TY - CONF A1 - Stephan, Ina A1 - Knabe, Nicole A1 - Koerdt, Andrea A1 - Martin-Sanchez, Pedro Maria A1 - Schwibbert, Karin A1 - Özcan Sandikcioglu, Özlem A1 - Kunte, Hans-Jörg A1 - Schreiber, Frank A1 - Pietsch, Franziska A1 - McMahon, Dino Peter A1 - Stephan, Ina A1 - Villa, F. A1 - Capitelli, F. A1 - Sand, W. T1 - Reference Organisms in Materials Science: Why and How? N2 - Materials are subject to environmental constraints that include biological, chemical and physical factors. To gain confidence about durability and long-term performance of any material, environmental resistance testing procedures have to be amended with modern simulation procedures that include biological components. In fact, any environmentally exposed surface at temperatures lower than 121 °C will be home to microbial growth, even at high salt concentrations, extreme pH, environmental pollution, low water potential, and intense irradiation – everywhere where water is liquid and available. As a consequence, complex microbial ecosystems called biofilms are self-sufficient and found on almost all solid-air-water interfaces. Obviously, environmental changes perturb biofilm development but over a number of seasons, these changes result in relatively stable microbial communities peculiar and adapted to a particular niche and material. Certain microbial settlers are indicative of, and in a real sense mark, a particular biofilm and can, thus, be considered as “reference organisms”. Characteristic reference organisms’ peculiar to specific material-inhabiting communities can be isolated, identified, characterised and used in standard test procedures as well as research into materials science (materials improvement). In this presentation classical microbiological, genetic and molecular methods for studying reference organisms and their roles in materials deterioration will be presented. We will present a set of different reference organisms that are currently in focus of our research and testing development. T2 - IBBS 17 - The 17th International Biodeterioration & Biodegradation Symposium CY - Manchester, United Kingdom DA - 06.09.2017 KW - Biofilm KW - Biodeterioration KW - Knufia petricola KW - Bioprospecting fuels KW - Solar panels PY - 2017 AN - OPUS4-42460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -