TY - JOUR A1 - Kolditz, O. A1 - Jacques, D. A1 - Claret, F. A1 - Bertrand, J. A1 - Churakov, S. V. A1 - Debayle, C. A1 - Diaconu, D. A1 - Fuzik, K. A1 - Garcia, D. A1 - Graebling, N. A1 - Grambow, B. A1 - Holt, E. A1 - Idiart, A. A1 - Leira, P. A1 - Montoya, V. A1 - Niederleithinger, Ernst A1 - Olin, M. A1 - Pfingsten, W. A1 - Prasianakis, N. I. A1 - Rink, K. A1 - Sampier, J. A1 - Szöke, I. A1 - Szöke, R. A1 - Theodon, L. A1 - Wendling, J. T1 - Digitalisation for nuclear waste management: predisposal and disposal JF - Environmental Earth Sciences N2 - Data science (digitalisation and artificial intelligence) became more than an important facilitator for many domains in fundamental and applied sciences as well as industry and is disrupting the way of research already to a large extent. Originally, data sciences were viewed to be well-suited, especially, for data-intensive applications such as image processing, pattern recognition, etc. In the recent past, particularly, data-driven and physics-inspired machine learning methods have been developed to an extent that they accelerate numerical simulations and became directly usable for applications related to the nuclear waste management cycle. In addition to process-based approaches for creating surrogate models, other disciplines such as virtual reality methods and high-performance computing are leveraging the potential of data sciences more and more. The present challenge is utilising the best models, input data and monitoring information to integrate multi-chemical-physical, coupled processes, multi-scale and probabilistic simulations in Digital Twins (DTw) able to mirror or predict the performance of its corresponding physical twins. Therefore, the main target of the Topical Collection is exploring how the development of DTw can benefit the development of safe, efficient solutions for the pre-disposal and disposal of radioactive waste. A particular challenge for DTw in radioactive waste management is the combination of concepts from geological modelling and underground construction which will be addressed by linking structural and multi-physics/chemistry process models to building or tunnel information models. As for technical systems, engineered structures a variety of DTw approaches already exist, the development of DTw concepts for geological systems poses a particular challenge when taking the complexities (structures and processes) and uncertainties at extremely varying time and spatial scales of subsurface environments into account. KW - Data science KW - Digitalization KW - Nuclear waste KW - Disposal KW - Predisposal PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569387 DO - https://doi.org/10.1007/s12665-022-10675-4 SN - 1866-6280 VL - 82 IS - 1 SP - 1 EP - 11 PB - Springer AN - OPUS4-56938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holt, E. A1 - Oksa, M. A1 - Nieminen, M. A1 - Abdelouas, A. A1 - Banford, A. A1 - Fournier, M. A1 - Mennecart, T. A1 - Niederleithinger, Ernst T1 - Predisposal conditioning, treatment, and performance assessment of radioactive waste streams JF - EPJ nuclear sciences and technologies N2 - Before the final disposal of radioactive wastes, various processes can be implemented to optimise the waste form. This can include different chemical and physical treatments, such as thermal treatment for waste reduction, waste conditioning for homogenisation and waste immobilisation for stabilisation prior to packaging and interim storage. Ensuring the durability and safety of the waste matrices and packages through performance and condition assessment is important for waste owners, waste management organisations, regulators and wider stakeholder communities. Technical achievements and lessons learned from the THERAMIN and PREDIS projects focused on low- and intermediate-level waste handling is shared here. The recently completed project on Thermal Treatment for Radioactive Waste Minimization and Hazard Reduction (THERAMIN) made advances in demonstrating the feasibility of different thermal treatment techniques to reduce volume and immobilise different streams of radioactive waste (LILW) prior to disposal. The Pre-Disposal Management of Radioactive Waste (PREDIS) project addresses innovations in the treatment of metallic materials, liquid organic waste and solid organic waste, which can result from nuclear power plant operation, decommissioning and other industrial processes. The project also addresses digitalisation solutions for improved safety and efficiency in handling and assessing cemented-waste packages in extended interim surface storage. KW - Radioactive waste KW - Predisposal KW - Treatment KW - Monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567276 DO - https://doi.org/10.1051/epjn/2022036 SN - 2491-9292 VL - 8 SP - 1 EP - 6 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Morichi, M. A1 - Fanchini, E. A1 - Bruggemann, C. A1 - Perot, B. A1 - Ricard, D. A1 - Niederleithinger, Ernst T1 - Developments and experiences of the CHANCE, MICADO and PREDIS projects in radioactive waste characterization N2 - Characterization is a very important step in dealing with materials and waste streams generated during the operational and decommissioning phases of nuclear installations, including nuclear power plants. Characterization allows differentiation between materials that can be released from regulatory control and those that require further treatment and conditioning to become a stable waste form suitable for future storage and final disposal according to its waste classification. Characterization is also needed in the pre-disposal stages of radioactive waste management to demonstrate compliance with the waste acceptance criteria of the facilities that will accept the different waste forms. This work will present the strategies developed and implemented by the three projects for in-depth and accurate waste characterization and investigation of the different radioactive waste packages considered. CHANCE, MICADO, and PREDIS will present their goals, the methods developed, the technologies used and the (preliminary) results contributing to the improvement of the safety and the data and information quality of the waste packages analyzed at the different stages of the waste management process. Special emphasis will also be given to complementary approaches highlighting the usability of the technologies, the accessibility of the data, and the problem-solving of the three projects within the European panorama. KW - Waste management KW - Radioactive waste KW - Waste chracterization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571872 DO - https://doi.org/10.1051/epjn/2022052 SN - 2491-9292 VL - 9 IS - 12 SP - 1 EP - 11 PB - EPJ Nuclear Sci. Technol. AN - OPUS4-57187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Effner, Ute A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Friedrich, C. A1 - Mauke, R. A1 - Mayer, K. T1 - Prüfung von Abdichtbauwerken für Endlager auf Risse – eine Herausforderung JF - Materialwissenschaft und Werkstofftechnik N2 - Im Jahr 2011 hat der Bundestag in Deutschland den Ausstieg aus der Kernenergie beschlossen. Der angefallene Abfall wird mehr als hunderttausend Jahre eine derartig hohe Aktivität besitzen, dass er eine erhebliche Gefahr für nachfolgende Generationen darstellen kann. Dieser radioaktive Abfall soll in tiefen geologischen Formationen (z.B. Salz, Ton oder Kristallin) sicher endgelagert werden. Die Endlager werden mittels sogenannter geotechnischer Abdichtbauwerke (Schachtbzw. Streckenverschlüsse) verschlossen, wofür u.a. Zement- oder Sorel-basierte Baustoffe (Betone) in Frage kommen. Die Beschreibung des Dichtvermögens dieser Bauwerke ist unabdingbar. In der Forschungsphase werden verschiedene Werkstoffe untersucht und Methoden für die zerstörungsfreie Untersuchung der Bauwerke als Mittel der Qualitätsprüfung entwickelt. Hierbei ist der Nachweis der Rissfreiheit bzw. die Detektion möglicher Risse ein vorrangiges Thema. In den letzten Jahren konnten bereits umfangreiche Erfahrungen mit der Untersuchung von in-situ-Versuchsobjekten in Realmaßstab gesammelt werden. Die Messungen wurden im Endlager für radioaktive Abfälle Morsleben am in-situ-Versuch “Abdichtbauwerk im Steinsalz” und in der Grube Teutschenthal am Großversuch GV2 durchgeführt. Es ist gelungen mit einem neu entwickelten Ultraschall-Messsystem Eindringtiefen bis ca. 9,0 m zu realisieren. Die Messungen mit dem Large Aperture Ultrasonic System in Kombination mit der Rekonstruktion-Methode Synthetic Aperture Focusing Technique zeigen, dass die zerstörungsfreie Prüfung von Abdichtbauwerken möglich und die Nutzung des Messsystems zur Qualitätssicherung bei der Erstellung der Verschlussbauwerke vielversprechend ist. N2 - In 2011, the German Bundestag decided to phase out nuclear energy. The resulting waste will remain highly radioactive for many hundreds of thousands of years and represents a considerable danger for future generations. This radioactive waste is to be safely disposed of in deep geological formations (e.g. salt, clay or crystalline). The repositories will be sealed by means of engineered barrier systems. The impermeability of these structures is indispensable. In the current research phase, various materials are being investigated and methods for monitoring the structures are being developed. In this context, the investigation of cracks is a priority topic. In recent years, BAM has gained extensive experience in the investigation of in-situ test objects in full scale. The measurements were performed in the Morsleben repository for radioactive waste at the test structure for the in-situ experiment "Sealing structure in rock salt" and in the Teutschenthal mine at the large-scale GV2 test structure. With a newly developed ultrasonic measuring system it has been possible to achieve penetration depths of up to approx. 9.0 m. Measurements with the Large Aperture Ultrasonic System in combination with the Synthetic Aperture Focusing Technique reconstruction method show that the non-destructive testing of sealing structures is possible and the use of the measuring system for quality assurance in the construction of sealing structures is promising. KW - Abdichtbauwerk / Verschlussbauwerk KW - Zerstörungsfreie Prüfung KW - Large Aperture Ultrasonic System KW - Synthetic Aperture Focusing Technique KW - Ultraschall-Echo-Verfahren PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520298 DO - https://doi.org/10.1002/mawe.202000118 SN - 1521-4052 VL - 52 IS - 1 SP - 19 EP - 31 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-52029 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Lay, Vera A1 - Mielentz, Frank A1 - Niederleithinger, Ernst A1 - Behrens, Matthias T1 - Enhancing the Performance of a Large Aperture Ultrasound System (LAUS): A Combined Approach of Simulation and Measurement for Transmitter–Receiver Optimization JF - Enhancing the Performance of a Large Aperture Ultrasound System (LAUS): A Combined Approach of Simulation and Measurement for Transmitter–Receiver Optimization N2 - The Large Aperture Ultrasound System (LAUS) developed at BAM is known for its ability to penetrate thick objects, especially concrete structures commonly used in nuclear waste storage and other applications in civil engineering. Although the current system effectively penetrates up to ~9 m, further optimization is imperative to enhance the safety and integrity of disposal structures for radioactive or toxic waste. This study focuses on enhancing the system’s efficiency by optimizing the transducer spacing, ensuring that resolution is not compromised. An array of twelve horizontal shear wave transducers was used to find a balance between penetration depth and resolution. Systematic adjustments of the spacing between transmitter and receiver units were undertaken based on target depth ranges of known reflectors at depth ranges from 5 m to 10 m. The trade-offs between resolution and artifact generation were meticulously assessed. This comprehensive study employs a dual approach using both simulations and measurements to investigate the performance of transducer units spaced at 10 cm, 20 cm, 30 cm, and 40 cm. We found that for depths up to 5 m, a spacing of 10 cm for LAUS transducer units provided the best resolution as confirmed by both simulations and measurements. This optimal distance is particularly effective in achieving clear reflections and a satisfactory signal-to-noise ratio (SNR) in imaging scenarios with materials such as thick concrete structures. However, when targeting depths greater than 10 m, we recommend increasing the distance between the transducers to 20 cm. This increased spacing improves the SNR in comparison to other spacings, as seen in the simulation of a 10 m deep backwall. Our results emphasize the critical role of transducer spacing in achieving the desired SNR and resolution, especially in the context of depth imaging requirements for LAUS applications. In addition to the transducer spacing, different distances between individual sets of measurement positions were tested. Overall, keeping the minimal possible distance between measurement position offsets provides the best imaging results at greater depths. The proposed optimizations for the LAUS in this study are primarily relevant to applications on massive nuclear structures for nuclear waste management. This research highlights the need for better LAUS efficiency in applications such as sealing structures, laying the foundation for future technological advances in this field. KW - Engineered barrier system KW - Phased array technique KW - Ultrasonic testing KW - Non-destructive testing in civil engineering KW - Seismic migration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592426 DO - https://doi.org/10.3390/s24010100 VL - 24 IS - 1 SP - 1 EP - 23 PB - MDPI CY - Basel, Switzerland AN - OPUS4-59242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Validation of novel ultrasonic phased array borehole probe by using simulation and measurement JF - Sensors N2 - Low-frequency ultrasonic testing is a well-established non-destructive testing (NDT) method in civil engineering for material characterization and the localization of cracks, reinforcing bars and delamination. A novel ultrasonic borehole probe is developed for in situ quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The aim is to examine the sealing structures made of salt concrete for any possible cracks and delamination and to localize built-in components. A prototype has been developed using 12 individual horizontal dry point contact (DPC) shear wave transducers separated by equidistant transmitter/receiver arrays. The probe is equipped with a commercially available portable ultrasonic flaw detector used in the NDT civil engineering industry. To increase the sound pressure generated, the number of transducers in the novel probe is increased to 32 transducers. In addition, the timed excitation of each transducer directs a focused beam of sound to a specific angle and distance based on the previously calculated delay time. This narrows the sensitivity of test volume and improves the signal-to-noise ratio of the received signals. In this paper, the newly designed phased array borehole probe is validated by beam computation in the CIVA software and experimental investigations on a half-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction methods, it is expected that an optimised radiation pattern of the probe will improve the signal quality and thus increase the reliability of the imaging results. This is an important consideration for the construction of safe sealing structures for the safe disposal of radioactive or toxic waste. KW - Ultrasound KW - Phased array KW - Concrete KW - Borehole PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565722 DO - https://doi.org/10.3390/s22249823 SN - 1424-8220 VL - 22 IS - 24 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Ultrasonic quality assurance at magnesia shotcrete sealing structures JF - Sensors N2 - Engineered barriers are a key element to enable safe nuclear waste disposal. One method currently under research for their construction is magnesia concrete applied in a shotcrete procedure. In this study, the ultrasonic echo method is evaluated as a means for quality assurance. Imaging of internal structures (backwall, boreholes) and defects, such as delamination, has successfully been achieved in the shotcrete. Additionally, detailed information about the potential cause of selected reflectors are obtained by phase analysis. In several test blocks of various sizes, no consistent concrete section boundaries have been found by ultrasonic imaging, which was verified by subsequent drilling and complementary tests. An experiment with artificial defects imitating cracks, air-filled voids, and material with lower density has been challenging and shows the limitations of the current methods. Although significant defects, such as a large delamination, are reliably identified, several smaller defects are not identified. Generally, ultrasonic imaging provides a suitable base as a mean for quality assurance during and after the construction of sealing structures. However, further developments are required to enhance the reliability of the method and a full validation is still pending. Still, the method has potential to increase the safety of nuclear waste repositories. KW - Ultrasound KW - Imaging KW - Engineered barrier systems KW - Underground KW - Shotcrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563170 DO - https://doi.org/10.3390/s22228717 SN - 1424-8220 VL - 22 IS - 22 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-56317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büttner, C. A1 - Niederleithinger, Ernst A1 - Buske, S. A1 - Friedrich, C. T1 - Ultrasonic Echo Localization Using Seismic Migration Techniques in Engineered Barriers for NuclearWaste Storage JF - Journal of Nondestructive Evaluation N2 - In the framework of non-destructive-testing advanced seismic imaging techniques have been applied to ultrasonic echo data in order to examine the integrity of an engineered test-barrier designed to be used for sealing an underground nuclear waste disposal site. Synthetic data as well as real multi-receiver ultrasonic data acquired at the test site were processed and imaged using Kirchhoff prestack depth migration reverse time migration (RTM). In general, both methods provide a good Image quality as demonstrated by various case studies, however deeper parts within the test barrier containing inclined reflectors were reconstructed more accurately by RTM. In particular, the image quality of a specific target reflector at a depth of 8 m in the test-barrier has been significantly improved compared to previous investigations using synthetic aperture Focusing technique, which justifies the considerable computing time of this method. KW - Radioactive waste disposal KW - Engineered barrier KW - Ultrasound KW - Imaging KW - Crack detection PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537956 DO - https://doi.org/10.1007/s10921-021-00824-3 SN - 0195-9298 VL - 40 IS - 4 SP - 1 EP - 10 PB - Springer AN - OPUS4-53795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -