization with respect to convergence will be investigated. In addition, the boundary influences and the domain size with respect to the levitation device are also examined. T2 - International Association for Applied Mathematics and Mechanics CY - Kassel, Germany DA - 16.03.2020 KW - High-Order Methods KW - Electro-Magneto-Mechanical KW - Levitation Device PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520720 DO - https://doi.org/10.1002/pamm.202000018 VL - 20 IS - 1 SP - e202000018 PB - Wiley‐VCH GmbH CY - Online AN - OPUS4-52072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of Fire Test Stand Performance at Test Site of BAM: Installation and Evaluation of an Augmented System with a Fire Reference Package T2 - Wood & Fire Safety 2024 - Proceedings of the 10th International Conference on Wood & Fire Safety 2024 N2 - Packages for the transport of radioactive material are designed to en-dure severe accidents. Packages for the transportation of radioactive material must demonstrate that the package can withstand certain prescribed tests from the IAEA Regulations [1]. In addition to mechanical tests, a thermal test in form of a fire test must be carried out. As packages to be tested at BAM are signifi-cantly larger than previous package designs, BAM has expanded an existing fire test stand. A modular concept is chosen, which means that the arrangement of the burner nozzles can be adapted to the test specimen. The dimensions of the burner rings, the type, the orientation and the number of burner nozzles can be varied depending on the test specimen. In addition, various pumps can be used to set the corresponding mass flow. With the help of a calorimeter test, the fire test stand can be qualified for a specific size of packages regarding the boundary conditions of the IAEA Regulations [1]. Due to the typically wood filled impact limiters in German package designs, a fire test is necessary, as experiments have shown that possible openings that occurred during a mechanical test contributed to the igni-tion of the wood filled impact limiters within the prescribed 30 minutes of the IAEA Regulations [1]. From a series of experiments, two experiments are pre-sented to show the possibilities to obtain different temperatures and temperature rates in the test specimen. In addition to sensor data, the heat flux into the package is calculated to verify that the IAEA boundary conditions are satisfied. In addition to the temperature data, other data such as wind speed and wind direction are also recorded to explain subsequent effects in the measurement data in a comprehen-sible manner. T2 - Wood & Fire Safety 2024 CY - Strbske Pleso, Slowakei DA - 13.05.2024 KW - IAEA Regu-lations KW - Fire Test Stand KW - Accident Scenario KW - Fire Qualification PY - 2024 UR - https://link.springer.com/book/9783031591761 SN - 978-3-031-59176-1 SN - 978-3-031-59179-2 SN - 978-3-031-59177-8 VL - 1 SP - 1 EP - 8 PB - Springer Cham AN - OPUS4-60101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Komann, Steffen A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations [1]. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-55374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package T2 - Proceedings of the 20th International Symposium on the Packaging and Transportation of Radioactive Materials N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers N2 - In Germany casks for interim storage of spent nuclear fuel and high level radioactive waste are equipped with Helicoflex® metal seals as main sealing barrier of the double lid system. The long-term behaviour of those seals is investigated at Bundesanstalt für Materialforschung und –prüfung (BAM) in order to evaluate the safety function of the containment at different temperatures over storage periods of 40 years or more in case extended interim storage becomes necessary. Long-term investigations have been done for ageing times of up to 8.5 years at temperatures ranging from room temperature to 150 °C. It was found that the seal force and useable resilience decrease over time, which is mainly caused by creep deformation of the aluminium (or silver) outer jacket of the seals. This effect becomes stronger with increasing temperature. The ageing processes of the seal material and the overall seal behaviour is under investigation in order to derive analytical descriptions for the long-term seal performance. Thus, standardized tests on the basic seal materials, with focus on aluminium, and additional investigations on the seals as a component are conducted. The current investigations include compression and tension creep measurements as well as tensile testing. Furthermore, ageing of seal segments provides information on the development of the contact area width, jacket thickness and microstructural changes in dependence of time and temperature. The obtained data are used for the development of material models and an analytical approach to describe and predict the time and temperature dependent sealing behaviour in the long-term. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep Investigations on Aluminum Seals for Application in Radioactive Waste Containers N2 - In Germany spent nuclear fuel (SNF) and high level radioactive waste (HLW) are stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. Being licensed for up to 40 years of interim storage the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigations on the Long-term Behavior of Metal Seals for Dual Purpose Casks N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 AN - OPUS4-49018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers N2 - The Bundesanstalt für Materialforschung und –prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high level leak tightness. In Germany, those casks are licensed for interim storage periods of up to 40 years or more if extended interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Skrotzki, Birgit A1 - Wolff, Dietmar T1 - Creep investigations on aluminum seals for application in radioactive waste containers T2 - Proceedings of the International Conference on Aluminum Alloys 2018 N2 - In Germany spent nuclear fuel and high level radioactive waste is stored in interim storage containers with double lid systems. Those lids are equipped with metal seals (e.g. Helicoflex®) that ensure the safe enclosure of the inventory. The used metal seals consist of three components as can be seen in the cross-sectional view in Figure 1. The innermost part is a helical spring that is surrounded by an inner jacket made of stainless steel. The outer jacket that is made of a softer material which in case of assembly in the aforementioned storage containers is silver or aluminum (i.e. Al 99.5). During application the seal is compressed and due to the restoring force of the helical spring, the outer jacket is plastically deformed and adapts to the sealing surface. Hence, leakage paths are closed and the sealing function is generated. In Germany the above-mentioned containers are licensed for up to 40 years of interim storage, which in case extended storage becomes necessary before a final repository is available will have to be extended to even longer periods. Therefore, the evaluation of the long-term behavior of the seals is necessary, taking into account storage conditions, decay heat and possible mechanical loads as well. At Bundesanstalt für Materialforschung und –prüfung (BAM) long-term investigations are being conducted in which seals are assembled in test flanges and aged at temperatures ranging from room temperature to 150°C for accelerated aging. The aged seals are tested semi-annually (after the first 6 months in which the seals are tested more frequently) regarding the sealing performance, the remaining seal force, and the useable resilience upon decompression. Results of these investigations have been published over the past years (e.g. Grelle, Wolff, Probst, Jaunich, & Völzke, 2017; Völzke, Wolff, Probst, Nagelschmidt, & Schulz, 2014). It was found that the seal force and the useable resilience decrease with time and temperature, which is in agreement with the result of other studies (Sassoulas et al., 2006; Wataru et al., 2016) as well. Geometry change of the outer jacket has been identified as the main reason for this seal behavior. At the prevailing operating temperatures and stresses the aluminum is subjected to creep deformation leading to a thinning of the outer jacket. Since the seal groove depth remains unchanged the helical spring expands, which in turn leads to a decrease of the generated spring and seal force. Although the main reason for the change of seal parameters over time and temperature is known, a detailed characterization of the seal behavior and a reliable prediction of the parameter development for aging times that exceed the experimental time frame have not been possible, yet. For deeper understanding of the aging processes, an Investigation program, which is covered in this contribution, is conducted at Bundesanstalt für Materialforschung und –prüfung (BAM) that focusses on the behavior of the aluminum jacket and its influence on the long-term sealing performance. The program investigates properties of material samples as well as the behavior of the seal as a component. Original sheet material of the same aluminum that is used for manufacturing of the seals is investigated in compression creep tests. For this, a DMA (dynamic mechanical analysis) machine is employed (here used for static tests) that allows for a measurement of the specimens deformation under forces of up to 500 N. The advantage of this method is that the original material can be tested in the same shape as used for the seals which is 0.5 mm thick sheet material. For investigation of tensile creep standard specimens are used, that were machined from surrogate material of the same composition and annealing condition. Furthermore, aluminum seals that are cut into smaller segments are assembled in flanges and placed in heating chambers at temperatures ranging from 23°C to 150°C. After different periods of time from 3 days to 300 days the segments are taken out of the flanges and are investigated, thus giving information on different states of aging. Measurements of the development of the seal contact width and the aluminum jacket thickness are done with an optical microscope. Further investigations on the segments will include metallography and hardness measurements. From the detailed material and component behavior including the results of the long-term seal force and useable resilience investigations a better understanding of the overall seal behavior can be gained. The aim is to contribute to the development of material models and analytical approaches for the prediction of the sealing behavior in dependence of time and temperature. T2 - International Conference on Aluminum Alloys CY - Montreal, Canada DA - 17.06.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SN - 978-1-926872-41-4 SP - 1 EP - 2 AN - OPUS4-45844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigations on the long-term behavior of metal seals for dual purpose casks T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 SP - 1 EP - 6 AN - OPUS4-49019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers T2 - Proceedings of the ASME 2018 Pressure Vessels an piping Conference N2 - The Bundesanstalt für Materialforschung und –Prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high Level leak tightness. In Germany, those casks are licensed for Interim storage periods of up to 40 years or more if extended Interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with Focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future Project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - PVP2018-84584, 1 EP - 6 AN - OPUS4-46110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers JF - Nuclear future N2 - Long-term investigations performed at BAM look to extend the state of knowledge on safety-related components of interim storage containers. Metal seals act as the primary sealing barrier in the bolted double lid closure system of the containers. The behaviour of metal seals has been investigated for ageing times up to 8.5 years and for various temperatures. The main cause for reduction in useable resilience overtime was due to creep deformation of the outer jacket of the seal. KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2018 SN - 1745-2058 SP - 32 EP - 34 PB - Nuclear Institute CY - London AN - OPUS4-48206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Component and material investigations on metal seals for high level radioactive waste containers T2 - 11th International Conference on the Transport, Storage and Disposal of radioactive Materials N2 - In Germany casks for interim storage of spent nuclear fuel and high level radioactive waste are equipped with Helicoflex® metal seals as main sealing barrier of the double lid system. The long-term behaviour of those seals is investigated at Bundesanstalt für Materialforschung und –prüfung (BAM) in order to evaluate the safety function of the containment at different temperatures over storage periods of 40 years or more in case extended interim storage becomes necessary. Long-term investigations have been done for ageing times of up to 8.5 years at temperatures ranging from room temperature to 150 °C. It was found that the seal force and useable resilience decrease over time, which is mainly caused by creep deformation of the aluminium (or silver) outer jacket of the seals. This effect becomes stronger with increasing temperature. The ageing processes of the seal material and the overall seal behaviour is under investigation in order to derive analytical descriptions for the long-term seal performance. Thus, standardized tests on the basic seal materials, with focus on aluminium, and additional investigations on the seals as a component are conducted. The current investigations include compression and tension creep measurements as well as tensile testing. Furthermore, ageing of seal segments provides information on the development of the contact area width, jacket thickness and microstructural changes in dependence of time and temperature. The obtained data are used for the development of material models and an analytical approach to describe and predict the time and temperature dependent sealing behaviour in the long-term. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - 18535, 1 EP - 6 AN - OPUS4-45452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -