TY - CONF A1 - Maiwald, Michael T1 - Online NMR spectroscopy paves the way for short development times in industrial reaction and process monitoring N2 - Modular chemical production is a tangible implementation of the digital transformation of the specialty chemicals process industry. In particular, it enables acceleration of process development and thus faster time to market by flexibly interconnecting and orchestrating standardized physical modules and bringing them to life. For this purpose, specific (chemical) sensors of process analytics are needed, preferably without lengthy calibration or spectroscopic model development. An excellent example of a "direct" analytical method is online nuclear magnetic resonance (NMR) spectroscopy. NMR spectroscopy meets the requirements of a direct analytical method because of the direct correlation between the signal area in the spectrum ("counting" the nuclear spins) and the analyte amount of substance concentrations. It is also extremely linear over the concentration range. With the availability of compact benchtop NMR instruments, it is now possible to bring NMR spectroscopy directly into the field, in close proximity to specialized laboratory facilities, pilot plants, and even industrial-scale production facilities. The first systems are in TRL 8 (Qualified System with Proof of Functionality in the Field). The presentation will discuss the many building blocks of online nuclear magnetic resonance spectroscopy, from flow cells to automated data analysis. T2 - SFB 1527 HyPERiON “High Performance Compact Magnetic Resonance“ Online Seminar CY - Karlsruhe, Germany DA - 06.07.2023 KW - Online NMR Spectroscopy KW - Process Monitoring KW - Reaction Monitoring KW - Industry 4.0 KW - Automation KW - Modular Production PY - 2023 AN - OPUS4-57862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha T1 - Modular process control with compact NMR spectroscopy: From field integration to fully automated data analysis N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - Benchtop NMR: From Academia to Industry CY - Online meeting DA - 28.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Benchtop NMR Spectroscopy KW - Procee Analytical Technology KW - Modular Production KW - Specialty Chemicals KW - Industry 4.0 PY - 2022 UR - https://eventos.fct.unl.pt/benchtop_nmr_workshop2022/pages/welcome AN - OPUS4-55850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas A1 - Kowarik, Stefan A1 - Liehr, Sascha A1 - Abele, M. A1 - Falkenstein, S. T1 - Modular process control with compact NMR spectroscopy – From field integration to automated data analysis N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. NMR spectroscopy appeared as excellent online analytical tool and allowed a modular data analysis approach, which even served as reliable reference method for further Process Analytical Technology (PAT) applications. Using the available datasets, a second data analysis approach based on artificial neural networks (ANN) was evaluated. Therefore, amount of data was augmented to be sufficient for training. The results show comparable performance, while improving the calculation time tremendously. In future, such fully integrated and interconnecting “smart” systems and processes can increase the efficiency of the production of specialty chemicals and pharmaceuticals. T2 - GIDRM Day (Gruppo Italiano Discussione Risonanze Magnetiche) - Data analysis and NMR: from fundamental aspects to health and material applications CY - Online meeting DA - 14.10.2022 KW - Process Control KW - Online NMR Spectroscopy KW - Industry 4.0 KW - Process Analytical Technology KW - Data Analysis KW - Machine-Assisted Workflows PY - 2022 DO - https://doi.org/http://www.gidrm.org/index.php/activities/workshops/2022-workshops/gidrm-day-data-analysis-and-nmr-from-fundamental-aspects-to-health-and-material-applications AN - OPUS4-56002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas T1 - Integrated and Networked Systems and Processes - How NMR Spectroscopy Can Transform our Chemical and Pharmaceutical Production N2 - Chemical and pharmaceutical companies need to find new ways to survive successfully in a changing environment, while finding more flexible ways of product and process development to bring their products to market faster - especially high-value, high-end products such as fine chemicals or pharmaceuticals. This is complicated by changes in value chains along a potential circular economy. One current approach is flexible and modular chemical production units that use multi-purpose equipment to produce various high-value products with short downtimes between campaigns and can shorten time-to-market for new products. Online NMR spectroscopy will play an important role for plant automation and quality control, as the method brings very high linearity, matrix independence and thus works almost calibration-free. Moreover, these properties ideally enable automated and machine-aided data analysis for the above-mentioned applications. Using examples, this presentation will outline a possible more holistic approach to digitalization and the use of machine-based processes in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - 43rd FGMR Annual Discussion Meeting CY - Karlsruhe, Germany DA - 12.09.2022 KW - Digital Transformatioin KW - Process Industry KW - Pharmaceuticals KW - Specialty Chemicals KW - Automation KW - Online NMR Spectroscopy KW - Industry 4.0 PY - 2022 AN - OPUS4-55715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Virkkunen, I. T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - NDE for industry – annual workshop CY - Online meeting DA - 29.06.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 AN - OPUS4-53548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija A1 - Virkkunen, I. T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - HOIS Digitalisation Forum (HDF) virtual seminar CY - Online meeting DA - 10.08.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 AN - OPUS4-53549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertovic, Marija T1 - NDE 4.0: Redefining Traditional Inspector Roles N2 - The successful shift to NDE 4.0 will not only require developing and embracing new technologies associated with the fourth industrial revolution or becoming an integral part of the overall Industry 4.0, but also developing and adopting new ways of working. It is undoubtful that people will remain in charge of the inspections. However, it is arguable if the current “procedure-following” “level I-III” paradigm can withstand the changes that come along NDE 4.0. With the increased autonomy and interconnectedness expected with NDT 4.0, the majority of traditional NDE tasks will no longer be needed. Instead, different skills, such as that of programming and adapting systems, as well as problem solving, will become vital for the inspections. Therefore, we suggest that a new paradigm is needed—one in which inspector roles and, thus, also the requirements will have to be reinvented. We expect the inspectors to be relieved from the tedious and error prone aspects of the current system and to take responsibility for increasingly complex automated systems and work in closer collaboration with other experts. Thus, we propose that the traditional inspector roles will be transformed into that of the system developer, caretaker and problem solver, each requiring a specific set of skills and assuming different responsibilities. In this talk, we will present the new roles and discuss the challenges that may arise with them. T2 - International Virtual Conference on NDE 4.0, DGZfP CY - Online meeting DA - 14.04.2021 KW - Non-Destructive Evaluation KW - NDE 4.0 KW - Human-Machine Interaction KW - Industry 4.0 KW - Inspection Personnel KW - Human-Centered Approach KW - Human Factors KW - Acceptance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535524 UR - www.ndt.net/search/docs.php3?id=26328 AN - OPUS4-53552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Liehr, Sascha A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Müller, S. A1 - Kowarik, Stefan T1 - Integrated and Networked Systems and Processes – A Perspective for Digital Transformation in (Bio) Process Engineering N2 - The competitiveness of the process industry is based on ensuring the required product quality while making optimum use of equipment, raw materials and energy. Chemical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. One way is knowledge-based production, taking into account all essential equipment, process and regulatory data of plants and laboratories. Today, the potential of this data is often not yet consistently used for a comprehensive understanding of production. Another approach uses flexible and modular chemical plants, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. Digital transformation is enabling completely new production concepts that are being used increasingly. Intensified continuous production plants also allow for difficult to produce compounds. This contribution aims to encourage a more holistic approach to the digitalization and use of machine-assisted methods in (bio) process engineering by introduction of integrated and networked systems and processes, which have the potential to speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - 6th BioProScale Symposium - industrial scale bioprocess intensification from process development to large-scale understanding CY - Online meeting DA - 29.03.2021 KW - Industry 4.0 KW - Biotechnology KW - Bio engineering KW - Process Analytical Technology KW - BioProScale KW - Artificial Neural Networks PY - 2021 UR - https://biotechnologie.ifgb.de/node/648 AN - OPUS4-52371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fricke, F. A1 - Meyer, Klas A1 - Mahmood, S. A1 - Hoffmann, J. A1 - Brandalero, M. A1 - Liehr, Sascha A1 - Kern, Simon A1 - Kowarik, Stefan A1 - Westerdick, S. A1 - Maiwald, Michael A1 - Hübner, M. T1 - Artificial Intelligence for Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy N2 - Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR) are critical components of every industrial chemical process as they provide information on the concentrations of individual compounds and by-products. These processes are carried out manually and by a specialist, which takes a substantial amount of time and prevents their utilization for real-time closed-loop process control. This paper presents recent advances from two projects that use Artificial Neural Networks (ANNs) to address the challenges of automation and performance-efficient realizations of MS and NMR. In the first part, a complete toolchain has been developed to develop simulated spectra and train ANNs to identify compounds in MS. In the second part, a limited number of experimental NMR spectra have been augmented by simulated spectra to train an ANN with better prediction performance and speed than state-of-theart analysis. These results suggest that, in the context of the digital transformation of the process industry, we are now on the threshold of a possible strongly simplified use of MS and MRS and the accompanying data evaluation by machine-supported procedures, and can utilize both methods much wider for reaction and process monitoring or quality control. T2 - 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE) CY - Online meeting DA - 01.02.2021 KW - Industry 4.0 KW - Cyber-Physical Systems KW - Artificial Neural Networks KW - Mass Spectrometry KW - Nuclear Magnetic Resonance Spectroscopy PY - 2021 UR - www.date-conference.com AN - OPUS4-52181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Panne, Ulrich A1 - Riedel, Jens A1 - Wander, Lukas T1 - Integrated and networked systems and processes – A perspective for digital transformation of our chemical and pharmaceutical production N2 - Chemical and pharmaceutical companies have to find new paths to survive successfully in a changing environment, while also finding more flexible ways of product and process development to bring their products to market more quickly – especially high-quality high-end products like fine chemicals or pharmaceuticals. The potential of digital technologies belongs to these. A current approach uses flexible and modular chemical production units, which can produce different high-quality products using multi-purpose equipment with short downtimes between campaigns and reduce the time to market of new products. At the same time, we need to move towards knowledge-based production that takes into account all essential equipment, process and control data from plants and laboratories and makes valuable expertise available and transferable. The potential of data from production together with its contextual information is often not yet consistently used today for a comprehensive understanding of production. By giving examples this paper outlines a possible more holistic approach to digitalisation and the use of machine-based methods in the production of specialty chemicals and pharmaceuticals through the introduction of integrated and networked systems and processes. T2 - GDCh Science Forum 2021 - GDCh Wissenschaftsforum 2021 CY - Online meeting DA - 29.08.2021 KW - Process analytical technology KW - Online NMR spectroscopy KW - Process industry KW - Industry 4.0 KW - Digital transformation KW - Autonomous chemistry PY - 2021 AN - OPUS4-53171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -