TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical Simulation of Spent Fuel Segments under Transport Loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. Considering the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in Information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a spent fuel assembly Segment are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Dynamic and quasi-static finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. Beam elements are used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The dynamic load applied is gathered from an experimental drop test with a spent fuel cask performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 SN - 978-1-51088-669-8 SP - 1 EP - 7 AN - OPUS4-52046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Sterthaus, Jens A1 - Rolle, Annette A1 - Wille, Frank A1 - Vlassopoulos, Efstathios A1 - Papaioannou, Dimitrios T1 - Numerical simulation of spent fuel segments under transport loads N2 - Packages for the transport of spent nuclear fuel shall meet the International Atomic Energy Agency regulations to ensure safety under different Transport conditions. The physical state of spent fuel and the fuel rod cladding as well as the geometric configuration of fuel assemblies are important inputs for the evaluation of package capabilities under these conditions. Generally, the mechanical behavior of high burn-up spent fuel assemblies under Transport conditions shall be analyzed with regard to the assumptions which are used in the containment and criticality safety analysis. In view of the complexity of the interactions between the fuel rods as well as between the fuel assemblies, basket, and cask containment, the exact mechanical analysis of such phenomena is nearly impossible. The gaps in information concerning the material properties of cladding and pellet behavior, especially for the high burn-up fuel, make the analysis more complicated additionally. As a result, enveloping analytical approaches are usually used by BAM within the safety assessment of packages approved for transport of spent nuclear fuel. To justify the safety margins of such approaches additional analyses are necessary. In this paper, numerical simulations of a segment of a spent fuel assembly are presented. The segment modeled represents the part of a generalized BWR fuel assembly between two spacers. Explicit dynamic finite element calculations are performed to simulate the spent fuel behavior under regulatory defined accident conditions of transport. A beam element formulation is used for the modeling of the fuel rods representing the compound consisting of claddings and fuel pellets. The load applied is gathered from experimental drop tests with spent fuel casks performed at BAM. A hot cell bending test performed at JRC Karlsruhe is the basis for obtaining the material behavior of the fuel rods. The material properties are determined by simulating the test setup of JRC and optimizing the results to fit the experimental load deflection curve. The simulations of the fuel Assembly segment are used to get a better understanding about the loads on fuel rods under accident conditions of transport. T2 - 17th International High-Level Radioactive Waste Management Conference (IHLRWM 2019) CY - Knoxville, Tennessee, USA DA - 14.04.2019 KW - Spent Nuclear Fuel KW - Finite Element Simulation KW - Transport packages PY - 2019 AN - OPUS4-52047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The specified transport condition imply high loading on the lids and the bolt connections of the package. The response of the lid systems on these load conditions is generally investigated by drop tests or numerically. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connection under loadings typical for drop tests. T2 - BAM-IRSN-Workshop 2021 CY - Berlin, Germany DA - 08.09.2021 KW - Transport packages KW - Bolt connections KW - Finite element analysis KW - Experimental investigation PY - 2021 AN - OPUS4-53251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Transport package KW - Drop test KW - Fracture initiation PY - 2022 SP - 1 EP - 9 AN - OPUS4-55375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Experimental and numerical investigation of prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The packages are assessed to specific transport conditions which are specified in the IAEA safety standards SSR-6 (IAEA 2018). These transport conditions, especially the so-called accident conditions of transport, imply high dynamic loading on the lids and the bolt connections of the package. The response of the lid systems on the mechanical accident conditions is generally investigated by experimental drop tests or numerically, e.g., by finite element analyses. The interpretation of the drop test results for the verification of the numerical models is often not obvious due to the complex superposition of different effects in the real tests. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connections under loadings typical for these drop tests. In this context an experimental test set-up was developed to investigate the response of a single bolt connection under a prescribed lateral displacement of clamped parts. The bolt is instrumented by strain gauges to get the pretensional, the torsional and the bending stress in the bolt shank. Furthermore, the lateral movement and the tilt of the bolt head is measured during the test. A finite element model of the test set-up has been created in Abaqus FEA (Simulia 2021). The very detailed instrumentation of the test set-up shall give the opportunity to investigate and validate the numerical model. The aim of this paper is to give an overview about the proposed research project and to present first results. T2 - SMIRT26 - 26th International Conference on Structural Mechanics in Reactor Technology CY - Potsdam, Germany DA - 10.07.2022 KW - Transport packages KW - Bolt connections KW - Finite element analysis KW - Experimental investigation PY - 2022 AN - OPUS4-55426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank A1 - Reiche, I. A1 - Ramsay, J. T1 - New Sco-III regulations to ship large objects as surface contaminated objects N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. The latest 2018 edition of the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, No. SSR-6 [1], incorporates regulations for the shipment of large objects as a new category of surface contaminated object, SCO-III, based on the IAEA “performance package” concept. This paper provides background and practical guidance on these regulations. Additionally, the experiences of BAM with the appoval of two steam converters of the NPP Lingen are presented as the first approval process for SCO-III objects in Germany. The primary additions to SSR-6 include SCO-III classification and requirements, approval and administrative requirements for the new classification, and the addition of SCO-III to the proper shipping name for UN 2913. Advisory material drafted for the new requirements will be included in the next revision of SSG-26, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, expected to be published soon. Note that at this time the proposed provisions for large objects do not include components such as reactor vessels, due to the more limited experience and greater radioactivity levels. The SCO-III concept lays the groundwork and may be extended to cover other large objects that are classified as low specific activity (LSA) material in the future. T2 - Kerntechnik 2022 CY - Leipzig, Germany DA - 21.06.2022 KW - Transport packages KW - Radioactive materials KW - SCO-III KW - Large objects PY - 2022 SP - 1 EP - 7 AN - OPUS4-55423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Komann, Steffen A1 - Wille, Frank A1 - Reiche, I. A1 - Ramsay, J. T1 - Neue SCO-III Regularien für den Transport grosser Gegenstände als oberflächenkontaminierte Objekte N2 - The decommissioning or refurbishment of nuclear facilities necessitates either the storage or disposal of large radioactive components such as steam generators, pressurizers, reactor pressure vessels and heads, and coolant pumps, to list the major contributors. These components or objects are large in size and mass, measuring up to approximately 6 meters in diameter, up to 20 meters in length, and weighing over 400 000 kg. In many situations, the components are transported off-site to a storage, disposal or recycling/treatment facility. Previously, many large objects had to be transported under special arrangement. The latest 2018 edition of the International Atomic Energy Agency (IAEA) Regulations for the Safe Transport of Radioactive Material, No. SSR-6 [1], incorporates regulations for the shipment of large objects as a new category of surface contaminated object, SCO-III, based on the IAEA “performance package” concept. This paper provides background and practical guidance on these regulations. Additionally, the experiences of BAM with the appoval of two steam converters of the NPP Lingen are presented as the first approval process for SCO-III objects in Germany. The primary additions to SSR-6 include SCO-III classification and requirements, approval and administrative requirements for the new classification, and the addition of SCO-III to the proper shipping name for UN 2913. Advisory material drafted for the new requirements will be included in the next revision of SSG-26, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material, expected to be published soon. Note that at this time the proposed provisions for large objects do not include components such as reactor vessels, due to the more limited experience and greater radioactivity levels. The SCO-III concept lays the groundwork and may be extended to cover other large objects that are classified as low specific activity (LSA) material in the future. T2 - Kerntechnik 2022 CY - Leipzig, Germany DA - 21.06.2022 KW - Transportbehälter KW - Radioaktive Stoffe KW - Oberflächenkontaminiert KW - SCO-III PY - 2022 AN - OPUS4-55424 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vlassopoulos, E. A1 - Caruso, S. A1 - Linnemann, Konrad A1 - Nasyrow, R. A1 - Gretter, R. A1 - Fongaro, L. A1 - Papaioannou, D. T1 - Mechanical integrity of spent nuclear fuel rods N2 - The properties of spent nuclear fuel (SNF) rods change significantly during their operation life in the reactor core. Further changes occur after their discharge mainly due to the heating-cooling processes and possible ageing associated with the cumulative effects of radioactive decay induce damage in the fuel. Such changes may affect the response of the SNF rods to mechanical solicitations corresponding to normal and accidental conditions. Research activities at JRC-KARLSRUHE aim at assessing the integrity of SNF rods and processes which might affect their mechanical properties during their interim storage, transport or other handling operations. JRC Hot Cell facilities have been fully adapted to fulfil the experimental goals. The number of experiments that can be performed, however, is limited and there is an acute need to model them, using this process to validate codes, to deeper understand and to extend the results gained at the JRC beyond the conditions that have been tested. For the experimental campaigns two devices for gravitational impact and 3-point bending tests were developed and installed in a hot cell. Segments of real SNF rods pressurized at their original pressures after discharge have been investigated. The setup is fully operational and new results are reported continuously. T2 - ANS Annual 2018 CY - Philadelphia, PA, USA DA - 17.06.2018 KW - Spent nuclear fuel KW - Mechanical testing KW - Hot cell testing PY - 2018 SP - 170 EP - 172 AN - OPUS4-44862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Ballheimer, Viktor A1 - Rolle, Annette A1 - Wille, Frank T1 - Update on Work and Meetings in Germany about the Spent Fuel Behavior for Transport and Storage N2 - The presentation gives an update about the work on the spent fuel behavior for transport and storage in Germany. Recent developments and meetings are discussed. In this context the results of the hot cell tests on fuel rod segments performed at JRC in Karslruhe in collaboration with BAM are shown. Furthermore, a new research project about the investigations on potential brittle failure of cladding materials under long-term dry interim storage conditions, which is currently starting at BAM 3.4 is presented. T2 - SNL BAM Workshop CY - Albuquerque, NM, USA DA - 14.03.2018 KW - Spent nuclear fuel KW - Fuel rod behavior KW - Hot cell testing PY - 2018 AN - OPUS4-44865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - Experience by BAM in the transport package safety assessment of German waste containers N2 - Transport and storage containers for low and midlevel radioactive waste are getting more and more of relevance due to the nuclear phase out decision in 2011. For higher activities Type B(U) approved waste containers will be needed for the shut down and dismantling phases of NPPs. It is expected that large quantities are required in the near future. German waste containers are generally approved for transport and interim storage and are also intended for the final disposal in the Konrad repository. BAM is involved in the authority licensing of transport package designs in Germany. In this context, BAM is responsible for the assessment of safe containment, mechanical, thermal and quality management issues. BAM also operates test facilities and performs drop as well as thermal tests during package licensing procedures. This paper summarizes our experience in the transport package design assessment of Type B(U) waste containers. A general overview of the approval process, the requirements and approaches BAM applies are described. Some examples are used to illustrate different aspects and technical issues we are addressing during the package assessment. In the first part of the paper the specific design aspects of German waste containers are described. Here, a general overview is given e.g. about closure systems, impact limiter designs, and the handling concepts. Furthermore, the wide range of radioactive content and their physical behavior including the impact on the packages assessment are described. The second part is focused on questions about the licensing and assessment process of German waste containers from the BAM authority point of view. The general approaches for the strategy of demonstration are outlined on the basis of the test conditions according to IAEA Regulations SSR-6. Furthermore, particular issues of the mechanical and thermal assessment with respect to the specific test conditions are discussed. For accident conditions of transport, aspects to be mentioned are e.g. the assessment of the lid bolts, the axial gap applied between content and lid, and the thermal behavior of the wood filled impact limiter after the fire test. However, issues of the assessment for routine and normal conditions of transport are addressed in this paper, too. The intention of this paper is introduce recent approval procedure experience in Germany, describing technical evaluation issues and so reduce rounds of questions during applications. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Transport packages KW - Safety assessment KW - Lowlevel midlevel radioactive waste PY - 2018 AN - OPUS4-44860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -