TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical Simulation of Spent Fuel Segments under Transport Loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 SN - 978-1-51088-669-8 SP - 1 EP - 7 AN - OPUS4-52046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical simulation of spent fuel segments under transport loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different Transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under Transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a segment of a spent fuel assembly are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Explicit dynamic finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. A beam element formulation is used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The load applied is gathered from experimental drop tests with spent fuel casks performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel Assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 AN - OPUS4-52047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The specified transport condition imply high loading on the lids and the bolt connections of the package. The response of the lid systems on these load conditions is generally investigated by drop tests or numerically. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connection under loadings typical for drop tests. T2 - BAM-IRSN-Workshop 2021 CY - Berlin, Germany DA - 08.09.2021 KW - Transport packages KW - Bolt connections KW - Finite element analysis KW - Experimental investigation PY - 2021 AN - OPUS4-53251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Experimental and numerical investigation of prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The packages are assessed to specific transport conditions which are specified in the IAEA safety standards SSR-6 (IAEA 2018). These transport conditions, especially the so-called accident conditions of transport, imply high dynamic loading on the lids and the bolt connections of the package. The response of the lid systems on the mechanical accident conditions is generally investigated by experimental drop tests or numerically, e.g., by finite element analyses. The interpretation of the drop test results for the verification of the numerical models is often not obvious due to the complex superposition of different effects in the real tests. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connections under loadings typical for these drop tests. In this context an experimental test set-up was developed to investigate the response of a single bolt connection under a prescribed lateral displacement of clamped parts. The bolt is instrumented by strain gauges to get the pretensional, the torsional and the bending stress in the bolt shank. Furthermore, the lateral movement and the tilt of the bolt head is measured during the test. A finite element model of the test set-up has been created in Abaqus FEA (Simulia 2021). The very detailed instrumentation of the test set-up shall give the opportunity to investigate and validate the numerical model. The aim of this paper is to give an overview about the proposed research project and to present first results. T2 - SMIRT26 - 26th International Conference on Structural Mechanics in Reactor Technology CY - Potsdam, Germany DA - 10.07.2022 KW - Transport packages KW - Bolt connections KW - Finite element analysis KW - Experimental investigation PY - 2022 AN - OPUS4-55426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank A1 - Reiche, I. A1 - Ramsay, J. T1 - New Sco-III regulations to ship large objects as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. The latest 2018 edition of the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, No. SSR-6 [1], incorporates regulations for the shipment of large objects as a new category of surface contaminated object, SCO-III, based on the IAEA “performance package” concept. This paper provides background and practical guidance on these regulations. Additionally, the experiences of BAM with the appoval of two steam converters of the NPP Lingen are presented as the first approval process for SCO-III objects in Germany. The primary additions to SSR-6 include SCO-III classification and requirements, approval and administrative requirements for the new classification, and the addition of SCO-III to the proper shipping name for UN 2913. Advisory material drafted for the new requirements will be included in the next revision of SSG-26, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, expected to be published soon. Note that at this time the proposed provisions for large objects do not include components such as reactor vessels, due to the more limited experience and greater radioactivity levels. The SCO-III concept lays the groundwork and may be extended to cover other large objects that are classified as low specific activity (LSA) material in the future. T2 - Kerntechnik 2022 CY - Leipzig, Germany DA - 21.06.2022 KW - Transport packages KW - Radioactive materials KW - SCO-III KW - Large objects PY - 2022 SP - 1 EP - 7 AN - OPUS4-55423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank A1 - Reiche, I. A1 - Ramsay, J. T1 - Neue SCO-III Regularien für den Transport grosser Gegenstände als oberflächenkontaminierte Objekte N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. The latest 2018 edition of the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, No. SSR-6 [1], incorporates regulations for the shipment of large objects as a new category of surface contaminated object, SCO-III, based on the IAEA “performance package” concept. This paper provides background and practical guidance on these regulations. Additionally, the experiences of BAM with the appoval of two steam converters of the NPP Lingen are presented as the first approval process for SCO-III objects in Germany. The primary additions to SSR-6 include SCO-III classification and requirements, approval and administrative requirements for the new classification, and the addition of SCO-III to the proper shipping name for UN 2913. Advisory material drafted for the new requirements will be included in the next revision of SSG-26, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, expected to be published soon. Note that at this time the proposed provisions for large objects do not include components such as reactor vessels, due to the more limited experience and greater radioactivity levels. The SCO-III concept lays the groundwork and may be extended to cover other large objects that are classified as low specific activity (LSA) material in the future. T2 - Kerntechnik 2022 CY - Leipzig, Germany DA - 21.06.2022 KW - Transportbehälter KW - Radioaktive Stoffe KW - Oberflächenkontaminiert KW - SCO-III PY - 2022 AN - OPUS4-55424 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vlassopoulos, E. A1 - Caruso, S. A1 - Linnemann, Konrad A1 - Nasyrow, R. A1 - Gretter, R. A1 - Fongaro, L. A1 - Papaioannou, D. T1 - Mechanical integrity of spent nuclear fuel rods N2 - The properties of spent nuclear fuel (SNF) rods change significantly during their operation life in the reactor core. Further changes occur after their discharge mainly due to the heating-cooling processes and possible ageing associated with the cumulative effects of radioactive decay induce damage in the fuel. Such changes may affect the response of the SNF rods to mechanical solicitations corresponding to normal and accidental conditions. Research activities at JRC-KARLSRUHE aim at assessing the integrity of SNF rods and processes which might affect their mechanical properties during their interim storage, transport or other handling operations. JRC Hot Cell facilities have been fully adapted to fulfil the experimental goals. The number of experiments that can be performed, however, is limited and there is an acute need to model them, using this process to validate codes, to deeper understand and to extend the results gained at the JRC beyond the conditions that have been tested. For the experimental campaigns two devices for gravitational impact and 3-point bending tests were developed and installed in a hot cell. Segments of real SNF rods pressurized at their original pressures after discharge have been investigated. The setup is fully operational and new results are reported continuously. T2 - ANS Annual 2018 CY - Philadelphia, PA, USA DA - 17.06.2018 KW - Spent nuclear fuel KW - Mechanical testing KW - Hot cell testing PY - 2018 SP - 170 EP - 172 AN - OPUS4-44862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Update on Work and Meetings in Germany about the Spent Fuel Behavior for Transport and Storage N2 - The presentation gives an update about the work on the spent fuel behavior for transport and storage in Germany. Recent developments and meetings are discussed. In this context the results of the hot cell tests on fuel rod segments performed at JRC in Karslruhe in collaboration with BAM are shown. Furthermore, a new research project about the investigations on potential brittle failure of cladding materials under long-term dry interim storage conditions, which is currently starting at BAM 3.4 is presented. T2 - SNL BAM Workshop CY - Albuquerque, NM, USA DA - 14.03.2018 KW - Spent nuclear fuel KW - Fuel rod behavior KW - Hot cell testing PY - 2018 AN - OPUS4-44865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - Experience by BAM in the transport package safety assessment of German waste containers N2 - Transport and storage containers for low and midlevel radioactive waste are getting more and more of relevance due to the nuclear phase out decision in 2011. For higher activities Type B(U) approved waste containers will be needed for the shut down and dismantling phases of NPPs. It is expected that large quantities are required in the near future. German waste containers are generally approved for transport and interim storage and are also intended for the final disposal in the Konrad repository. BAM is involved in the authority licensing of transport package designs in Germany. In this context, BAM is responsible for the assessment of safe containment, mechanical, thermal and quality management issues. BAM also operates test facilities and performs drop as well as thermal tests during package licensing procedures. This paper summarizes our experience in the transport package design assessment of Type B(U) waste containers. A general overview of the approval process, the requirements and approaches BAM applies are described. Some examples are used to illustrate different aspects and technical issues we are addressing during the package assessment. In the first part of the paper the specific design aspects of German waste containers are described. Here, a general overview is given e.g. about closure systems, impact limiter designs, and the handling concepts. Furthermore, the wide range of radioactive content and their physical behavior including the impact on the packages assessment are described. The second part is focused on questions about the licensing and assessment process of German waste containers from the BAM authority point of view. The general approaches for the strategy of demonstration are outlined on the basis of the test conditions according to IAEA Regulations SSR-6. Furthermore, particular issues of the mechanical and thermal assessment with respect to the specific test conditions are discussed. For accident conditions of transport, aspects to be mentioned are e.g. the assessment of the lid bolts, the axial gap applied between content and lid, and the thermal behavior of the wood filled impact limiter after the fire test. However, issues of the assessment for routine and normal conditions of transport are addressed in this paper, too. The intention of this paper is introduce recent approval procedure experience in Germany, describing technical evaluation issues and so reduce rounds of questions during applications. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Transport packages KW - Safety assessment KW - Lowlevel midlevel radioactive waste PY - 2018 AN - OPUS4-44860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - Experience by BAM in the transport package safety assessment of German waste containers N2 - Transport and storage containers for low and midlevel radioactive waste are getting more and more of relevance due to the nuclear phase out decision in 2011. For higher activities Type B(U) approved waste containers will be needed for the shut down and dismantling phases of NPPs. It is expected that large quantities are required in the near future. German waste containers are generally approved for transport and interim storage and are also intended for the final disposal in the Konrad repository. BAM is involved in the authority licensing of transport package designs in Germany. In this context, BAM is responsible for the assessment of safe containment, mechanical, thermal and quality management issues. BAM also operates test facilities and performs drop as well as thermal tests during package licensing procedures. This paper summarizes our experience in the transport package design assessment of Type B(U) waste containers. A general overview of the approval process, the requirements and approaches BAM applies are described. Some examples are used to illustrate different aspects and technical issues we are addressing during the package assessment. In the first part of the paper the specific design aspects of German waste containers are described. Here, a general overview is given e.g. about closure systems, impact limiter designs, and the handling concepts. Furthermore, the wide range of radioactive content and their physical behavior including the impact on the packages assessment are described. The second part is focused on questions about the licensing and assessment process of German waste containers from the BAM authority point of view. The general approaches for the strategy of demonstration are outlined on the basis of the test conditions according to IAEA Regulations SSR-6. Furthermore, particular issues of the mechanical and thermal assessment with respect to the specific test conditions are discussed. For accident conditions of transport, aspects to be mentioned are e.g. the assessment of the lid bolts, the axial gap applied between content and lid, and the thermal behavior of the wood filled impact limiter after the fire test. However, issues of the assessment for routine and normal conditions of transport are addressed in this paper, too. The intention of this paper is introduce recent approval procedure experience in Germany, describing technical evaluation issues and so reduce rounds of questions during applications. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Transport packages KW - Safety assessment KW - Lowlevel and midlevel radioactive waste PY - 2018 SP - Paper 18469, 1 EP - 10 AN - OPUS4-44861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Experimental and numerical analyses of spent nuclear fuel behavior under transport conditions N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of the package capabilities under these conditions. The mechanical behavior of spent fuel assemblies shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. The package as a mechanical system is characterized by a complex set of interactions, e. g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity makes it difficult to assume appropriate mechanical loads for the spent fuel inside the package. Another challenge is the assumption of material properties which represent the variation of the fuel rods regarding cladding material, burn-up and the operation history sufficiently. The objective of this paper is to give an overview about the current approaches and research for the evaluation of spent fuel behavior within the package design approval procedure. In this context, analytical, numerical and experimental results are discussed. The presented work is achieved within a collaboration of BAM with national and international partners. T2 - Abteilungskolloquium 3.3 CY - Berlin, BAM Fabeckstraße DA - 02.10.2019 KW - Transportbehälter KW - Radioaktive Stoffe KW - Brennelementverhalten KW - FE-Berechnungen PY - 2019 AN - OPUS4-51173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank A1 - Kalinina, Elena T1 - Experimentelle und numerische Untersuchungen zur Bewertung der Integrität abgebrannter Brennelemente unter Transportbedingungen N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of the spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of the package capabilities under these conditions. The mechanical behavior of spent fuel assemblies shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. The package as a mechanical system is characterized by a complex set of interactions, e. g. between the fuel rods within the assembly as well as between the fuel assemblies, the basket, and the cask containment. This complexity makes it difficult to assume appropriate mechanical loads for the spent fuel inside the package. Another challenge is the assumption of material properties which represent the variation of the fuel rods regarding cladding material, burn-up and the operation history sufficiently. The objective of this paper is to give an overview about the current approaches and research for the evaluation of spent fuel behavior within the package design approval procedure. In this context, analytical, numerical and experimental results are discussed. The presented work is achieved within a collaboration of BAM with national and international partners. T2 - BGZ Fachworkshop Zwischenlagerung CY - Berlin, Germany DA - 22.10.2019 KW - Transportbehälter KW - Radioaktive Stoffe KW - Brennelementverhalten KW - FE-Berechnungen PY - 2019 AN - OPUS4-51174 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Authority Experience during Design Approval Procedure for Packages Loaded with Special Encapsulations for Damaged Spent Nuclear Fuel N2 - The first German package design approval certificate for a dual purpose cask intended for loading with damaged spent nuclear fuel was issued recently. BAM as part of the competent authority system in Germany carried out a comprehensive assessment procedure with respect to the mechanical and thermal design, the release of radioactive material and the quality assurance aspects of manufacturing and operation. Packages for the transport and storage of radioactive material have been assessed by BAM for many years, thus the common assessment procedure is well-known and good practice. Up to now only SNF without defects or HLW with well-defined properties were designated for long-term Interim storage and transports afterwards. Due to Germany’s nuclear phase out all other kinds of spent nuclear fuel in particular damaged spent nuclear fuel shall be packed as well. Damaged spent nuclear fuel needs a tight closure with Special encapsulations and clearly defined properties in Germany. In addition, these encapsulations shall be long-term durable, because they are not accessible after loading in a packaging within periodical inspections. The main difference to Standard package components is that encapsulations with a permanent closure achieve their specified conditions not after manufacturing but only during operation, after loading and closing. To ensure compliance with the specific conditions, special measures for quality assurance are necessary during operation of each encapsulation, e.g. drying and sealing, which were assessed by BAM. The present paper gives an overview of the conducted assessment from BAM and point out the findings concerning to the special closure lid of the approved encapsulation, which is screwed and welded. A wide verification concept is necessary to show the specific tightness under transport conditions. Together with quality assurance measures during first operation steps these encapsulations with damaged spent nuclear fuel can be handled like standard fuel assemblies in approved package designs. T2 - International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Transport package KW - Design approval KW - Spent nuclear fuel KW - Special encapsulation PY - 2019 SP - 1 EP - 9 AN - OPUS4-48749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Authority Experience during Design Approval Procedure for Packages Loaded with Special Encapsulations for Damaged Spent Nuclear Fuel N2 - The first German package design approval certificate for a dual purpose cask intended for loading with damaged spent nuclear fuel was issued recently. BAM as part of the competent authority system in Germany carried out a comprehensive assessment procedure with respect to the mechanical and thermal design, the release of radioactive material and the quality assurance aspects of manufacturing and operation. Packages for the transport and storage of radioactive material have been assessed by BAM for many years, thus the common assessment procedure is well-known and good practice. Up to now only SNF without defects or HLW with well-defined properties were designated for long-term Interim storage and transports afterwards. Due to Germany’s nuclear phase out all other kinds of spent nuclear fuel in particular damaged spent nuclear fuel shall be packed as well. Damaged spent nuclear fuel needs a tight closure with Special encapsulations and clearly defined properties in Germany. In addition, these encapsulations shall be long-term durable, because they are not accessible after loading in a packaging within periodical inspections. The main difference to Standard package components is that encapsulations with a permanent closure achieve their specified conditions not after manufacturing but only during operation, after loading and closing. To ensure compliance with the specific conditions, special measures for quality assurance are necessary during operation of each encapsulation, e.g. drying and sealing, which were assessed by BAM. The present paper gives an overview of the conducted assessment from BAM and point out the findings concerning to the special closure lid of the approved encapsulation, which is screwed and welded. A wide verification concept is necessary to show the specific tightness under transport conditions. Together with quality assurance measures during first operation steps these encapsulations with damaged spent nuclear fuel can be handled like standard fuel assemblies in approved package designs. T2 - International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Transport package KW - Spent nuclear fuel KW - Design approval KW - Special encapsulation PY - 2019 AN - OPUS4-48750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The specified transport condition imply high loading on the lids and the bolt connections of the package. The response of the lid systems on these load conditions is generally investigated by drop tests or numerically. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connection under loadings typical for drop tests. T2 - IRSN-BAM Symposium Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Transport packages KW - Pprestressed bolt connection KW - Experimental investigation KW - Finite element method PY - 2020 AN - OPUS4-51697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Considerations on spent fuel behavior for transport after extended storage N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. In this paper, the mechanical behavior of high burn-up spent fuel assemblies (> approx. 50 GWd/tHM, value averaged over the fuel assembly) under transport conditions is analyzed with regard to the assumptions which are used in the Containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. Additionally, the gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated. Considerations and knowledge gaps for the transport after extended interim storage are issues of growing interest. In this context, practical approaches are discussed based on the experience of BAM within the safety assessment of packages approved for transport of spent nuclear fuel. KW - Transport packages for radioactive material KW - Spent nuclear fuel PY - 2018 VL - 83 IS - 6 SP - 488 EP - 494 PB - Hanser AN - OPUS4-47359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Feldkamp, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Transport of HLW canisters on sea vessels N2 - Germany had been transporting spent fuel to the reprocessing plant in Sellafield and La Hague for decades until around 2005. Resulting from the obligation to take back the vitrified high-level waste from reprocessing six CASTOR® HAW28M filled with 168 canisters with radioactive waste in vitrified form were transported from Sellafield to the interim storage facility Biblis in 2020. Rail wagons were used for the transport to the port in Barrow-in-Furness, where they were loaded into a dedicated seagoing vessel, certified as INF Class 3 according to the INF Code. This was the first time that vitrified high level waste with considerable heat load was transported under a German design approval certificate. BAM was involved in the authority assessment of the conditions for the sea transport. For the first transport BAM required among others, assessment of temperature distribution during transport, logging of temperatures of cargo bays and graphical imaging of temperatures of the bay with the cask in order to ensure compliance with temperature specifications, e.g. maximal neutron absorber and gasket temperatures. Special interest was taken in the identification of possible events exceeding the specified temperatures considering the different philosophies of IMDG code and its supplement INF code regarding temperature control of hatches. Results show compliance with assumed conditions. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Transport KW - Spent nuclear fuel KW - Ship KW - Sea KW - High level waste PY - 2024 SP - 1 EP - 8 AN - OPUS4-60092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Linnemann, Konrad A1 - Wille, Frank A1 - Reiche, Ingo A1 - Ramsay, J. T1 - New SCO-iii regulations to ship large comonents as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. T2 - PATRAM22 CY - Juan les Pins, France DA - 11.06.2023 KW - Gefahrgut KW - Radioaktive Stoffe KW - Rückbau kerntechnischer Anlagen KW - Transport PY - 2023 SP - 1 EP - 8 AN - OPUS4-57750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Welding Seam Safety Evaluation in a Thick-Walled Type B Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6 [1], BS 7910 [2] and API 579-1/ASME FFS1 [3]. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the abovementioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes DA - 11.06.2023 KW - Welding KW - Transport Package KW - Fracture Mechanics PY - 2023 SP - 1 EP - 11 AN - OPUS4-59421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Experimental and numerical investigation of prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The packages are assessed to specific transport conditions which are specified in the IAEA safety standards SSR-6 (IAEA 2018). These transport conditions, especially the so-called accident conditions of transport, imply high dynamic loading on the lids and the bolt connections of the package. The response of the lid systems on the mechanical accident conditions is generally investigated by experimental drop tests or numerically, e.g., by finite element analyses. The interpretation of the drop test results for the verification of the numerical models is often not obvious due to the complex superposition of different effects in the real tests. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connections under loadings typical for these drop tests. In this context an experimental test set-up was developed to investigate the response of a single bolt connection under a prescribed lateral displacement of clamped parts. The bolt is instrumented by strain gauges to get the pretensional, the torsional and the bending stress in the bolt shank. Furthermore, the lateral movement and the tilt of the bolt head is measured during the test. A finite element model of the test set-up has been created in Abaqus FEA (Simulia 2021). The very detailed instrumentation of the test set-up shall give the opportunity to investigate and validate the numerical model. The aim of this paper is to give an overview about the proposed research project and to present first results. T2 - SMIRT 26 (26th conference on Structural Mechanics in Reactor Technology) CY - Potsdam, Germany DA - 10.07.2022 KW - Bolt connections KW - Finite element anaylsis KW - Experimental testing KW - Transport package for radioactive materials PY - 2022 UR - https://www.lib.ncsu.edu/resolver/1840.20/40614 SP - 1 EP - 7 PB - IASMiRT AN - OPUS4-59378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - The safety demonstration of heavy weight type B transport packages used for storing spent nuclear fuel (SNF) or radioactive waste is ensured by a combination of physical testing and numerical calculations. While experiments are performed in accordance with the IAEA regulations for selected drop scenarios, Finite-Element-Method (FEM) simulations are used to predict the most damaging case and to investigate additional drop positions. BAM as competent authority in Germany has performed different investigations of a welding seam for a typical large transport package made of A508 forged steel, where the bottom plate is welded to the cylindrical shell. The package has a mass of approx. 120 t. Results of physical drop tests with a full-scale model and accompanying preliminary FEM simulations are presented to determine the decisive stresses in the welding seam. A drop test only represents one set of a package and test parameters. A further parameter analysis is considered to account for allowable variations of packaging properties (e.g. resulting from the manufacturing process) and, based on IAEA requirements, the temperature dependence of the material behaviour. The results of the stress analyses from the drop test and the simulation form the basis and provide the input parameters for a fracture mechanics analysis. In addition to the IAEA specifications, further standards are taken into account for an in-depth investigation, see R6, BS 7910 and API 579-1/ASME FFS1. All the above-mentioned standards require a manufacturer-specific defect analysis with respect to size and position. Both result from the welding process and the following heat treatment regime. The maximum defect sizes are ensured with non-destructive test methods (such as ultrasonic or particle methods) as integral part of the manufacturing process of the welding seam. Another important parameter in the welding process is the residual stress (secondary stress). The combination of the primary and secondary stress determines the total stress in the welding seam. The most damaging case of the welding seam is determined and evaluated with help of the above-mentioned standards and taking into account the IAEA requirements with respect to defect sizes, material properties, primary and residual stress, yield strength etc. T2 - PATRAM 22 - The International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Transport Package KW - Welding KW - Fracture Mechanics PY - 2023 SP - 1 EP - 10 AN - OPUS4-57696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -