TY - CONF A1 - Ebell, Gino A1 - Burkert, Andreas T1 - Prestressed concrete structures with concentrated tendons - Structural damage due to hydrogen-induced stress corrosion cracking N2 - Hydrogen-induced stress corrosion cracking (HSCC) is well known, and highly sensitive pre-stressing steels are normally not available on the market. But in the case of existing structures, it could be necessary to ensure their safety through special kinds of investigations. Those kinds of investigations are often not applicable in a non-destructive way. Therefore, a once in a lifetime project was initiated. In the course of the deconstruction of the "Bridge of the 20th anniversary of the GDR" at the Altstädter Bahnhof in Brandenburg a. d. Havel, new information on the initiation of hydrogen-induced stress cracks could obtained. The initial observation to do several investigations at this bridge are several meters long longitudinal cracks in the concrete web of the box girder above and below the tension duct. The BAM was commissioned by the Brandenburg State Road Administration to participate in a corresponding joint project which is financed by the Federal Ministry for Digital and Transport. The added value of the new information gained in this project goes beyond the specific structure. It describes unexpected new damage patterns that can be transferred to other structures with concentrated tendons (tendon block method and Baur-Leonhardt method) and were previously unknown in this form. These should be made known to other developers to enable them to initiate any necessary actions. One of the major results is, the wire breaks observed at this bridge can be attributed to cracking as a result of HSCC and subsequent crack growth until breakage, due to cyclic loading from traffic and alternating restraint stresses. The probable trigger here was crevice corrosion processes at the contact points of the wires to the spacer plates in superposition with high tensile stresses due to prestressing after or with in grouting the duct. Tension wire breaks, which may have occurred before grouting and during prestressing, were not detected. The unfavorable gap situation at the spacer plates occurs over the entire cross-section of the prestressing channel and can thus affect each individual prestressing wire. Losses in the load-bearing capacity of the prestressed concrete structure can then be the result. A disadvantage of the prestressing block method in this respect is that a large number of individual wires can be affected at the same time (theoretically all wires), which can reduce the prestressing effect of the concentrated tendon accordingly. With the usual use of only one tendon per web, the possibility of load transfer to other tendons is thus not given (lack of redundancy). T2 - 4rd International Congress on Materials & Structural Stability CY - Rabat, Morocco DA - 08.03.2023 KW - Corrosion KW - HSCC KW - Wasserstoff KW - Spannungsrisskorrosion PY - 2023 AN - OPUS4-57158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Seifert, Lando A1 - Müller, Thoralf T1 - Stress corrosion test in thiocyanate solution with galvanostatic current N2 - Prüfung von Spannstählen hinsichtlich ihrer Anfälligkeit gegenüber wasserstoffinduzierter Spannungsrisskorrosion in kürzeren Zeiträumen. Gewährleistung der Dauerhaftigkeit mittels neuartiger elektrochemischer Prüfverfahren und galvanostatischer Kontrolle und Wasserstoffbeladung T2 - Meeting ISO TC17 SC16 WG8 CY - Online meeting DA - 11.01.2023 KW - Hydrogen KW - Corrosion PY - 2023 AN - OPUS4-56854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Potential mapping at concrete structures N2 - Potentialmapping is an electrochemical measurement for the detection of active corroding reinforcement at concrete structures. T2 - NDT&E Workshop 2023 CY - Berlin, Germany DA - 23.06.2023 KW - Corrosion KW - Potentialfeldmessung PY - 2023 AN - OPUS4-57884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Galvanic Anode systems in Concrete structures and their performance part 1 N2 - Corrosion of reinforcement is one of the major reasons in questioning the sturdiness of building structures. The application of cathodic protection techniques plays a big role in controlling the corrosion process to ensure a longer service life of building structures. This systematic study compares the efficiency and durability of various discrete galvanic zinc anode systems available in the current market using different criteria for measuring efficiencies such as potential measurements, electrolyte resistance measurements and several polarization methods to determine the polarizability of the anodes. Results to validate the performance of long-time exposure of discrete zinc anodes in the concrete medium are already shown in 2021. Now the results of analyzing the phase boundary between mortar and anodes by using 3D computer tomography are shown, as also the field application at large-scale specimens where the potential distribution and the current were investigated. T2 - Eurocorr 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Corrosion KW - Corrosion Protection PY - 2023 AN - OPUS4-58169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf A1 - Burkert, Andreas T1 - Field exposure studies of austenitic and duplex stainless steels in tunnel atmospheres N2 - Due to the high corrosivity that are present in road tunnel structures, cleaning and maintenance work on stainless steel components in the tunnels is carried out at regular intervals in the tunnels, which means that parts of the lanes or the whole tunnel have to be temporarily closed. To reduce these traffic disruptions and maintenance costs, it is important to reduce the work that is needed for cleaning and maintenance of stainless steel components in road tunnels. One possibility is the identification and utilization of better suited alternatives to the commonly used austenitic stainless steels AISI 316L and AISI 316Ti. Thus, a field exposure study was carried out in different road tunnels throughout Germany to qualify different duplex and lean duplex stainless steels for tunnel constructions. The proposed scientific poster gives an overview of results after the first three years of exposure in three different road tunnels. Samples of different stainless steels were placed in different areas of the tunnel – at lane height and at the ceiling. Some samples were exposed under sheltered conditions. Pit depths were evaluated on the free surface and in crevice areas after each year of exposure. The investigations show that duplex stainless steels have a comparable or even better corrosion resistance than austenitic steels in tunnel atmospheres T2 - Stainless Steel World Conference & Expo 2023 CY - Maastricht, Netherlands DA - 26.09.2023 KW - Corrosion KW - Atmosphere KW - Tunnel KW - Stainless Steel PY - 2023 AN - OPUS4-58487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - "Grabenkorrosion": How scientific debate leads to an solution. And modern failures due to neglection of well described facts N2 - In the late 1980s, a new type of corrosion appeared in drinking water installations where galvanized steel pipes failed forming a deep groove with no corrosion at the other surfaces. The reason was discussed quite fiercely between failure analysts and material suppliers. In the end the discussion lead to the solution: inductive welded pipes of a certain sulphur content were prone to selective corrosion. The history of the arguments is discussed using old communications between Wilhelm Schwenk and Wolfgang Stichel, who later published the results in a paper unfortunately only I german. Thus the knowledge got lost and new cases based on the same material problems are observed in application of so-called C-Steel piping systems. Failure cases are shown. T2 - MTech 2023 CY - Cavtat, Croatia DA - 02.10.2023 KW - Corrosion KW - Grabenkorrosion PY - 2023 AN - OPUS4-58518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Nikoonasab, Ali A1 - Licht, M. A1 - Müller, Thoralf A1 - Achenbach, R. A1 - Raupach, M. T1 - Reinforcing steel in sulfide-containing concretes – corroding or not corroding? N2 - Blast furnace cements (CEM III) and alkali-activated slags are binders for concretes with several advantageous engineering properties, and their increased adoption in construction industry could contribute to reducing the CO2 emissions associated with cement production and use. However, the current knowledge about how these cements protect steel reinforcement in concretes against corrosion is very incomplete, which impedes their large-scale application. This knowledge gap is mainly due to the fact that these cements release sulfide and other reduced sulfur species into the concrete pore solution, the consequences of which for the state of the reinforcement and electrochemical measurements are not fully understood. The present contribution first describes peculiarities of electrochemical measurements of steel in sulfide-containing cementitious materials and related solutions as reported in the literature and a recent report by EFC Working Party 11. It is demonstrated that the high sulfide concentrations in these systems lead to low open circuit potentials and low polarisation resistances, which may be incorrectly interpreted as indicating active corrosion of the steel. Second, preliminary results of an ongoing project [funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 458297195] related to the passivation and corrosion initiation of steel in sulfide-containing solutions and mortars are presented. Eight mortars based on one alkali-activated blast furnace slag (BFS), three alkali-activated BFS/fly ash blends, one sodium sulfate-activated CEM III/C (‘hybrid cement’), one CEM III/C, one CEM III/B, and one CEM I (ordinary Portland cement, OPC) were produced, and their pore solutions expressed and analysed after 7, 14, 28, and 56 days of curing. The pH values of the solutions differed systematically, with the highest pH values recorded for the CEM I and the alkali-activated BFS/fly ash blends with a high proportion of fly ash, and the lowest pH recorded for the CEM III/B. The redox potentials of the solutions were between −500 mV and −340 mV vs. Ag/AgCl for the alkali-activated binders, approx. +10 mV vs. Ag/AgCl for the CEM I, and in between for the CEM III/B and the CEM III/C. As expected, the electrical conductivity was highest for the alkali-activated binders. These results are explained by the chemical compositions of the pore solutions of the mortars. Finally, a test set-up to investigate the behaviour of steel in sulfide-containing solutions and the changes on subsequent oxygen and/or chloride addition is introduced. Preliminary electrochemical measurements of steel in sulfide-containing solutions are presented and discussed in the context of the above-mentioned data from the literature and the compositions of the pore solutions of the studied mortars. T2 - 7th Swiss Corrosion Science Day 2023 CY - Zurich, Switzerland DA - 24.04.2023 KW - Reinforcing steel KW - Sulfide KW - Concrete KW - Ground granulated blast furnace slag KW - Corrosion PY - 2023 AN - OPUS4-57386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence Of Brine Precipitates On Materials Performance In Geothermal Applications N2 - Significant Cu-deposition and precipitation only occurred in combination with carbon steel. High-alloyed materials prevent the disturbing Cu-agglomeration. Pb-deposition and precipitation only occurred in combination with carbon steel. No negative Pb-effect could be observed in combination with high-alloyed steels. High alloyed corrosion resistant alloys are suitable and shall be chosen for future design of the piping system, either in massive or in cladded form, to prevent unwanted interactions with brine components. T2 - AMPP Annual 2023 Conference CY - Denver, CO, USA DA - 19.03.2023 KW - Geothermal KW - Electrochemistry KW - Copper KW - Lead KW - Corrosion PY - 2023 AN - OPUS4-57237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manzoni, Anna Maria A1 - Mohring, W. A1 - Karafiludis, Stephanos A1 - Schneider, M. A1 - Laplanche, G. A1 - Stephan-Scherb, C. T1 - Effect of a mixed atmosphere H2O-O2-SO2 on the oxidation kinetics and phase formation on CrMnFeCoNi and CrCoNi N2 - The high-temperature corrosion behaviors of the equimolar CrCoNi medium- and CrMnFeCoNi high-entropy alloy were studied in a gas atmosphere consisting of a volumetric mixture of 10% H2O, 2% O2, 0.5% SO2, and 87.5% Ar at 800 °C for up to 96 h. Both alloys were initially single-phase fcc structured and showed a mean grain size of ~50 µm and a homogeneous chemical composition. The oxide layer thickness of the Cantor alloy CrMnFeCoNi increased linearly with exposure time while it remained constant at ~1 µm for CrCoNi. A Cr2O3 layer and minor amounts of (Co,Ni)Cr2O4 developed on CrCoNi while three layers were detected on the Cantor alloy. These layers were a thin and continuous chromium rich oxide layer at the oxide/alloy interface, a dense (Mn,Cr)3O4 layer in the center and a thick and porous layer of Mn3O4 and MnSO4 at the gas/oxide interface. Additionally, a few metal sulfides were observed in the CrMnFeCoNi matrix. These results were found to be in reasonable agreement with thermodynamic calculations. T2 - ICHEM 2023 CY - Knoxville, TN, USA DA - 18.06.2023 KW - High entropy alloys KW - Chemically complex alloys KW - Corrosion KW - Mixed gas atmosphere PY - 2023 AN - OPUS4-57776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nikoonasab, Ali A1 - Licht, M. A1 - Müller, Thoralf A1 - Achenbach, R. A1 - Raupach, M. A1 - Gluth, Gregor T1 - Electrochemical study of steel reinforcement in the synthetic pore solution of alkali-activated binders: Pore solution composition N2 - It is well known that cement manufacture, including CaCO3 calcination and clinker formation, is associated with substantial energy consumption and significant greenhouse gas emissions. Alkali-activated binders (AAB) and concretes made from them can significantly contribute to reducing CO2 emissions caused by the construction industry. However, to what extent and for how long concretes made from AAB can protect the steel in reinforced concrete components from corrosion is still unclear. Unlike PC-based binders, AABs are made by reacting alkaline solutions with solid precursors such as fly ash and ground granulated blast furnace slag (GGBFS). Therefore, steel reinforcement corrosion mechanisms in AAMs differ from PC-based binders. The present study aims to evaluate the corrosion behavior of steel rebar in alkali-activated materials (AAMs) synthetic pore solution with different chemical concentrations representing different GGBFS and Flay Ash based binders by performing electrochemical tests to measure the corrosion rate and corrosion potential of steel rebar. This information can be used to improve the design of AAMs in order to ensure a longer service life for these materials. T2 - Eurocorr2023 CY - Brussels, Belgium DA - 27.08.2023 KW - GGBFS KW - AAM KW - Sulfide KW - Pore solution composition KW - Redox potential KW - Corrosion PY - 2023 AN - OPUS4-59090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -