TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Benemann, Sigrid A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - This study presents a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Core-shell particles KW - 3D image analysis KW - Roughness KW - SEM tilting KW - Batch analysis PY - 2022 AN - OPUS4-55452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy (EM) images. The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Particle characterization KW - Electron microscopy KW - Roughness KW - Core-shell particles KW - Image processing PY - 2021 AN - OPUS4-53069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward Determination of the Surface Roughness of Particles from a SEM Image N2 - Welcome to the poster Towards Determination of Surface Roughness from a SEM Image, a contribution from BAM in Berlin, Germany. This work is part of the MamaLoCA project, which aims to develop a biosensor for the detection of mycotoxins in cereals. Biosensors come in a great variety, one of which makes use of microscopic beads produced by homogenous coating of polystyrene microspheres. The beads are functionalized by decorating them with bioreceptors – in our case antibodies – which then specifically react with the analyte – in our case mycotoxins – and emit an electrical or optical signal. The functionalization of the beads depends on the surface roughness because this determines the amount and orientation of binders. In other words, the surface roughness affects the accessibility to the binding sites and influences device sensitivity, hence its quantitative determination is an important step in evaluating the quality of the biosensor in general. The presented solution to the problem of the estimation of surface roughness relies in the repetitive characteristics on the surface of the beads. A SEM image of the bead shows a raspberry like microparticle with a variation of grayscale values, which arise from the secondary electron yield. The principle of the measurement measures the variation of grayscale values along a circumference of a circle centred in the centre of the particle and with an arbitrary radius. The grayscale value variation along the given circumference gives the so-called z-modulation or the lateral profile. By performing Fast Fourier Transform on this profile we obtain the power spectrum as a function of the spatial frequencies through which the grayscales vary. The maximal value for spatial frequency then reveals the most common feature along one given circumference. Surface roughness then is the feature frequency in the spatial domain. This calculation is repeated for several concentric circles with different radii over the particle. The results for the same particle but recorded at two different accelerating voltages show that the applied method has a potential to reveal the roughness. Interpretation of results from an SE InLens SEM image obtained using 3 kV shows that surface roughness is about 21 nm, which is in a good agreement with an alternative method given in a different presentation. The results from the 10 kV are underestimated due to the loss of surface sensitivity on the SE InLens detection at high voltages. In conclusion, this method shows promise in determining quantitatively the surface roughness from a single SEM image and its validation is being sought using 3D SEM images and AFM methods. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness KW - Fast Fourier Transform PY - 2021 AN - OPUS4-53089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias A1 - Farahbod, L. A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Serrano Munoz, Itziar A1 - Léonard, Fabien A1 - Farahbod, L. T1 - Computed tomography of LBM produced In625 lattices: Integrity analysis from powder particles to structures N2 - We investigated lattice structure manufactured by laser beam melting with computed tomography on difference scales, such as powder scale, strut scale and lattice scale. The raw powder has been evaluated by means of synchrotron computed tomography (CT) at the BAM-Line (HZB Bessy II, Berlin). Therefore, the particle size distribution and even the pore size distribution was investigated and compared with results received by the producer by means of sieving. Studies with laboratory X-ray CT of porosity and roughness of manufactured struts in dependence of the build angle exhibited the tendency that elongated pores appear solely in a certain range near the edge. The integrity and load-bearing capacity of a lattice structure was investigated by means of in-situ CT during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. We applied digital volume correlation algorithm on volumes of different load steps to quantifies the displacement within the structure. T2 - Metallographie-Tagung 2018 CY - Leoben, Austria DA - 19.09.2018 KW - Additive manufacturing KW - Laser beam melting KW - Computed tomography KW - Lattice structures KW - In-situ CT KW - Porosity KW - Roughness PY - 2018 AN - OPUS4-45998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Quantification of sand erosion on PV solar glass N2 - Solar glass in arid and semi-arid regions is exposed to sand storms which can affect the durability of PV modules. Related erosion processes have been extensively studied but the results given are difficult to compare due to being obtained by different variables like particle speed and sand mass. This study correlates the damage of solar panels to the cumulative impact energy as a global parameter. T2 - 91. Glastechnische Tagung CY - Weimar, Germany DA - 29.05.2017 KW - Glass KW - Sandblasting KW - Erosion KW - Sandstorm KW - Transmittance KW - Roughness PY - 2017 AN - OPUS4-42856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agea Blanco, Boris A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Günster, Jens T1 - The Effect of Sandblasting on Module Glazing N2 - Surface roughness, RZ, normal transmittance, ΤN, total transmittance, ΤT, and photovoltaic (PV) module efficiency, ηS, were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200–400 μm), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch-like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch-like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. T2 - 7th SOPHIA PV-Module Reliability Workshop CY - Freiburg, Germany DA - 06.06.2017 KW - Photovoltaic Module KW - Sandstorm KW - Erosion KW - Sandblasting KW - Transmittance KW - Roughness KW - Efficiency PY - 2017 AN - OPUS4-42861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -