TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Simon, Franz-Georg T1 - Detailed Investigation of Perfluoroalkyl Surfactant Contaminated Soil Samples by Combustion Ion Chromatography - Development of EOF and AOF as Reference Values in Environmental Analysis N2 - Per- and polyfluoralkyl surfactants (PFASs) are industrially produced surface chemicals used in daily applications that have gained public and political attention due their unnaturally high appearance in drinking water, nourishments and soils. Their chemical structures exhibit both lipophilic and hydrophilic properties, leading to a highly inert and persistent character. Various PFASs have shown to be bioaccumulative in plants and animals, and some have been characterized as highly toxic when ingested. When exposed to the environment, PFASs slowly get mobilized by natural water resources, leading to contamination of large areas of soil and natural water sources. While PFASs contamination of drinking water has been investigated intensively, perfluoralkyl contamination of soils has been rarely examined as of yet. At the same time, an increasing amount of PFASs contamination sites are being discovered worldwide, calling for a sophisticated strategy towards analytical characterization. Since the number of known PFASs already exceeds 4700, the established sum parameters like extractable organic fluorine (EOF) and adsorbable organic fluorine (AOF) are key elements to fully survey the impact of exposure. Simultaneously, innovative soil remediation strategies are required to contain environmental destruction and to minimize further spreading of contaminants. Addressing these challenges requires suitable analytical devices that are capable of mobilizing PFASs in the solid as well as in the liquid phase. The use of combustion ion chromatography (CIC) enables analysis of both immobile and volatile PFASs and allows the detection of both total fluorine (TF) and EOF or AOF of a given soil or aqueous sample. Based on preliminary results, the clean-up of a PFAS contaminated solid matrix is monitored via EOF detection over time. Additionally, we demonstrate the pH dependency of hydrogen fluoride absorption on active carbon (AC) and found a simple organic additive to be an effective fluoride scavenger. The presented findings can be contributive with regard to future AOF/EOF sum parameter development and application. T2 - DECHEMA Symposium Strategien zur Boden- und Grundwassersanierung 2020 CY - Online meeting DA - 23.11.2020 KW - PFAS KW - SPE extraction KW - Combustion ion chromatography KW - Organo fluorine analysis KW - Soil extraction KW - Sewage extraction PY - 2020 AN - OPUS4-51978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Madia, Mauro T1 - Determination of the fatigue limit and initial crack length by means of fracture mechanics N2 - The fatigue design of metallic components is usually based on two different approaches, namely total life and damage tolerance. The former takes into account both the initiation and propagation stages. The latter is based on fracture mechanics and needs an initial defect, which propagates until the critical size under cyclic loading, provided it is large enough. In this case, a residual life rather than a total life is obtained. The overall lifetime of a cyclically loaded structure involves four consecutive stages: a) crack initiation; b) propagation of microstructurally short cracks; c) propagation of physically/mechanically short cracks; d) propagation of long cracks. Considering the propagation from the short crack regime, the damage tolerance approach can be extended to adequately calculate the total life of a component. The fatigue strength of metallic materials containing defects depends on the non-propagation condition of small cracks emanating from these defects. In this work, the presence of mechanically short cracks from the beginning of the component's life is considered. Consequently, the methodology of analysis must be able to treat adequately local ligament yielding effects typical for short cracks and must include the thorough description of the crack closure effect up to the long-crack regime. In the analysis based on long cracks, the linear-elastic condition is mostly satisfied which allows the use of the linear elastic parameter ΔK for describing the crack driving force. On the contrary, this assumption is not adequate for mechanically short cracks because the crack depth is in the order of the plastic zone. Instead, an elastic-plastic driving force should be considered. Furthermore, the gradual build-up of the plasticity-induced crack closure effect must be considered, which implies a transition from the intrinsic (effective) threshold value, ΔKth,eff, to the long-crack threshold, ΔKth,LC. The effective component is a material parameter which is dependent on the elastic properties and crystal lattice. The gradual build-up of crack-closure is described by ΔKth,op which is a function of the plastic properties, grain-size, environment conditions, load ratio and crack-depth. The crack closure can be characterized experimentally by the so-called cyclic R-curve. Some other crack closure effects, such as roughness or oxide-debris induced, might be incorporated as well. The knowledge of the cyclic R-curve can be useful to determine the largest non-propagating crack size at the material fatigue limit. This is realised by means of the so-called cyclic R-curve analysis: The tangent criterion between the driving force and the cyclic R-curve define the transition between crack arrest and propagation. In this regard, a0 is defined as that crack depth which will only grow into a non-propagating crack due to the development of crack closure. The procedure outlined briefly here has been successfully applied to the determination of the fatigue limits of steel weldments. Considering the stochastic distribution of the weld geometric parameters (namely, weld toe radius, the flank angle, and the excess weld metal) it is possible to perform a full probabilistic cyclic R-curve analysis and determine this way the statistical distribution of the initial crack size at the weld toe at the fatigue limit. T2 - Virtual Conference on Mechanical Fatigue CY - Online meeting DA - 09.09.2020 KW - Cyclic R-curve KW - Fracture Mechanics KW - Fatigue Strength KW - Short Crack Propagation PY - 2020 AN - OPUS4-51238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Gornushkin, Igor B. A1 - Meierhofer, Christiane A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermographie, optischer Emissionsspektroskopie (OES) und Schallemission (AE) N2 - In diesem Vortrag wird ein Überblick über die in-situ Messverfahren gegeben, die im Rahmen des Projektes ProMoAM an der LPA- Anlage eingesetzt wurden. Im Speziellen sind das die Thermographie, die optische Emissionsspektroskopie (OES) und die Akustische Emission (AE). T2 - 41. Assistentenseminar der WGF e.V. CY - Online meeting DA - 02.09.2020 KW - Schallemission KW - Laser-Pulver-Auftragschweißen KW - Thermographie KW - Optische Emissionsspektroskopie PY - 2020 AN - OPUS4-51273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Einfluss der Porosität auf die Duktilitätseigenschaften von additiv gefertigtem AlSi10Mg N2 - Die Werkstoffeigenschaften im selektiven Laserstrahlschmelz-Verfahren hergestellter Bauteile werden von einer Vielzahl technologischer Parameter beeinflusst, sodass sich die Fertigungsgüte verschiedener Anlagen voneinander unterscheiden kann. Vor diesem Hintergrund wurde in der vorliegenden Arbeit untersucht, inwiefern sich durch verschiedene nachgelagerte Wärmebehandlungen die Mikrostruktur und die quasistatischen Festigkeitseigenschaften von Proben aus der Aluminiumlegierung AlSi10Mg, die mit verschiedenen Anlagen, Pulvern, Belichtungsstrategien und Prozessparametern gefertigt wurden, harmonisieren lassen. Die Versuche zeigten u.a., dass die erheblichen Festigkeitsunterschiede im Ausgangszustand unabhängig von der angewendeten Wärmebehandlungsroute aufgehoben wurden. Dennoch wurden signifikante Unterschiede in der Duktilität ermittelt. Anhand umfangreicher Bruchflächenanalysen konnte nachgewiesen werden, dass die in der Bruchfläche ermittelte Porosität eine lineare Korrelation zu der Bruchdehnung aufwies. T2 - 5. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Duktilität KW - Additive Fertigung KW - Laser powder bed fusion KW - AlSi10Mg KW - Festigkeit PY - 2020 AN - OPUS4-51656 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Scheuschner, Nils A1 - Hilgenberg, Kai T1 - In situ heat accumulation by geometrical features obstructing heat flux and by reduced inter layer times in laser powder bed fusion of AISI 316L stainless steel N2 - Material qualification for laser powder bed fusion (L-PBF) processes are often based on results derived from additively manufactured (AM) bulk material or small density cubes, although it is well known that the part geometry has a tremendous influence on the heat flux and, therefore, on the thermal history of an AM component. This study shows experimentally the effect of simple geometrical obstructions to the heat flux on cooling behavior and solidification conditions of 316L stainless steel processed by L-PBF. Additionally, it respects two distinct inter layer times (ILT) as well as the build height of the parts. The cooling behavior of the parts is in-situ traced by infrared (IR) thermography during the built-up. The IR signals reveal significant differences in cooling conditions, which are correlated to differences in melt pool geometries. The acquired data and results can be used for validation of computational models and improvements of quality assurance. T2 - 11th CIRP Conference on Photonic Technologies (LANE 2020) CY - Online meeting DA - 07.09.2020 KW - Additive Manufacturing PY - 2020 AN - OPUS4-51255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring for metal additive manufacturing processes. The high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of a defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 AN - OPUS4-51630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Räpke, Toni A1 - Heinze, C. A1 - Hilgenberg, Kai A1 - Xu, Hongwu A1 - Scheuchner, Nils A1 - Mühlenweg, A. A1 - Odabasi, E. A1 - Rule, D. A1 - Hajduk, M. T1 - Geometrie- und Prozesseinflüsse auf lokale Bauteileigenschaften in der metallischen additiven Fertigung mittels Laserstrahlschmelzen N2 - Die mechanischen Eigenschaften und die Standardparametersätze werden im additiven Fertigungsverfahren Laser Powder Bed Fusion (L-PBF) zumeist an Körpern ermittelt, die unter festen Randbedingungen gefertigt werden. In der Literatur wird allerdings von verschiedenen Autoren auf einen Einfluss von Geometrie und Prozess auf die resultierenden Eigenschaften hingewiesen [1, 2, 3]. Aufgrund des häufig großen Komplexitätsgrads von L-PBF Bauteilen und Prozessen, ist eine Abweichung angenommener Eigenschaften daher nicht auszuschließen. Das kann besonders für tragende und sicherheitsrelevante Komponenten kritisch sein und ist eine Herausforderung für die Qualitätssicherung. Aufwendige Trial-and-Error Versuche sind zumeist die Folge. Ein einheitliches und umfassendes Verständnis der Einflussfaktoren auf die resultierenden Eigenschaften im L-PBF Prozess ist zum aktuellen Stand nicht vorhanden. In diesem Vortrag werden erste Ergebnisse einer Studie vorgestellt, in der systematisch die Bandbreite möglicher Defekt- und Mikrostrukturvariationen in L-PBF Bauteilen am Beispiel der Nickelbasislegierung Haynes 282 untersucht wird. Aufbauend auf einer modellbasierten Beschreibung des lokalen Wärmehaushalts wurden Versuchspläne entwickelt, die eine Vielzahl möglicher Prozess- und Geometriekonfigurationen realer Anwendungen abbilden können. Zur Untersuchung des Geometrieeinflusses wurden typische Geometrieelemente komplexer Strukturen und deren Ausprägungen identifiziert. Prozessseitig wurden die Position im Bauraum, Schwankungen der Laserleistung, die Zwischenlagenzeit und die Belichtungsstrategie innerhalb der Schicht als typische Faktoren berücksichtigt. Die Zwischenlagenzeit bildet dabei Variationen im Bauraumfüllgrad ab. Die Belichtungsstrategie untersucht Effekte wie die Zwischenvektorzeit (engl. inter vector time, IVT) oder die lokale Vektorlänge. Die verschiedenen Konfigurationen wurden metallografisch bewertet. Die bisherigen Ergebnisse können einen Einfluss der Geometrie und des Prozesses auf die Defektbildung und die Mikrostruktur in L-PBF Bauteilen aufzeigen. Durch prozessbegleitende thermografische in situ Messungen konnte außerdem eine Abhängigkeit von lokalen und globalen Temperaturfeldern identifiziert werden. Die Erkenntnisse zeigen zudem, dass der geometrische Einfluss auf den lokalen Wärmehaushalt von Anordnung, Gestalt und Dimensionen der zweidimensionalen Belichtungsbereiche über die Aufbauhöhe abhängt. Das gewonnene Verständnis soll in die Entwicklung von Konstruktionsrichtlinien und Prüfkörpern einfließen, um Variationen lokaler Bauteileigenschaften in der zukünftigen Bauteil- und Prozessauslegung berücksichtigen zu können. T2 - 3. Fachtagung Werkstoffe und Additive Fertigung 2022 CY - Dresden, Germany DA - 11.05.2022 KW - Additive Fertigung KW - L-PBF PY - 2022 AN - OPUS4-55516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Surface and bulk residual stress in laser powder bed fused 316L: Influence of inter layer time and scanning velocity N2 - The influence of the inter-layer-time and the scanning velocity on the surface and bulk residual stress in laser powder bed fused 316L specimens was investigated. This study combines X-ray and neutron diffraction results with the thermal history of the specimens acquired through in-situ process monitoring. The process parameter variations were observed to directly influence the thermal history, which gave new insights in the assessment of the residual stress results. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing KW - Stainless Steel PY - 2022 AN - OPUS4-54582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heßmann, Jennifer A1 - Hilgenberg, Kai T1 - Meeting the challenge of thermal joining of steel and aluminum using a new approach based on melt displacement by electromagnetic forces N2 - Environmental protection, resource conservation and CO2 reduction require new joining concepts for effective multi-material design in automotive lightweight construction. The thermal joining of dissimilar materials, especially the combination of aluminum alloys and steel, is associated with difficulties. Different material properties, such as melting point and coefficient of thermal expansion, complicate joining processes. Furthermore, the insolubility between these materials results in the formation of intermetallic phases. These brittle phases reduce the load-bearing capacity and quality of the joints. The thickness of the intermetallic phases should not reach the critical value of 10 μm to ensure good mechanical properties of the joint. It is known that a two-phase reaction layer consisting of Al5Fe2 and Al3Fe (also known as Al13Fe4) forms at the interface between solid steel and liquid aluminum. Due to high cooling rates, as it is the case in laser beam welding, metastable intermetallic compounds can form different from the equilibrium state. The formation of the intermetallic reaction layer is a diffusion-controlled process. So, it is only possible to control the growth of these phases. This problem has led to use joining methods that do not require the melting of both joining partners. A promising joining method is laser beam welding-brazing, whereby only one joining partner is melted and wets the solid joining partner. Conventional laser beam welding-brazing only results in material-fit joints and often requires the use of expensive filler materials. An additional form-fit could optimize the mechanical performance of the joint. For this reason, a new joining method for overlap configurations of dissimilar materials was developed. A laser beam melts the lower joining partner through a cavity of the upper joining partner. The created melt pool is moved upwards into the cavity of the upper joining partner due to contactless induced Lorentz forces of an AC-magnetic system. The displaced melt creates a form- and material-fit joint after solidification. The advantage of this joining technology is the absence of filler materials, flux agents and expensive auxiliary joining elements. T2 - 5th International Conference Hybrid 2022 - Materials and Structures CY - Leoben, Austria DA - 20.07.2022 KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2022 AN - OPUS4-55534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sonntag, Nadja A1 - Jürgens, Maria A1 - Roohbakhshan, Farshad A1 - Agudo Jácome, Leonardo A1 - Olbricht, Jürgen T1 - Dwell-Fatigue and Cyclic Softening of Grade P92 Steel under LCF and TMF Conditions N2 - Tempered martensite-ferritic steels, such as the grade P92 steel studied in this contribution, exhibit pronounced macroscopic cyclic softening under isothermal low-cycle fatigue (LCF) and non-isothermal thermomechanical fatigue (TMF) conditions, which is considered to be the predominant degradation mechanism in high-temperature fatigue in this and other material groups. However, such softening processes are highly complex since microscopic (e.g., recovery) and macroscopic (e.g., crack initiation and growth), as well as global and local effects superimpose, especially under creep-fatigue conditions. In this contribution, we discuss the cyclic deformation and softening behavior of P92 in strain-controlled LCF, in-phase (IP) TMF, and out-of-phase (OP) TMF tests with and without dwell times in the temperature range from 300 °C to 620°C. EBSD-based dislocation analysis on various fatigued material states confirms the continuous redistribution and annihilation of geometrically necessary dislocations in all studied states, which can be quantitatively correlated with macroscopic softening despite different damage mechanisms for different test types. Deviations from this correlation are observed for OP TMF and LCF with dwell times, i.e., for conditions where optical microscopy reveals pronounced crack-oxidation interactions at the specimen surfaces. T2 - LCF9 - Ninth International Conference on Low Cycle Fatigue CY - Berlin, Germany DA - 21.06.2022 KW - LCF KW - TMF KW - EBSD PY - 2022 DO - https://doi.org/10.48447/LCF9-2022-111 AN - OPUS4-55128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yu, C.-H. A1 - Sprengel, Maximilian A1 - Schröder, Jakob A1 - Serrano Munoz, Itziar A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Kromm, Arne A1 - Peng, R. L. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni A1 - Moverare, J. T1 - Distribution of subsurface residual stress as a function of wall thickness in stainless steel 316L LPBF structures N2 - The subsurface residual stress in laser powder bed fused 316L structures was analyzed using X-ray diffraction (XRD) and layer removal. The influence of varying structure thicknesses was investigated. In this study the importance of combining surface roughness measurements with XRD was shown. Moreover, a clear relation between the structure thickness and the subsurface residual stress profiles was observed. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaudry, Mohsin Ali A1 - Blasón Gonzalez, Sergio A1 - Mohr, Gunther A1 - Madia, Mauro A1 - Hilgenberg, Kai T1 - Simulation of heat accumulation during laser powder bed fusion of 316L stainless steel N2 - In this talk, a numerical study of the heat accumulation during LPBF based manufacturing of 316L steel parts is presented. For the simulation, a computationally efficient FEM model is used, where several layers are simultaneously exposed to a volumetric heat source. For the validation of the model, the temperature field from simulation is compared with emissivity-corrected temperature measurements, which are obtained using thermography during experiments. T2 - ACEX 2022 CY - Florence, Italy DA - 05.07.2022 KW - FEM KW - LPBF KW - Inter layer time PY - 2022 AN - OPUS4-55523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Introduction to Residual Stress N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses (ECRS-11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - Mechanical Properties KW - X-ray diffraction PY - 2024 AN - OPUS4-60422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Eissel, A. A1 - Treutler, K. A1 - Wesling, V. T1 - Herstellung beanspruchungsgerechter Oberflächen durch Kombination innovativer additiver und abtragender Fertigungsschritte an hochbelasteten Komponenten N2 - Die additive Fertigung mittels Schweißverfahren bietet große ökonomische Vorteile für eine ressourceneffiziente Bauteilherstellung. Offene Fragen bezüglich Homogenität, Anisotropie der Schweißgefüge und den damit verbundenen Bauteileigenschaften stehen einer wirtschaftlichen Verarbeitung oftmals im Wege. Finale Bauteilgeometrie und Oberflächengüte erfordern meist komplementäre subtraktive Fertigungsschritte. Werkstoffe für hochbelastbare Komponenten sind oftmals schwer spanbar. In einem Vorhaben der BAM und des ISAF wurde untersucht, wie die Modifikation der AM-Schweißzusätze und das ultraschallunterstützte Fräsen (US) die Zerspanungssituation verbessern. Der vorliegende Artikel stellt wesentliche Zusammenhänge zwischen Legierung, Gefüge und Zerspanung zweier schwer spanbarer Hochleistungslegierungen (FeNi und CoCr) dar. Großes Potenzial zeigte neben dem US die Modifikation mit Zr und Hf bei Zulegierung in das Schweißgut mittels Beschichtung von Massivdrähten bzw. Herstellung von Fülldrähten. T2 - Bachelor-, Master-, Doktoranden-Kolloquium (BMDK) CY - Magdeburg, Germany DA - 19.06.2024 KW - Legierungsmodifikation KW - Ultraschallunterstütztes Fräsen KW - Additive Fertigung KW - Oberflächenintegrität PY - 2024 AN - OPUS4-60429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Werner, Tiago A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Skrotzki, Birgit A1 - Evans, Alexander T1 - Microstructure Based Study on the Low Cycle Fatigue Behavior of Stainless Steel 316L manufactured by Laser Powder Bed Fusion N2 - Due to the advantages of Laser Powder Bed Fusion (PBF-LB), i.e., design freedom and the possibility to manufacture parts with filigree structures, and the considerable amount of knowledge available for 316L in its conventional variant, the mechanical behavior, and related microstructure-property relationships of PBF-LB/316L are increasingly subject of research. However, many aspects regarding the - application-relevant - mechanical behavior at high temperatures are not yet fully understood. Here, we present the results of an experimental study on the LCF behavior of PBF-LB/316L featuring a low defect population, which makes this study more microstructure-focused than most of the studies in the literature. The LCF tests were performed between room temperature (RT) and 600 °C. The mechanical response is characterized by strain-life curves, and hysteresis and cyclic deformation curves. The damage and deformation mechanisms are studied with X-ray computed tomography, and optical and electron microscopy. The PBF-LB/M/316L was heat treated at 450 °C for 4 h, and a hot‑rolled (HR) 316L variant with a fully recrystallized equiaxed microstructure was tested as a reference. Besides, selected investigations were performed after a subsequent heat treatment at 900 °C for 1 h. The PBF-LB/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. At the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The main damage mechanisms are multiple cracking at slip bands (RT) and intergranular cracking (600 °C). Neither the melt pool boundaries nor the gas porosity have a significant influence on the LCF damage mechanism. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial hardening followed by a continuous softening. The additional heat treatment at 900 °C for 1 h led to decreased cyclic stresses, and a longer fatigue life. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - AGIL KW - 316L KW - Microstructure KW - Low Cycle Fatigue KW - Heat Treatment KW - Laser Poeder Bed Fusion PY - 2024 AN - OPUS4-60432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Fritsch, Tobias A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Evans, alexander A1 - Serrano-Munoz, Itziar A1 - Sullivan, Romeo A1 - Farabhod, Lena A1 - Hoffmann, Michael T1 - How to experimentally determine residual stress in AM structures N2 - The experimental determination of residual stress becomes more complicated with increasing complexity of the structures investigated. Unlike the conventional and most of the additive manufacturing (AM) fabrication techniques, laser powder bed fusion (PBF-LB) allows the production of complex structures without any additional manufacturing step. However, due to the extremely localized melting and solidification, internal stress-induced deformation and cracks are often observed. In the best case, significant residual stress is retained in the final structures as a footprint of the internal stress during manufacturing. Here we report solutions to the most prevalent challenges when dealing with the diffraction-based determination of residual stress in AM structures, in particular the choice of the correct diffraction elastic constants. We show that for Nickel-based alloys, the diffraction elastic constants of AM material significantly deviate from their conventional counterparts. Furthermore, measurement strategies to overcome the hurdles appearing when applying diffraction-based techniques to complex-shaped lattice structures are presented: a) proper sample alignment within the beam, b) the proper determination of the residual stress field in a representative part of the structure (i.e., with an engineering meaning). Beyond the principal stress magnitude, the principal direcions of residual stress are discussed for different geometries and scan strategies, as they are relevent for failure criteria. We show that the RS in the lattice struts can be considered to be uniaxial and to follow the orientation of the strut, while the RS in the lattice knots is more hydrostatic. Additionally, we show that strain measurements in at least seven independent directions are necessary for the correct estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and to an informed choice on the possible strain field (i.e., reflecting the scan strategy). We finally show that if the most prominent direction is not measured, the error in the calculated stress magnitude increases in such a manner that no reliable assessment of RS state can be made. T2 - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Neutron Diffraction KW - Residual Stress KW - X-ray Computed Tomography KW - Additive Manufacturing KW - Lattice Structure KW - Inconel PY - 2024 AN - OPUS4-60423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Jan Zia, Ghezal Ahmad A1 - Hanke, Thomas A1 - Völker, Christoph A1 - Bayerlein, Bernd T1 - Improving the Reproducibility of Characterization and Quantification of Precipitates through Automated Image Processing and Digital Representation of Processing Steps N2 - The strength of age-hardenable aluminum alloys is based on the controlled formation of nm-sized precipitates, which represent obstacles to dislocation movement. Transmission electron microscopy (TEM) is generally used to identify precipitate types and orientations and to determine their size. This geometric quantification (e.g., length, diameter) is often performed by manual image analysis, which is very time consuming and sometimes poses reproducibility problems. The present work aims at the digital representation of this characterization method by proposing an automatable digital approach. Based on DF-TEM images of different precipitation states of alloy EN AW-2618A, a modularizable digital workflow is described for the quantitative analysis of precipitate dimensions. The integration of this workflow into a data pipeline concept is also presented. The semantic structuring of data allows data to be shared and reused for other applications and purposes, which enables interoperability. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Digital representation KW - Automatable digital approach KW - Digital workflow KW - Quantitative image analysis KW - Data pipeline concept KW - Semantic structuring KW - Interoperability KW - FAIR data management PY - 2024 AN - OPUS4-60427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Han, Ying A1 - Kruse, Julius A1 - Radners, Jan A1 - Madia, Mauro A1 - von Hartrott, Philipp T1 - Fatigue Behavior at Elevated Temperature of Alloy EN AW-2618A N2 - The influence of test temperature and frequency on the fatigue life of the alloy EN AW-2618A (2618A) was characterized. The overaged condition (T61 followed by 1000 h/230 °C) was investigated in load-controlled tests with a stress ratio of R = -1 and two test frequencies (0.2 Hz, 20 Hz) at room temperature and at 230°C, respectively. An increase in the test temperature reduces fatigue life, whereby this effect is more pronounced at lower stress amplitudes. Decreasing the test frequency in tests at high temperatures further reduces the service life. T2 - ICAA19 International Conference on Aluminum Alloys CY - Atlanta, GA, USA DA - 23.06.2024 KW - Aluminium alloy KW - EN AW 2618A KW - Fatigue KW - Overaging KW - Damage behavior PY - 2024 AN - OPUS4-60426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - Diffraction based residual stress analysis for laser powder bed fusion alloys N2 - Laser Powder Bed Fusion (PBF-LB/M) is a layer wise metal additive manufacturing (AM) technology, which enables significant advancements of component design, leading to potential efficiency and performance improvements. However, the thermal cycles inherent to the process comprising large localized thermal gradients and repeated melting and solidification cycles leads to the generation of high magnitude residual stresses. These residual stresses can be detrimental both during manufacturing of components and in subsequent application. Therefore, a deep understanding of the influence of process parameters on the residual stresses are crucial for efficient manufacturing and safe application. The experimental characterization of these residual stresses is therefore crucial and can provide a reliable baseline for simulations of both the process and applications. Diffraction-based methods for residual stress analysis using penetrating neutrons and high energy X-rays enable non-destructive spatially resolved characterization of both surface and bulk residual stresses. However, the unique microstructural features inherent to the process can challenge some of our assumptions when using these methods. These challenges include the determination of a stress-free reference, the use of correct elastic constants (both SCEC and DEC) and the influence of surface roughness, texture, and porosity on residual stresses. This presentation will detail recent insights and recommendations for the characterization of residual stresses in a range of PBF-LB/M metallic alloys (Fe, Ni, Al and Ti) T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2024 AN - OPUS4-60443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Kromm, Arne A1 - Kelleher, J. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - RS analysis in laser powder bed fused austenitic stainless steel N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th edition of the European Conference on Residual Stress (ECRS11) CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - Additive manufacturing KW - Diffraction KW - Laser Powder Bed Fusion KW - AGIL KW - 316L PY - 2024 AN - OPUS4-60445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Pérez-Padilla, Víctor A1 - Sun, Yijuan A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - On-Site Detection of PFAAs with Dual Fluorescent MIPs Coupled to a Miniaturized Microfluidics Platform N2 - Per- and polyfluoroalkyl substances (PFAS) represent a class of synthetic organofluorine chemicals extensively utilized in the manufacturing of various materials such as firefighting foams, adhesives, and stain- and oil-resistant coatings. In recent years, PFAS have been considered as emerging environmental contaminants, with particular focus on perfluoroalkyl carboxylic acids (PFCAs), the most prevalent type among PFAS. PFCAs are characterized by a fully fluorinated carbon backbone and a charged carboxylic acid headgroup. Notably, they have been designated as Substances of Very High Concern and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects. Conventional techniques for the analysis of PFCA, such as GC-MS, HRMS and HPLC-based methods, are laborious, not portable, costly and require skilled personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response, especially when analyte binding leads to a specific increase of a probe’s emission. Integration of such probes with a carrier platform and a miniaturized optofluidic device affords a promising alternative for PFCA monitoring. Here, a novel guanidine BODIPY fluorescent indicator monomer has been synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on tris(bipyridine)ruthenium(II) chloride doped silica core particles for optical internal reference and calibration-free assays. Such system allows selective and reliable detection of PFCA from surface water samples, with minimum interference by competitors, matrix effects and other factors. Integration of the assay into an opto-microfluidic setup resulted in a miniaturized and easy-to-operate detection system allowing for micromolar detection of PFOA in less than 15 minutes from surface water sample. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - PFAS KW - Molecularly imprinted polymers KW - Guanidine receptor KW - BODIPY PY - 2024 AN - OPUS4-60438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Stockmann, Jörg Manfred A1 - Jones, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madbouly, Loay Akmal A1 - Mrkwitschka, Paul A1 - Schusterbauer, Robert A1 - Schusterbauer, Jörg Manfred A1 - Jones,, E. A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Chemical Analysis of Functionalized Graphene along the Production Chain N2 - Graphene has been commercialized for over a decade. It is usually used in the form of suspensions or inks. In this study, we analyze the starting material for commercial functionalized graphene (FG) solutions and inks as well as their starting material (FG powders) using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), energy-dispersive X-Ray spectroscopy (EDX), time of flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Graphene was functionalized with fluorine, oxygen, ammonia, and carboxylic acid. Our results suggest a significant effect of water and commercial resins on the presence as well as the morphological behavior of graphene and associated functionalized group. For example, XPS analysis shows some significant differences between the solutions and the starting materials (powders). These changes can be explained by the location of the functionalization at the outer most surface as indicated by Chemello et al. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Functionalized graphene KW - Commercial graphene KW - Graphene inks PY - 2024 AN - OPUS4-60448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis with electron microscopy applied in different operating modes (SEM, STEM-in-SEM and TEM) for the accurate morphological characterisation of non-spherical fine nanoparticles N2 - Electron microscopy applied in different operating modes, e.g., SEM, TEM or STEM-in-SEM, is the gold standard method to investigate the exact size and shape of individual nanoparticles. However, when fine nanoparticles with a non-monodisperse size distribution and non-spherical shapes are analysed, achieving an accurate result is challenging. Deviations in size measurements of more than 10% may occur. Understanding of the contrasts and sensitivities characteristic to the individual operating modes of an electron microscope is key in interpreting and evaluating quantitatively the measurement uncertainties needed for an eventual certification of specific nanoparticles via traceable results. Further, beyond the pure measurement, the other components in the analysis workflow with significant impact on the overall measurement uncertainties are the sample preparation and the image segmentation. In the present study the same areas of selected iron oxide fine nanoparticles (<25 nm) as reference nanomaterial (candidate) prepared on substrate for electron microscopy imaging are analysed correlatively with SEM, STEM-in-SEM and TEM with respect to their size and shape distribution. Individual significant measurement uncertainties are discussed, e.g., the sensitivity of secondary electron detectors of InLens-type to the surface morphology, particularly to the presence of an ultrathin organic coating or signal saturation effects on the particle edges, to electron beam exposure, to surface contamination, or the selection of the threshold for image segmentation. Another goal of this study is to establish a basis of analysis conditions which shall guarantee accurate results when both manual and particularly (semi-)automated segmentation approaches are applied. Advantages as well as limitations of the use of different electron microscopy operating modes, applied individually and correlatively, are highlighted. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Nanoparticles KW - Electron Microscopy KW - Metrology KW - Imaging KW - Reference materials PY - 2024 AN - OPUS4-60436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Hodoroaba, Vasile-Dan A1 - Pellegrino, Francesco A1 - Rossi, Andrea A1 - Jones, Elliot T1 - Towards automated analysis of the lateral dimensions of graphene oxide flakes N2 - Graphene and graphene-oxide (GO) are advanced materials which – similar to other graphene-related 2D materials (GR-2M) - are already used for instance in catalysis processes, biomedical applications, in inks and resins, or as composite materials for the aviation industry. The lateral/structural characterization of graphene oxide (GO) flakes is a challenging task, with steps like sample preparation, representative image selection and exact determination of the particle size distribution of well-defined size and shape descriptors being crucial for an accurate analysis. To ensure that safe-by-design principles are met within the various application fields, the commercial material must be thoroughly characterized and specified through well-known and standardized procedures. GO flakes with different degrees of complexity were selected to assess the requirements for an accurate evaluation of their physico-chemical properties. These samples show inherent features with complex nanoscale characteristics such as porosity and edge roughness; further, the lateral size (quantified via equivalent circular diameter (ECD), minimum Feret and maximum Feret) of isolated and overlapping particles deposited on a substrate span over several orders of magnitude (nano to micron scale). The samples showed different degrees of agglomeration (and possible aggregation) with sizes ranging between submicron to a few tens of micrometers. One focus is the automated segmentation and evaluation of images obtained by electron microscopy. The GO samples appear translucent with well-defined contrast between single and overlapping flakes both with the secondary electron detector of type InLens as well as with SEM in the transmission mode (STEM) utilizing a dedicated sample holder. To this end it is of utmost importance for the accurate image segmentation to carefully select thresholds both manually and through semi-automatic approaches using well-known threshold algorithms such as “IsoData” and pre-defined segmentation applications such as the ParticleSizer software package. Further specific challenges in identifying and extracting key features of selected graphene oxide flakes are being discussed and approaches towards accurate and representative characterization are presented. T2 - E-MRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Graphene /-oxide KW - Morphology KW - Electron microscopy KW - Imaging KW - Advanced materials PY - 2024 AN - OPUS4-60435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jacome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Prewitz, M. A1 - Bardenhagen, A. T1 - H2 permeability of soda-lime, borosilicate and vitreous silica glasses for potential high pressure H2 storage applications N2 - Modern high-pressure H2 tanks consist of fiber-reinforced composite materials and a plastic lining on the inside. The use of glass would drastically increase the H2 barrier effect. This could be achieved with glass liners or fiber-reinforced polymer-bonded glass capillary storage tanks and would enable lower wall thicknesses, higher gravimetric storage densities and variable designs and thus a much more effective use of space. However, the decisive material parameters for the development of these technologies, such as the hydrogen permeation, are unknown. This study focuses on H2 diffusion in glasses of different chemical compositions. H2 permeation is measured by mass spectrometry. For this purpose, the mass spectrometer (MS), which is located in a high vacuum, is separated from the pressure side by the test specimen. Pure H2 gas is present on the pressure side, so that the mass flow is recorded qualitatively and quantitatively in the MS. The permeation coefficients are calculated from the sample geometry and the mass flow rates. The very low H2 permeation of glass is measured on bundles of thin-walled commercially available glass capillaries and compared with the hydrogen permeation data of the glass powder method. T2 - Jahrestagung der Deutschen Glastechnischen Gesellschaft 2024 CY - Aachen, Germany DA - 27.05.2024 KW - Gas permeation KW - Hydrogen gas KW - High pressure gas storage PY - 2024 AN - OPUS4-60420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Salzmann, Christoph A1 - Pellegrino, F. A1 - Durand, B. A1 - Taché, O. A1 - Zurutuza, A. T1 - Role of Sample Preparation for Accurate and Automated Morphological Analysis of Nanoparticles proven in Interlaboratory Comparison Exercises N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - VAMAS KW - Interlaboratory comparison KW - Sample preparation KW - Nanoparticle concentration PY - 2024 AN - OPUS4-60453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - perrone, Luca pakj A1 - Cozzani, Valerio A1 - Otremba, Frank A1 - Seidlitz, Holger T1 - Experimental and Numerical Investigation on Multi-layer Insulation Thermal Deterioration N2 - To reduce carbon dioxide emissions, energy carries such as hydrogen consider to be a solution. Consumption of hydrogen as a fuel meets several restrictions such as its low volumetric energy density in gas phase. To tackle this problem, storage as well as transportation in liquid phase is recommended. To be able to handle this component in liquid phase, an efficient thermal insulation e.g., MLI insulation is required. Some studies have been revealed vulnerability of this type of insulation against high heat flux, for instance a fire accident. Some investigations have been depicted the importance of consideration of the MLI thermal degradation in terms of its reflective layer. However, limited number of studies have been focused on the thermal degradation of spacer material and its effect on the overall heat flux. In this study, through systematic experimental measurements, the effect of thermal loads on glass fleece, glass paper as well as polyester spacers are investigated. The results are reported in various temperature and heat flux profiles. Interpreting the temperature profiles revealed as the number of spacers in the medium increases, the peak temperature detectable by the temperature sensor on the measurement plate decreases. Moreover, the contribution of each individual spacer in all cases regarding the experimental temperature range is assessed to be around 8%. This value may increase to around 50% for glass paper and polyester spacers, and to around 25% for glass fleece spacers as the number of spacer layers increases up to six layers. To utilize the outcomes of the experiment later and integrate the results into numerical and CFD simulations, a model is proposed for the mentioned experimental temperature range up to 300°C to predict a heat flux attenuation factor. The model proposes a fitting factor that can reproduce the least square fitted line to the experimental data. T2 - 15th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions Naples (ISHPMIE) CY - Naples, Italy DA - 10.06.2024 KW - Multi-Layer Insulation KW - Cryogenic KW - Liquid Hydrogen KW - Heat Transfer KW - Hydrogen Storage PY - 2024 DO - https://doi.org/10.5281/zenodo.12515711 AN - OPUS4-60457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Sachse, René A1 - Matjacic, L. A1 - McMahon, G. A1 - Bernicke, M. A1 - Bernsmeier, D. A1 - Kraehnert, R. A1 - Hertwig, Andreas T1 - Chemical Nanoscale Analysis of Mesoporous Mixed IrOx-TiOx Thin Films N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach. Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Thin films KW - Mesoporous KW - IR oxide KW - Ti oxide KW - Porosity PY - 2024 AN - OPUS4-60452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Experimental Research Of A Tank For A Cryogenic Fluid With a Wall Rupture In a Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 AN - OPUS4-60456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren A1 - Sahre, Mario A1 - Hesse, R. A1 - Schusterbauer, Robert A1 - Grant, M. A1 - Agudo Jacome, Leonardo A1 - Albrecht, T. A1 - Hodoroaba, Vasile-Dan T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As nanopipettes are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. For exploring these effects, quartz nanopipettes were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The inner channel of the sensing region was exposed with focused ion beam (FIB) milling as a dedicated sample preparation method for nanoscale surface analysis. The sample characterisation involved scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and low-energy energy dispersive x-ray spectroscopy (EDX). The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes, and allow for the study of different surface functionalisation at the all-important sensing region. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Nanopipettes KW - FIB KW - Surface analysis KW - Surface modification KW - Silanisation PY - 2024 AN - OPUS4-60449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Lateral Dimensions of Particles & Flakes (2D) by Imaging Methods N2 - An overview with the basics of size and shape measurement of particles and 2D structures according to established methodologies (and popular imaging processing software packages) with imaging techniques is given. Main descriptors are explained based on practical cases are determined interactively at the flipchart. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - 2D materials KW - Lateral dimensions KW - ISO KW - Imaging PY - 2024 AN - OPUS4-60454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Rapid Desease Monitoring with Resistive-Pulse Sensing in Nanopipettes N2 - Following parts of the research project as proceeded at University of Birminngham are presented: Translocation, Experiments, Synthesis of DNA Structures, Antibody, Biomarker, Binding. Following works have been carried out at BAM: High Resolution Electron Microscopy, Dedicated Sample Preparation, Surface Analysis Methods. T2 - UoB-BAM Chemistry Theme Meeting CY - Online meeting DA - 15.05.2024 KW - Nanopipettes KW - Sensing KW - Diagnosis KW - Surface analysis PY - 2024 AN - OPUS4-60451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Buzanich, Ana A1 - Cakir, C.T. T1 - Enhancing efficiency at bamline: employing data science and machine learning for x-ray research N2 - This talk discusses how data science and machine learning techniques are being applied at the BAM Federal Institute for Materials Research and Testing to enhance efficiency and automation at the BAMLine synchrotron facility. The methods presented include Gaussian processes and Bayesian optimization for beamline adjustment and optimization of X-ray measurements. These statistical techniques allow automated alignment of beamline components and active learning scanning to reduce measurement time. Additional machine learning methods covered are neural networks for quantification of X-ray fluorescence (XRF) data and decoding coded apertures. T2 - 17th International Work-Conference on Artificial Neural Networks (IWANN2023) CY - Ponta Delgada, Portugal DA - 19.06.2023 KW - Bayesian Optimization KW - Gaussian Process KW - BAMline PY - 2023 AN - OPUS4-58605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Guilherme Buzanich, Ana A1 - Cakir, C.T. A1 - Yusenko, Kirill A1 - Emmerling, Franziska T1 - Insights into materials with hard x-rays: capabilities of the bamline N2 - This contribution provides an overview of the BAMline synchrotron radiation beamline, which specializes in hard X-ray spectroscopy techniques for materials research. The BAMline offers X-ray absorption spectroscopy (XAS), x-ray fluorescence spectroscopy (XRF), and tomography to study materials' electronic structure, chemical composition, and structure. Key capabilities include standard and dispersive XAS for electronic structure, micro-XRF for elemental mapping, coded aperture imaging, and depth-resolved grazing exit XAS. The BAMline enables in situ characterization during materials synthesis and functions for energy, catalysis, corrosion, biology, and cultural heritage applications. Ongoing developments like the implementation of machine learning techniques for experiment optimization and data analysis will be discussed. For instance, Bayesian optimization is being used to improve beamline alignment and scanning. An outlook to the future, where the BAMline will continue pioneering dynamic and multi-scale characterization, aided by advanced data science methods, to provide unique insights into materials research, will be given. T2 - μ-XRF at Elettra 2.0: challenges and opportunities CY - Trieste, Italy DA - 11.09.2023 KW - Synchrotron KW - XRF KW - XANES KW - Bayes PY - 2023 AN - OPUS4-58607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kühn, Andreas A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Ostermann, Markus A1 - Berger, Achim A1 - Panne, Ulrich A1 - Ordavo, I. T1 - 6. Interdisziplinäres Doktorandenseminar (GDCh&DECHEMA)Schnelle ortsaufgelöste Messung der Elementverteilung in TXRF Proben T2 - 6. Interdisziplinäres Doktorandenseminar CY - Berlin, Germany DA - 2012-02-26 PY - 2012 AN - OPUS4-25563 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Constantinescu, B. A1 - Vasilescu, A. A1 - Radtke, Martin A1 - Reinholz, Uwe T1 - The Use of Micro-Synchrotron Radiation X-Ray Fluorescence For Studies On Gold And Copper Provenance Of Romanian Prehistoric Objects T2 - 39th annual international conference on Computer Applications and Quantitative Methods in Archaeology - CAA2011 CY - Beijing, China DA - 2011-04-12 PY - 2011 AN - OPUS4-22563 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Scharf, Oliver A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Buzanich, Günter A1 - Bjeoumikhov, A. A1 - Gubzhokov, Renat A1 - Wedell, R. A1 - Soltau, H. A1 - Ihle, S. A1 - Ordavo, I. A1 - Langhoff, N. T1 - The colour X-ray camera: Basics, Applications and Perspectives T2 - 21st International Congress on X-ray Optics and Microanalysis (ICXOM21) CY - Campinas, Brazil DA - 2011-09-05 PY - 2011 AN - OPUS4-24024 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Scharf, O. A1 - Bjeoumikova, S. A1 - Wedell, R. A1 - Soltau, H. A1 - Ordavo, I. A1 - Langhoff, N. A1 - Buzanich, Günter A1 - Reinholz, Uwe A1 - Gubzhokov, Renat A1 - Kuehbacher, M. A1 - Giere, P. A1 - Riesemeier, Heinrich T1 - Non-invasive spatial scanning for iron and calcium in the enamel of a red toothed shrew, Sorex araneus (Soricidae, Lipotyphla) T2 - 85th Annual Conference of the German Society of Mammalogy CY - Luxembourg City, Luxembourg DA - 2011-09-13 PY - 2011 AN - OPUS4-24025 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharf, Oliver A1 - Arkadiev, V. A1 - Wedell, R. A1 - Langhoff, N. A1 - Ihle, S. A1 - Soltau, H. A1 - Ordavo, I. A1 - Buzanich, Günter A1 - Gubzhokov, Renat A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich T1 - An Energy-Resolving X-RAY Camera as a novel tool in the full-field X-Ray analysis of medical and biological samples T2 - SFM`11 Saratov Fall Meeting CY - Saratov, Russia DA - 2011-09-27 PY - 2011 AN - OPUS4-25268 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Scharf, Oliver A1 - Buzanich, Günter A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Arkadiev, V. A1 - Wedell, R. A1 - Bjeoumikhov, A. A1 - Langhoff, N. A1 - Ihle, S. A1 - Soltau, H. A1 - Ordavo, I. T1 - The Colour X-Ray Camera: Basics, Applications and Perspectives T2 - Third Joint BER II and Bessy II User`s Meeting CY - Berlin, Germany DA - 2011-11-30 PY - 2011 AN - OPUS4-25269 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szczerba, Wojciech A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Radtke, Martin A1 - Thünemann, Andreas A1 - Fenger, R. L. A1 - Rademann, Klaus A1 - Kaiser, Jens A1 - Yu, L. A1 - Ballauff, M. T1 - XAFS Studies on Catalytic Nanoparticle Systems T2 - SHP-Kolleg Gdansk 2011 "How Science Spies On And Technology Imitates Nature" CY - Gdansk, Poland DA - 2011-09-25 PY - 2011 AN - OPUS4-24990 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinholz, Uwe A1 - Scharf, Oliver A1 - Bjeoumikhova, Zemfira A1 - Gubzhokov, Renat A1 - Radtke, Martin A1 - Buzanich, Günter A1 - Riesemeier, H. A1 - Ihle, S. A1 - Ordavo, I. A1 - Wedell, R. T1 - A novel device for elemental distribution imaging: the color x-ray camera T2 - Third Joint BER II and BESSY II Users´ Meeting CY - Berlin, Germany DA - 2011-11-30 PY - 2011 AN - OPUS4-25123 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kühn, Andreas A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Panne, Ulrich T1 - Fast spatially resolved elemental distribution patters for TXRF samples, T2 - Konferenz TXRF CY - Dortmund, Germany DA - 2011-06-06 PY - 2011 AN - OPUS4-24098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eilbracht, H. A1 - Radtke, Martin A1 - Armbruster, B. A1 - Reiche, I. T1 - Precious metalwork from the Viking age - the manufacturing of the Hiddensee jewellery T2 - Archaeometallurgy in Europe 2011 CY - Bochum, Germany DA - 2011-06-29 PY - 2011 AN - OPUS4-24027 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Michalak, P. P. A1 - Renno, A. D. A1 - Munnik, F. A1 - Radtke, Martin A1 - Buzanich, Günter A1 - Reinholz, Uwe A1 - Merchel, S. T1 - Three natural minerals - sanidine, pyrite and columbite - as potential geologic reference materials. Characterization of chemical homogeneity at a micrometer scale. T2 - European Mineralogical Conference 2012 CY - Frankfurt am Main, Germany DA - 2012-09-02 PY - 2012 AN - OPUS4-25907 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -