TY - CONF A1 - Eddah, Mustapha A1 - Markötter, Henning A1 - Mieller, Björn A1 - Beckmann, Jörg A1 - Bruno, Giovanni T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Koppert, Ralf A1 - Rabe, Torsten T1 - Commercial LTCC for thin film deposition N2 - Low-temperature co-fired ceramics (LTCC) are used to fabricate multilayer circuits which are robust in harsh environments. Thick-film technology is well established for the metallization of circuit boards and microsystems. For specific sensor applications, the combination of LTCC and thin-film technology is advantageous to reach higher structure resolutions. Due to the high roughness of as-fired LTCC surfaces compared with silicon-wafers, the deposition of low-defect- films with narrowly specified properties is challenging. There is spare literature about thin films on commercial LTCC comparing different material systems or sintering techniques. For developing thin film sensors on multilayer circuits it is crucial to identify thin-film-compatible commercial LTCC material as well as the crucial surface properties. In this work we evaluate the thin-film capability of different LTCC surfaces. The as-fired surfaces of free-sintered, constrained-sintered (sacrificial tape), and pressure-assisted sintered commercial LTCCs (DP951, CT708, CT800), as well as respective polished surfaces, were analyzed by tactile and optical roughness measurements and scanning electron microscopy. The thin-film capability of the LTCC surfaces was assessed by sheet resistance and temperature coefficient of resistance (TCR) of deposited Ni thin-film layers. Contrary to the expectations, no correlation between roughness and thin-film capability was found. Ni thin films on constrained sintered DP951 show the lowest sheet resistance and highest TCR within the experimental framework of the as-fired surfaces. The influence of surface morphology on the film properties is discussed. T2 - KERAMIK 2022 / 97. DKG-Jahrestagung CY - Online meeting DA - 7.3.2022 KW - Roughness KW - Hydrogen sensor KW - LTCC PY - 2022 AN - OPUS4-54436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning ED - Petzow, G. ED - Mücklich, F. T1 - Machine learning assisted characterization of a Low Temperature Cofired Ceramic (LTCC) module measured by synchrotron computed tomography T2 - Sonderbände der Praktischen Metallographie zur 54. Metallographie-Tagung N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Taagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 SN - 978-3-88355-422-8 VL - 54 SP - 136 EP - 141 PB - Deutsche Gesellschaft für Materialkunde e.V CY - Sankt Augustin AN - OPUS4-51298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Mieller, Björn A1 - Rabe, Torsten A1 - Markötter, Henning T1 - Machine learning assisted characterization of a Low Temperature Co-fired Ceramic (LTCC) module measured by synchrotron computed tomography. N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Tagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 AN - OPUS4-51299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glasig-kristalline Werkstoffe für Schlüsseltechnologien - Prozessbegleitende Prüfung und Simulation N2 - Eigenschaftsprofile und Kennwertstreuungen keramischer und glaskeramischer Komponenten und Bauteile werden durch ihren Herstellungsprozess wesentlich mitbestimmt. Prozessbegleitende Prüf- und Simulationsmethoden gewinnen so wachsenden Einfluss auf die Erschließung neuer Applikationsfelder dieser Werkstoffe. Eine wichtige Rol¬le spielen hierbei oft thermokinetische Prozesse, die u. a. Wärmetransport- und Diffusionsvorgänge, Phasengrenzflächenreaktionen, das rheologische Verhalten heterogener Systeme sowie deren Gefügeevolution beim Sintern umfassen. Ziel des Vortrages ist es, diesen Trend anhand ausgewählter Bei-spiele aus der Arbeit des Fachbereichs Glas der BAM zu illustrieren. T2 - Deutsche Physikalische Gesellschaft, Vortragsreihe Gruppe 60+ der Physiker Berlin - Brandenburg CY - Berlin, Magnushaus, Germany DA - 5.4.17 KW - Prozessbegleitende Prüfung KW - LTCC PY - 2017 AN - OPUS4-44217 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rangelov, V. A1 - Rabe, Torsten T1 - Advancements in pressure-assisted sintering technology for low temperature co-fired ceramics (LTCC) N2 - Steadily increasing demands on design and dimensional accuracy of ceramic multilayer modules, as well as the processing of new materials, require continuous improvements of manufacturing technology, especially thermal processes. The capabilities of pressure-assisted sintering (PAS) for the manufacturing of highly integrated low temperature co-fired ceramics (LTCC) multilayer have been considerably extended in the last years by procedural and device-related advancements. A lambda probe has been integrated in a sintering press prototype to monitor and control the process atmosphere. Thereby, the development of oxygen partial pressure during binder burnout of real modules can be observed. On the other hand, the oxygen partial pressure can be regulated during densification, for example to prevent diffusion of silver from circuit paths into the surrounding LTCC. Thin-film capable surfaces can be produced without post-processing by using setter plates made of glass-like carbon in an advanced PAS process under nitrogen. A newly developed advancement of this approach enables in-situ hot-embossing of LTCC during PAS by using structured glass-like carbon molds. The prototype press is further extended by a sensitive displacement transducer for monitoring the thickness shrinkage of real modules with an edge length of up to 8 inch. T2 - ICC6 CY - Dresden, Germany DA - 21.08.2016 KW - LTCC KW - Shrinkage measurement KW - Oxygen partial pressure KW - Hot-embossing PY - 2016 AN - OPUS4-37250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Sintering and crystallization of glass powders – effects, challenges and chances N2 - Chemical variability is a main strength of glass. Glass powders are therefore promising candidates for manufacturing a broad diversity of sintered materials like sintered ¬glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials, even if it may not be obvious at first sight, a key component of advanced technologies. Manufacture and processing of initial glass powders often allow even more flexibility in materials design. At the same time, however, they can cause additional problems. The lecture illustrates possible consequences of glass powder processing upon glass crystallization and sintering as well as chances for targeted utilization. Simple kinetic models describing the effect of particle size distribution, surface crystallization and rigid inclusions on sintering as well effects of different milling and seeding on sinter crystallization are presented. T2 - Institutskolloquium CSIC CY - Madrid, Spain DA - 28.4.2016 KW - Glass KW - Powders KW - Sintering KW - Crystallization KW - SOFC KW - LTCC PY - 2016 AN - OPUS4-38333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Binder, J. R. A1 - Kohler, C. A1 - Nikfalazar, M. A1 - Maune, H. A1 - Jakoby, R. A1 - Heunisch, Andreas A1 - Schulz, Bärbel A1 - Rabe, Torsten T1 - Integration von gedruckten, steuerbaren Mikrowellenkomponenten in LTCC Module N2 - Rekonfigurierbare Mikrowellenkomponenten spielen in modernen Kommunikationssystemen eine wichtige Rolle, um den zunehmenden Anforderungen in Bezug auf Funktionalität und Flexibilität der Systeme gerecht zu werden. Für die Realisierung steuerbarer Mikrowellenbauteile eignen sich verschiedene Technologien, wie z. B. die Halbleitertechnik, mikroelektromechanische Systeme (MEMS) oder ferroelektrische Dünn- und Dickschichten. Prinzipiell zeichnen sich ferroelektrische Materialien durch hohe Schaltgeschwindigkeiten, einen vernachlässigbaren Leistungsverbrauch und geringe Prozesskosten aus. Insbesondere ferroelektrische Dickschichten auf Basis von Barium-Strontium-Titanat (BaxSri-xTiCb, BST) stellen aussichtsreiche Systeme für den Einsatz im Frequenzbereich bis ca. 12 GHz dar. Allerdings unterliegt die Herstellung dieser BST-Dickschichtvaraktoren einer Einschränkung: Aufgrund der erforderlichen hohen Sintertemperatur von über 1100°C ist die Anordnung der Varaktoren auf planare Strukturen begrenzt. In diesem Beitrag wird zum einen die Entwicklung von BST-ZnO-B203 Komposit-Dickschichten zur Verringerung der Sintertemperatur auf 850-900°C präsentiert und die Material- und Bauteileigenschaften der Komposite bzw. entsprechender MIM-(metal-insulator-metal) Varaktoren mit planar strukturierten Varaktoren auf Basis von BST-Dickschichten verglichen. Zum anderen wird die Integration solcher MIM-Varaktoren auf Basis der niedrigsinternden BST-Komposite in LTCC Module aufgezeigt. T2 - DKG Herbstsymposium CY - Erlangen, Germany DA - 30.11.2016 KW - Mikrowellenkomponenten KW - Phasenschieber KW - Siebdrucken KW - LTCC PY - 2016 AN - OPUS4-38658 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -