TY - CONF A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Assessment of welding thermal cycles by boundary element method N2 - A numerical framework simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperaturedependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. T2 - 72nd IIW Annual Assembly and International Conference CY - Bratislava, Slovakia DA - 07.07.2019 KW - Numerical simulation KW - Boundary element method KW - Themral cycles KW - Keyhole mode welding KW - Bulging PY - 2019 AN - OPUS4-48467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karkhin, Victor A1 - Artinov, Antoni A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Modelling of welding thermal cycles by boundary element method N2 - A numerical model for simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-hydrodynamics and heat conduction. The solution of the thermo-hydrodynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by a proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperature-dependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The evaluated and experimental molten pool, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. T2 - Trends in Joining, BTU Cottbus CY - Cottbus, Germany DA - 14.11.2018 KW - Keyhole welding KW - Computational fluid dynamics KW - Boundary element method KW - Thermal cycles PY - 2018 AN - OPUS4-46606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Song, Jiaojiao A1 - Auersch, Lutz T1 - Track-soil calculation and measurement of damaged and repaired slab tracks N2 - Calculation of the behaviour of damaged slab tracks have been performed with ANSYS and with a combined finite-element boundary-element Programme. Different damage lengths have been analysed and the best fit to the measurements has been chosen. T2 - Seminar on Railway Engineering CY - Tongji University Shanghai, People's Republic of China DA - 21.09.2018 KW - Slab track KW - Track damage KW - Boundary element method KW - Train passage PY - 2018 AN - OPUS4-46405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Said, Samir A1 - Auersch, Lutz T1 - Vibration measurements for the control of damaged and repaired railway tracks N2 - Measurements comparing the damaged and the repaired status of the same track section at different times, or a damaged and an intact track section at the same time have been successfully performed and compared with the theoretical behavior of intact and damaged tracks. The loose of contact between the sleeper and the plate, between the plate and the base layer, due to train passages and hammer impacts, have been investigated. T2 - 7th International Symposium on Environmental Vibration and Transportation Geodynamics CY - Hangzhou, China DA - 28.10.2016 KW - Railway track KW - Slab track KW - Field tests KW - Track damage monitoring KW - Finite element method KW - Boundary element method PY - 2016 AN - OPUS4-38275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -