TY - JOUR A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar T1 - Three-dimensional thermal expansion of neat and irradiated (U)HMWPE materials at elevated temperatures JF - Polymer Testing N2 - The thermal expansion of polymeric parts can be an issue in many applications where the available space is limited, or exact dimensions of the part are required. For this study, a device was designed and built that allowed measuring the thermal expansion simultaneously in all three spatial directions on cubic samples with real-scale dimensions (78 mm edge length). The results are shown between 25 °C and 125 °C for two PE materials, one HMWPE and one tempered UHMWPE, for non-irradiated samples as well as cubes that have been irradiated with 100 and 400 kGy. The results measured with the new device were very similar to those measured with conventional thermo-mechanical analysis equipment and to literature data of UHMWPE. The HMWPE material shows a much larger thermal expansion coefficient in one direction compared to the other two directions during the first heating due to frozen stresses from the pressing step during material manufacturing. These stresses are mostly released by the expansion during the first heating, so that the expansion during the second heating is more uniform. The overall volumetric expansion is the same for both heating runs. By contrast, the tempered UHMWPE material shows no significant difference between first and second heating run, as the stresses from processing could already relax in the tempering step. The irradiation treatment does not affect the values significantly for the given test set-up. KW - Lupolen KW - Ultra high molecular weight polyethylene KW - GUR KW - Coefficient of thermal expansion KW - High temperature PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563987 DO - https://doi.org/10.1016/j.polymertesting.2022.107841 SN - 0142-9418 VL - 117 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-56398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank T1 - CASTOR in Warteposition, aber bitte sicher. JF - Bunsen-Magazin, Zeitschrift der Deutschen Bunsen-Gesellschaft für physikalische Chemie N2 - CASTOR-Behälter sollen den Auswirkungen schwerster Unfälle standhalten und müssen dabei ihre Sicherheitsfunktionen beibehalten. Dazu zählen der sichere Einschluss des radioaktiven Inventars mit nachgewiesener Behälterintegrität und -dichtheit, die ausreichende Abschirmung der radioaktiven Strahlung, die Ableitung der von den Brennelementen ausgehenden Wärme und der Ausschluss des Entstehens einer nuklearen Kettenreaktion, d.h. die Kritikalitätssicherheit sind zu gewährleisten. Zum Nachweis dieser Fähigkeiten werden die Behälter gegen Stoß, Aufprall, Durchstoßen, Feuer sowie beim Eintauchen in Wasser geprüft. Durch diese Tests werden Beanspruchungen aus potentiellen schweren Unfällen abdeckend simuliert. Die hierfür erforderlichen experimentellen Tests, aber auch die Prüfung und Entwicklung komplexer rechnerischer Simulationen des Behälterverhaltens unter Anwendung der Finite-Elemente-Methode erfolgen bei der Bundesanstalt für Materialforschung und -prüfung (BAM). Die Basis bildet das Regelwerk der Internationalen Atom- und Energieorganisation (IAEO) zum sicheren Transport von radioaktiven Stoffen, welches international harmonisierte Schutzziele und Prüfanforderungen definiert. Die seit 60 Jahren praktizierte stetige Weiterentwicklung der Sicherheitsanforderungen trägt aktuellen Erkenntnissen, Erfahrungen und Risikoanalysen Rechnung. Die Brennelementbehälter werden mechanischen Prüfungen sowie Brand- und Wasserdruckprüfungen unterzogen. Hierdurch wird nachgewiesen, dass sie den Auswirkungen eines schweren Unfalls standhalten können. Nur Behälter die zweifelsfrei die kumulativen mechanischen und thermischen Tests und auch die Wasserdruckprüfung mit Erfüllen aller Schutzziele bestehen, bekommen eine Zulassung, die es erlaubt die Behälter zu transportieren. KW - Kerntechnik KW - Radioaktive Stoffe KW - Transport KW - Zwischenlagerung KW - IAEA KW - Fallprüfung PY - 2022 DO - https://doi.org/10.26125/73hj-nz53 SN - 1611-9479 VL - 24 IS - 3 SP - 112 EP - 114 PB - Bunsen-Gesellschaft CY - Frankfurt AN - OPUS4-54856 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Oxidative ageing of elastomers: Experiment and modelling JF - Continuum mechanics and thermodynamics N2 - During an extensive test programme at the Bundesanstalt für Materialforschung und prüfung, material property changes of EPDM O-rings were investigated at different ageing times and two ageing temperatures of 125∘C and 150∘C. To exclude possible diffusion-limited oxidation (DLO) effects that can distort the data, IRHD microhardness measurements were taken over the cross section of compressed O-rings. Continuous stress relaxation measurements were taken on samples free of DLO effects. The additional effect of physical processes to irreversible chemical ones during a long-term thermal exposure is quantified by the analysis of compression set measurements under various test conditions. By combining the different experimental methods, characteristic times relative to the degradation processes were determined. On the basis of experimental data, a microphysically motivated model that takes into account reversible and irreversible processes was developed. The parameter identification strategy of the material model is based on our experimental investigations on homogeneously aged elastomer O-rings. The simulated results are in good agreement with the experiments. KW - Compression stress relaxation KW - Compression set KW - IRHD microhardness KW - Modelling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545910 DO - https://doi.org/10.1007/s00161-022-01093-9 SN - 1432-0959 SP - 1 EP - 9 PB - Springer CY - Berlin AN - OPUS4-54591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiao, Linan A1 - Nagelschmidt, Sven A1 - Herbrich, Uwe A1 - Keller, Christian T1 - Introduction of a Power Law Time-Temperature Equivalent Formulation for the Description of Thermorheologically Simple and Complex Behavior JF - Materials N2 - Abstract: In this work, a conceptual framework is suggested for analyzing thermorheologically simple and complex behavior by using just one approach. Therefore, the linear relation between master time and real time which is required in terms of the time-temperature superposition principle was enhanced to a nonlinear equivalent relation. Furthermore, we evaluate whether there is any relation among well-known existing time-temperature equivalent formulations which makes it possible to generalize different existing formulations. For this purpose, as an example, the power law formulation was used for the definition of the master time. The method introduced here also contributes a further framework for a unification of established time-temperature equivalent formulations, for example the time-temperature superposition principle and time-temperature parameter models. Results show, with additional normalization conditions, most of the developed time-temperature parameter models can be treated as special cases of the new formulation. In the aspect of the arrow of time, the new defined master time is a bended arrow of time, which can help to understand the corresponding physical meaning of the suggested method. KW - bended arrow of time KW - time-temperature superposition principle KW - time-temperature equivalent formulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543800 DO - https://doi.org/10.3390/ma15030726 VL - 15 IS - 3 SP - 1 EP - 11 PB - MDPI AN - OPUS4-54380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sestan, A. A1 - Sreekala, L. A1 - Markelj, S. A1 - Kelemen, M. A1 - Zavasnik, J. A1 - Liebscher, C. A1 - Dehm, G. A1 - Hickel, Tilmann A1 - Ceh, M. A1 - Novak, S. A1 - Jenus, P. T1 - Non-uniform He bubble formation in W/W2C composite: Experimental and ab-initio study JF - Acta Materialia N2 - Tungsten-tungsten carbide (W/W2C) composites are considered as possible structural materials for future nuclear fusion reactors. Here, we report on the effect of helium (He) implantation on microstructure evolution of polycrystalline W/W2C composite consolidated by field-assisted sintering technique (FAST), homogenously implanted at room temperature with 1 MeV 4He+ ions at the fluence of 8 × 1016 ions cm−2 and annealed at 1873 K for 20 minutes. Samples were analysed by scanning and transmission electron microscopy to study the presence and size of He bubbles. Monomodal He bubbles in W (30-80 nm) are limited to point defects and grain boundaries, with a considerable void denuded zone (150 nm). Bubbles do not form in W2C, but at the W|W2C interface and are considerably larger (200-400 nm). The experimental observations on He behaviour and migration in W and W2C were assessed by density functional theory (DFT) calculations, suggesting He migration and accumulation in the composite are determined by the effective He-He binding in clusters, which will give rise to decohesion. In the presence of He clusters, the decohesion of bulk W into free surfaces is energetically highly favourable but not sufficient in the W2C; hence bubbles are only observed in W grains and interfaces and not within bulk W2C. KW - Density functional theory KW - Tungsten KW - Ditungsten carbide KW - FAST KW - Helium implantation PY - 2022 DO - https://doi.org/10.1016/j.actamat.2021.117608 VL - 226 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-54364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holt, E. A1 - Oksa, M. A1 - Nieminen, M. A1 - Abdelouas, A. A1 - Banford, A. A1 - Fournier, M. A1 - Mennecart, T. A1 - Niederleithinger, Ernst T1 - Predisposal conditioning, treatment, and performance assessment of radioactive waste streams JF - EPJ nuclear sciences and technologies N2 - Before the final disposal of radioactive wastes, various processes can be implemented to optimise the waste form. This can include different chemical and physical treatments, such as thermal treatment for waste reduction, waste conditioning for homogenisation and waste immobilisation for stabilisation prior to packaging and interim storage. Ensuring the durability and safety of the waste matrices and packages through performance and condition assessment is important for waste owners, waste management organisations, regulators and wider stakeholder communities. Technical achievements and lessons learned from the THERAMIN and PREDIS projects focused on low- and intermediate-level waste handling is shared here. The recently completed project on Thermal Treatment for Radioactive Waste Minimization and Hazard Reduction (THERAMIN) made advances in demonstrating the feasibility of different thermal treatment techniques to reduce volume and immobilise different streams of radioactive waste (LILW) prior to disposal. The Pre-Disposal Management of Radioactive Waste (PREDIS) project addresses innovations in the treatment of metallic materials, liquid organic waste and solid organic waste, which can result from nuclear power plant operation, decommissioning and other industrial processes. The project also addresses digitalisation solutions for improved safety and efficiency in handling and assessing cemented-waste packages in extended interim surface storage. KW - Radioactive waste KW - Predisposal KW - Treatment KW - Monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567276 DO - https://doi.org/10.1051/epjn/2022036 SN - 2491-9292 VL - 8 SP - 1 EP - 6 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Validation of novel ultrasonic phased array borehole probe by using simulation and measurement JF - Sensors N2 - Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components. A prototype has been developed using 12 individual horizontal dry point contact (DPC) shear wave transducers separated by equidistant transmitter/receiver arrays. The probe is equipped with a commercially available portable ultrasonic flaw detector used in the NDT civil engineering industry. To increase the sound pressure generated, the number of transducers in the novel probe is increased to 32 transducers. In addition, the timed excitation of each transducer directs a focused beam of sound to a specific angle and distance based on the previously calculated delay time. This narrows the sensitivity of test volume and improves the signal-to-noise ratio of the received signals. In this paper, the newly designed phased array borehole probe is validated by beam computation in the CIVA software and experimental investigations on a half-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction methods, it is expected that an optimised radiation pattern of the probe will improve the signal quality and thus increase the reliability of the imaging results. This is an important consideration for the construction of safe sealing structures for the safe disposal of radioactive or toxic waste. KW - Ultrasound KW - Phased array KW - Concrete KW - Borehole PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565722 DO - https://doi.org/10.3390/s22249823 SN - 1424-8220 VL - 22 IS - 24 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures JF - Sensors N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -