TY - CONF A1 - Otremba, Frank A1 - Bradley, Ian T1 - Fire testing of pressurized vessels N2 - The vessel wall response shows a good agreement between the numerical predictions of and experimental data using the limit load approach. Further work is continuing to understand the thermohydraulic response and the boundary conditions for material modelling. As shown in figure 2 there was one BLEVE of a bare tank containing a PRV, highlighting the risk of serious consequences if models are inaccurate. The behavior of partly coated tanks were similar to the bare tank. T2 - ICPPE 2017 CY - Bangkok, Thailand DA - 21.01.2017 KW - Pressurized vessels KW - Fire testing PY - 2017 AN - OPUS4-39048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Capitalizing experiments at neutron sources: a couple of possible strategies N2 - For how trivial or provocative it can sound, the best neutron spectrometer in the world does not produce science by itself. By definition of Materials Science, neutron scattering data on engineering materials must be used as a tool to understand, and even tailor, materials performance. In order for this to happen, it is clear that neutron data need to be acquired under the most relevant condition possible, coupled to other experimental techniques, and capitalized by means of proper simulations and data analysis. In fact, access to neutron sources is not routine. Consequently, it is imperative to search ways to make neutron data rentable for the material science and industrial research community. In this presentation, and based on the example of Ceramic Diesel Particulate Filters and Aluminum Matrix Composites, we will show a couple of strategies to combine neutron data with other experiments, and with theoretical models. Their combination allows raising the value of experiments from data production to problem-solving. Obviously, these are only a few among the many combinations possible to help improving materials properties, performance, and safety. T2 - Kolloquia der TUM CY - TU München, Germany DA - 16.01.2017 KW - Neutronenbeugung KW - Eigenspannungen KW - Mechanische Eigenschaften KW - Kompositen KW - Modellierung KW - Poröse Keramiken KW - TF Material PY - 2017 AN - OPUS4-38999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hiratsuka, M. A1 - Spindler, Ch. A1 - Ohtake, N. A1 - Hertwig, Andreas A1 - Becker, J. A1 - Gäbler, J. A1 - Neubert, Th. A1 - Vergöhl, M. A1 - Winkler, J. A1 - Eypert, C. T1 - Interlaboratory comparison: optical property classification of carbon-based films by ellipsometry N2 - The paper addresses the “INTERLABORATORY COMPARISON: OPTICAL PROPERTY CLASSIFICATION OF CARBON-BASED FILMS BY ELLIPSOMETRY” and the following points are discussed in more detail: Established classification for mechanical properties, Complementary classification for optical properties, Ellipsometry for determination of optical constants n-k plane as material fingerprint, Samples, participants & set-ups (samples: Japan, participants: Japan, Germany, France, set-ups: Japan, Germany, USA) and Results of interlaboratory comparison: thickness, n & k. T2 - ISO TC 107 Meeting Tokyo CY - Tokio, Japan DA - 17.01 2017 KW - Interlaboratory Comparison KW - Optical Property KW - Carbon-based Films KW - Ellipsometry PY - 2017 AN - OPUS4-39028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreier, Andy T1 - Distributed Brillouin sensors based on POF - a brief overview N2 - Easy to handle and stretchable polymer optical fibres for sensor applications Basic idea of stimulated Brillouin scattering Brillouin threshold for PMMA-POF and PFGI-POF in comparison Sensorial behavior of Brillouin scattering in PFGI-POF and silica SMF Basics and classification of distributed Brillouin sensing methods Basic idea of dynamic Brillouin sensing T2 - Institutsseminar Hochfrequenztechnik CY - Technische Universität Braunschweig, Germany DA - 24.01.2017 KW - Distributed sensing KW - Brillouin KW - Polymer optical fibre PY - 2017 AN - OPUS4-39030 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Nanoscience, SAXS and you N2 - A presentation demonstrating small-angle x-ray scattering and its applications. T2 - Invited talk CY - Deutsches GeoForschungsZentrum, Potsdam, Germany DA - 19.01.2017 KW - SAXS KW - Nanoscience PY - 2017 AN - OPUS4-39136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Léonard, Fabien A1 - Oesch, Tyler A1 - Meinel, Dietmar A1 - Bruno, Giovanni A1 - Rachmatulin, Natalia A1 - Fontana, Patrick T1 - Evaluation of fiber orientation in a composite and its effect on material behavior N2 - The reinforcement of concrete with polymer fibers provides resistance to crack formation. The orientation distribution of these fibers has a significant influence on the mechanical behavior of the material. To optimize material performance, micromechanical models that are capable of making accurate predictions of the mechanical behavior of composite materials are needed. These models must be calibrated using experimental results from microstructural characterization. For the fiber orientation distribution analysis in the present study, computed tomography (CT) data were used to evaluate the properties of a fiber-reinforced cement mortar. The results have indicated that the fibers in this material have highly anisotropic orientation characteristics and that there is a clear tendency for the polymer fibers to agglomerate during mixing and casting. The incorporation of this experimental data into micromechanical models will increase the accuracy of those models for material simulation and optimization. T2 - iCT 2017 CY - Leuven, Belgium DA - 07.02.2017 KW - Computed tomography KW - Fibre reinforced concrete KW - Orinentation distribution PY - 2017 AN - OPUS4-39137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Philipp, Rosemarie T1 - 16RPT02 ALCOREF - Certified forensic alcohol reference materials N2 - The presentation shows the outline of a new project on certified reference materials for the calibration of evidential breath alcohol analyzers in the 2016 EMPIR Research Potential call. T2 - EURAMET TC-MC Meeting CY - Warsaw, Poland DA - 31.01.2017 KW - Breath alcohol KW - Certified reference material KW - EMPIR PY - 2017 AN - OPUS4-39158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Hasenfelder, Uta A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Synchrotron X-ray computed tomography for assessment of shock tube systems N2 - Shock tube systems are non-electric explosive fuses employed in blasting and demolition applications to trigger the detonation of explosive charges. Their working principle is based on the explosive reaction of a fine powder on the tubing´s inner surface, generating a percussive wave travelling at a velocity of 2,100 m/s along the length of the tube, without destroying it. One of the key aspects of the manufacturing process of these shock tubes is the size and morphology of the explosive powder grains and their distribution on the inner wall of the tube, in order to propagate the shockwave efficiently and reliably. For the first time, synchrotron X-ray computed tomography has been used to characterize non-destructively the explosive powder grains, typically Al/HMX between 10 and 20 μm in size, in terms of morphology and 3D distribution but also to characterise the presence and location of defects within the shock tube walls. T2 - 7th Conference on Industrial Computed Tomography CY - Leuven, Belgium DA - 07.02.2017 KW - Explosive KW - Nonel KW - Shock wave KW - Blasting KW - Energetic systems PY - 2017 AN - OPUS4-39168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - Near ambient pressure X-ray photoelectron spectroscopy on biofilms N2 - Overview of measurements and future work regarding near ambient pressure XPS on biofilms relevant for the EMPIR-project MetVBadBugs- Quantitative measurement and imaging of drug-uptake by bacteria with antimicrobial resistance. T2 - MetVBadBugs 9M Meeting CY - Turin, Italy DA - 02.02.2017 KW - XPS KW - Bacteria KW - Alginate KW - Biofilm PY - 2017 AN - OPUS4-39120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Behnke, Thomas A1 - Würth, Christian T1 - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR - Needs for and requirements on calibration tools N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters including traceable instrument calibration procedures and the design of integrating sphere setups for the absolute measurement of emission spectra and quantum yields in the wavelength region of 350 to 1600 nm. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescent glasses KW - Nanoparticles PY - 2017 AN - OPUS4-39074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -