TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Fire Testing KW - Wood KW - Hydrogen KW - Fire Reference Test PY - 2023 AN - OPUS4-57722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 AN - OPUS4-57702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas T1 - Friction coefficients for wood-wood and wood-steel contacts N2 - The friction at the interfaces between pieces of wood and steel is of crucial importance for the impact and energy absorption in impact limiters of transport casks for radioactive material. Here, the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C for a wood-wood combination. T2 - Sandia-BAM Workshop CY - Berlin, Germany DA - 21.11.2022 KW - Wood KW - Friction KW - Transport cask PY - 2022 AN - OPUS4-56342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Heat Flux from Wood Filled Impact Limiter under Fire Conditions N2 - Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smouldering and influence the cask thermal behaviour with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. T2 - 9th International Scientific Conference - wood & fire safety 2020 CY - Online meeting DA - 02.11.2020 KW - Fre KW - Smouldering KW - Wood PY - 2020 AN - OPUS4-51517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vössing, Konrad A1 - Gaal, Mate A1 - Niederleithinger, Ernst T1 - Air-coupled ferroelectret ultrasonic transducers for nondestructive testing of wood in through transmission and reflection mode N2 - The necessity and demand for nondestructive testing of wood-based materials which can automatically scan huge areas of wood is increasing. Air-coupled ultrasound (ACU) is used to detect defects and damage without altering the structure permanently. Using through transmission it is possible to detect even small holes and missing adhesive. If only one side of an object is accessible the reflection mode is preferred at the expense of a reduced resolution and penetration depth. Novel ferroelectret transducers with a high signal-to-noise ratio (SNR) enable a high-precision structure recognition. The transducers made of cellular polypropylene (PP) are quite suitable for ACU testing due to their extremely low Young’s modulus and low density which result in a favorable acoustic impedance for the transmission of ultrasonic waves between the transducer and air. Thus, defects such as delamination, rot, and cracks can be detected. Promising results were obtained under laboratory conditions with frequencies from 90 kHz to 200 kHz. The advantage of these ACU transducers is that they do not require contact to the sample, are accurate, and cost effective. Ultrasonic quality assurance for wood is an important attempt to increase the acceptance of wooden structures and towards sustainability in civil engineering in general. T2 - International Conference on Sustainable Materials, Systems and Structures CY - Rovinj, Croatia DA - 20.03.2019 KW - Air-coupled ultrasound KW - Cellular polypropylene KW - Wood KW - Nondestructive Testing KW - Defect detection PY - 2019 AN - OPUS4-47683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behavior of transport package impact limiters and of fire spread impact onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - PVP2018 - Pressure, Vessels and Piping Conference 2018 CY - Prague, Czech Republic DA - 15.07.2018 KW - Smouldering KW - Impact limiter KW - Burning KW - Wood KW - Shock absorber KW - Fire testing KW - IAEA KW - Radioactive material KW - Large-scale fire test KW - Combustion PY - 2018 AN - OPUS4-45594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Finite element simulation of the crush of package components made of encapsulated wood N2 - Typical transport packages used in Germany are equipped with encapsulated wooden impact limiting devices. We would like to present the current status regarding the development of a Finite Element (FE) material model for the crush of wood for the FE-code LS-DYNA. The crush of is a phenomenon governed by macroscopic fracture. Here, we would like to reproduce fracture and failure mechanisms over the continuous volume. In a first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface. For the use for longitudinal compression of wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Wood KW - FEM PY - 2018 AN - OPUS4-45093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Investigations of the burning behavior of transport package impact limiters and thermal effects onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. A first computational simulation of transport package temperatures taking into account the results of the conducted fire test was performed. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Impact limiter KW - Shock absorber KW - Smoldering KW - Smouldering KW - Burning KW - Thermal testing KW - BAM TTS KW - Combustion KW - Fire KW - Energy release KW - Thermal simulation KW - Heat emission KW - Radioactive KW - Transport KW - IAEA KW - Wood KW - Spruce wood KW - Lid temperature PY - 2018 AN - OPUS4-46882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Erenberg, Marina A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Aspects of Assessment of Packages with Wood Filled Impact Limiters during Fire Tests N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood, encapsulated by steel sheets. These impact limiters shall ensure that the transport casks meet the mechanical and thermal IAEA regulatory test requirements. According to the accident conditions of transport it is mandatory to expose the specimens to a cumulative effect by mechanical and thermal impacts. The mechanical tests consist of a free drop from 9 m onto a flat unyielding target and a 1 m drop onto a puncture bar. After damage caused by mechanical test sequences the package has to withstand a severe fire scenario. Corresponding to the IAEA advisory material it is required that the impact attitudes for the 9 m drop test and for the puncture test have to be such as to produce maximum damage, taking into account the thermal test. Moreover, any damage, which would give rise to increased radiation or loss of containment or affect the confinement system after the thermal test, should be considered. During and following the thermal test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Different works from the French Institute for Radiological Protection and Nuclear Safety (IRSN) and BAM show that additional energy supply from a pre-damaged impact limiter to the cask could occur. This effect should be considered within the safety assessment of the containment. Thermal effects at the closure system of the cask, which might result in an elevated activity release, have to be excluded. BAM conducted small scale tests with wood filled metal buckets showing continuing combustion processes during the cooling down phase. These test results are presented. As not much is known about smouldering processes in wood filled impact limiters, it is highly complex to define pre-damage of impact limiters, which are conservative, regarding the maximum damaging energy flow from the impact limiter to the containment system. More research has to be done to develop models to examine the effects of smouldering impact limiters on the containment of packages for the transport of radioactive material. Aspects of assessment and its difficulties are shown. BAM as a competent authority for the approval of transport casks for radioactive material in Germany operates the test facilities to examine the issue of mechanical damage, combustion and heat transfer for such kind of package systems. For this purpose the knowledge from real drop tests with casks of a mass partly over 100 tons was transferred to a test application. A thermal test will take place with a wood filled test specimen with a diameter of about 2.3 meters. The aim is to understand the phenomena of smouldering under the consideration of relevant regulatory boundary conditions. The process of smouldering is described with regard to the requirements in the thermal assessment of safety of packages for the transport of radioactive material. Requirements concerning the pre-damage of packages for the maximum damage of impact limiters are discussed. Parameters influencing the smouldering process are identified. T2 - WM 2017 Conference CY - Phoenix, Arizona, USA DA - 05.03.2017 KW - Fire test KW - Wood KW - Combustion KW - Smouldering KW - Smoldering KW - Impact limiter KW - Shock absorber KW - Thermal test KW - IAEA PY - 2017 AN - OPUS4-43170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Development of a material model for the crush of spruce wood N2 - Typical transport packages used in Germany are equipped with wooden impact limiting devices. In this paper we give an overview of the latest status regarding the development of a finite element material model for the crush of spruce wood. Although the crush of wood – mainly in longitudinal direction – is a phenomenon governed by macroscopic fracture and failure of wood fibres we smear fracture and failure mechanisms over the continuous voume. In first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface written in terms of the first two stress invariants. The evolution of the yield surface in the existing model depends on the volumetric strain only. For the use with spruce wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - ASME PVP 2017 CY - Waikaloa, HY, USA DA - 16.07.2017 KW - Crush KW - Wood KW - Spruce KW - FEM PY - 2017 AN - OPUS4-41617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -