TY - CONF A1 - Kromm, Arne T1 - Best practice: How to work with a mobile diffractometer N2 - Beginning with a general overview about resdiual stress determination by X-ray diffraction, the presentation is focussing on some does and dont's when working with a portable diffractometer. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction PY - 2024 AN - OPUS4-60287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Shabdali, Gundappa Ashwit A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Comparison and capabilities of different Methods N2 - X-ray and Neutron diffraction as well as the contour method were used to determine residual stresses in a additively manufactured sample. The results are compared. Capabilites and limitations are shown. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction KW - Neutron diffraction KW - Contour method PY - 2024 AN - OPUS4-60286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Holtappels, Kai T1 - Ignition Behaviour and Challenges for Hydrogen Safety N2 - The presentation is divided in two parts. In the first part the significance of mechanical impacts as ignition source for hydrogen containing atmospheres is shown and recent results of a research project evaluating ignition probabilities under different conditions is presented. In the second part future challenges in the field of hydrogen safety are discussed. Finally, the German National Hydrogen Safety Alliance is introduced. T2 - Hydrogen Online Workshop 2024 CY - Online meeting DA - 05.06.2024 KW - Explosion protection KW - Mechanical impacts KW - Ignition source KW - German National Alliance for Hydrogen Safety PY - 2024 AN - OPUS4-60288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Martin A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Dittmann, Florian A1 - Varfolomeev, Igor T1 - Eigenspannungsabbau mittels LTT – Schweißzusätzen unter Berücksichtigung der Nahtgeometrie N2 - Low Transformation Temperature (LTT)-Schweißzusätze sind ein innovativer Ansatz, um Eigenspannungen in Schweißnähten zu reduzieren. Dieser Vortrag behandelt neben den Einfluss der LTT-Schweißzusätze auch deren Naht-Ausführungen. Die unterschiedlichen LTT-Nahtgeometrien haben einen signifikanten Einfluss auf den Eigenspannungsabbau in der Schweißnaht und der Wärmeeinflusszone (WEZ). T2 - SFB 1120 Summer School CY - Steinfeld, Germany DA - 11.06.2024 KW - LTT (Low Transformation Temperature) KW - Eigenspannungen KW - Ermüdungsfestigkeit KW - Aufmischung PY - 2024 AN - OPUS4-60306 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schalau, Bernd T1 - Stand der Arbeiten am Leitfaden KAS-18 N2 - Als Grundlage der Bewertung aktueller Aktivitäten zur Überarbeitung des Leitfadens KAS-18 wird die Entwicklung des Themas LUP in Deutschland dargestellt. Der Entwicklungsstand des neuen Leitfadens KAS-18 wird vorgestellt. T2 - BAM/UBA Behördenerfahrungsaustausch 2024 CY - Berlin, Germany DA - 03.06.2024 KW - LUP KAS-18 PY - 2024 AN - OPUS4-60318 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Das, Amlan A1 - Wang, Zengquan A1 - Dufresne, Eric A1 - Derlet, Peter M. T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Inspired by the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS)1 and recent results of long-term atomistic simulations on material transport2, we reveal here an unprecedented spectrum of short- and long-term relaxation dynamics. Tracked along a 300 000 s long isotherm at 0.98Tg, a Zr-based bulk metallic glass exhibits temporal fluctuations that persist throughout the entire isotherm, demonstrating a continuous heterogeneous dynamics at the probed length scale. In concert with microsecond molecular dynamic simulations, we identify intermittent cluster dynamics as the origin for temporal signatures in the corresponding intensity cross-correlations. Despite temporally heterogeneous aging, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law better describes the data. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the underlying structural fast and slow relaxation modes and their manifestation in the temporal form of the structural decorrelations. T2 - 9th IDMRCS CY - Chiba, Japan DA - 12.08.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Riechers, Birte A1 - Rashidi, Reza A1 - Ott, Catherine A1 - Derlet, Peter M. A1 - Das, Saurabh M. A1 - Liebscher, Christian A1 - Samwer, Konrad T1 - Elastic Microstructures in Metallic Glasses N2 - Metallic glasses (MGs) are disordered solids that exhibit a range of outstanding mechanical, thermomechanical, and functional properties. Whilst being a promising class of structural materials, well-defined and exploitable structure-property relationships are still lacking. This offsets them strongly from the crystalline counterparts, for which length-scale based property determination has been key for decades. In recent years, both atomistic simulations and experiments have nurtured the view of heterogeneities that manifest themselves either as a structural partitioning into well-relaxed percolated network components and more frustrated domains in atomistic simulations, or as spatially-resolved property fluctuations revealed with atomic force microscopy. These signatures depend sensitively on the processing history and likely reflect emerging medium-range order fluctuations at the scale of 1-10 nanometers. Here we demonstrate and discuss the emergence of spatially resolved property fluctuations at length scales that are one to two orders of magnitude larger. Such long-range decorrelation length scales are hard to reconcile in a monolithic glass but may offer the perspective of experimentally easy-to-access length-scale based structure-property relationships. Whilst long-range property fluctuations can be seen in both the plastic and elastic response, we focus here on high-throughput elastic nanoindentation mapping across the surface of a Zr-based model glass. After a deconvolution of surface topography and curvature effects, the spatially-resolved elastic response reveals an elastic microstructure with a correlation length of ca. 150-170 nm. Analytical scanning-transmission electron microscopy (STEM) is used to link the elastic property fluctuations to the chemistry and structure of the MG. In concert, nano-elastic mapping and STEM suggests that structural variations in the glass are responsible for the unexpectedly large length scales. We discuss these findings in terms of the materials processing history and the perspective of exploiting nanoindentation-based spatial mapping to uncover structural length scales in atomically disordered solids. T2 - 7th International Indentation Workshop – IIW7 CY - Hyderabad, India DA - 17.12.2023 KW - Metallic glass KW - Nanoindentation KW - Microstructure PY - 2023 AN - OPUS4-60692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert A1 - Rizzardi, Quentin A1 - Elfresh, Cameron A1 - Stauffer, Douglas A1 - Marian, Jaime T1 - Temperature-dependent intermittent plasticity of Nb microcrystals N2 - Intermittent microplasticity via dislocation avalanches indicates scale-invariance, which is a paradigm shift away from traditional bulk deformation. Recently, we have developed an experimental method to trace the spatiotemporal dynamics of correlated dislocation activity (dislocation avalanches) in microcrystals (Phys. Rev. Mat. 2 (2018) 120601; Phys. Rev. Mat. 3 (2019) 080601). Here we exploit the temperature sensitive deformation of bcc metals. A marked change of the slip-size distribution is observed in the studied microcrystals, with increasingly small event-sizes dominating with decreasing temperature. This shows how a reduction in thermal energy increasingly suppresses the length-scale of dislocation avalanches, indicating how long-range correlations become gradually limited to the scale of the lattice. Our results further show that the stress-strain response is composed of strain-increments that are either thermally activated or essentially athermal. Temperature-dependent small-scale testing in combination with state-of-the-art discrete dislocation dynamics (DDD) simulations of Nb microcrystals are used to reveal these insights. T2 - MS&T20 Virtual CY - Online meeting DA - 02.11.2020 KW - Microcrystals PY - 2020 AN - OPUS4-60700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Athman, Rukeia T1 - The BAM Data Store – an institutional RDM framework for Materials Science and Engineering N2 - In view of the increasing digitization of research and the use of data-intensive measurement and analysis methods, research institutions and their staff are faced with the challenge of documenting a constantly growing volume of data in a comprehensible manner, archiving them for the long term, and making them available for discovery and re-use by others in accordance with the FAIR principles. At BAM, we aim to facilitate the integration of research data management (RDM) strategies during the whole research cycle from the creation and standardized description of materials datasets to their publication in open repositories. To this end, we present the BAM Data Store, a central system for internal RDM that fulfills the heterogenous demands of materials science and engineering labs. The BAM Data Store is based on openBIS, an open-source software developed by the ETH Zurich that has originally been created for life science laboratories but that has since been deployed in a variety of research domains. The software offers a browser-based user interface for the digital representation of lab inventory entities (e.g., samples, chemicals, instruments, and protocols) and an electronic lab notebook for the standardized documentation of experiments and analyses. To investigate whether openBIS is a suitable framework for the BAM Data Store, we carried out a pilot phase during which five research groups with employees from 16 different BAM divisions were introduced to the software. The pilot groups were chosen to represent a diverse array of domain use cases and RDM requirements (e.g., small vs big data volume, heterogenous vs structured data types) as well as varying levels of prior IT knowledge on the users’ side. Overall, the results of the pilot phase are promising: While the creation of custom data structures and metadata schemas can be time-intensive and requires the involvement of domain experts, the system offers specific benefits in the form of a simplified documentation and automation of research processes, as well as constituting a basis for data-driven analysis. In this way, heterogeneous research workflows in various materials science research domains could be implemented, from the synthesis and characterization of nanomaterials to the monitoring of engineering structures. In addition to the technical deployment and the development of domain-specific metadata standards, the pilot phase also highlighted the need for suitable institutional infrastructures, processes, and role models. An institute-wide rollout of the BAM Data Store is currently being planned. T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - BAM Data Store KW - Forschungsdatenmanagement KW - Research data management KW - OpenBIS PY - 2022 AN - OPUS4-55139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Muth, Thilo T1 - The promise of mass spectrometry-based virus proteomics: taking a peek at current bioinformatics applications and limitations N2 - Driven by recent technological advances and the need for improved viral diagnostic applications, mass spectrometry-based proteomics comes into play for detecting viral pathogens accurately and efficiently. However, the lack of specific algorithms and software tools presents a major bottleneck for analyzing data from host-virus samples. For example, accurate species- and strain-level classification of a priori unidentified organisms remains a very challenging task in the setting of large search databases. Another prominent issue is that many existing solutions suffer from the protein inference issue, aggravated because many homologous proteins are present across multiple species. One of the contributing factors is that existing bioinformatic algorithms have been developed mainly for single-species proteomics applications for model organisms or human samples. In addition, a statistically sound framework was lacking to accurately assign peptide identifications to viral taxa. In this presentation, an overview is given on current bioinformatics developments that aim to overcome the above-mentioned issues using algorithmic and statistical methods. The presented methods and software tools aim to provide tailored solutions for both discovery-driven and targeted proteomics for viral diagnostics and taxonomic sample profiling. Furthermore, an outlook is provided on how the bioinformatic developments might serve as a generic toolbox, which can be transferred to other research questions, such as metaproteomics for profiling microbiomes and identifying bacterial pathogens. T2 - European Virus Bioinformatics Center in-silico lecture series CY - Online meeting DA - 28.02.2022 KW - Mass spectrometry KW - Data science KW - Virus detection KW - Bioinformatic algorithms PY - 2022 AN - OPUS4-56682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao A1 - Richter, Silke A1 - Benner, Philipp A1 - Recknagel, Sebastian T1 - The use of reference materials to improve the calibration strategy in glow discharge optical emission spectroscopy with machine learning N2 - Glow discharge optical emission spectroscopy (GD-OES) is a technique for the analysis of solids such as metals, semiconductors, and ceramics. A low-pressure glow discharge plasma is applied in this system, which ‘sputters’ and promotes the sample atoms to a higher energy state. When the atoms return to their ground state, they emit light with characteristic wavelengths, which a spectrometer can detect. Thus, GD-OES combines the advantages of ICP-OES with solid sampling techniques, which enables it to determine the bulk elemental composition and depth profiles. However, direct solid sampling methods such as glow-discharge spectroscopy require reference materials for calibration due to the strong matrix effect. Reference materials are essential when the accuracy and reliability of measurement results need to be guaranteed to generate confidence in the analysis. These materials are frequently used to determine measurement uncertainty, validate methods, suitability testing, and quality assurance. In addition, they guarantee that measurement results can be compared to recognized reference values. Unfortunately, the availability of certified reference materials suited to calibrate all elements in different matrix materials is limited. Therefore various calibration strategies and the preparation of traceable matrix-matched calibration standards will be discussed. Machine learning is an essential component of the growing field of data science. Through statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. Therefore, it was tried in our work to combine GD-OES with machine learning strategies to establish a new and robust calibration model, which can be used to identify the elemental composition and concentration of metals from a single spectrum. For this purpose, copper reference materials from different manufacturers, which contain various impurity elements, were investigated using GD-OES. The obtained spectra information are evaluated with different algorithms (e.g., gradient boosting and artificial neural networks), and the results are compared and discussed in detail. T2 - Winter Conference on Plasma Chemistry 2022 CY - Tucson, AZ, USA DA - 17.01.2022 KW - GDOES KW - Machine learning KW - Reference materials KW - Calibration KW - Cooper PY - 2022 AN - OPUS4-56497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Vogl, Jochen A1 - Riedel, Jens A1 - Recknagel, Sebastian A1 - Panne, Ulrich T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Weidner, Steffen A1 - Epping, Ruben T1 - Coupling of chromatographic and spectrometric techniques for polymer characterization N2 - Coupling of chromatographic and spectrometric techniques for polymer characterization; focus topics: LCxMALDI-TOF-MS and UPLC x ESI-TOF-MS T2 - 16. Tagung des Arbeitskreises Polymeranalytik CY - Online meeting DA - 22.03.2022 KW - Liquid chromatography KW - Mass spectrometry KW - Polymers KW - Two-dimensional chromatography (2D-LC) PY - 2022 AN - OPUS4-54567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Automatisierte aktive thermografische Prüfung N2 - Aktive thermografische Prüfung ist ein vielseitiges Instrument in der Familie der zerstörungsfreien Prüfverfahren. Der Einzug moderner Lasertechnologie hat hier bedeutende neue Anwendungsfelder eröffnet. In Kombination mit Industrierobotik können nun beispielsweise beliebig komplex geformte Bauteile großflächig vollautomatisiert auf Oberflächenrisse überprüft werden. Der hier vorliegende Vortrag gibt einen Überblick über die Grundlagen der Laserthermografie, zeigt unsere Anstrengungen am Fachbereich im Bereich der automatisierten thermografischen Detektion von Oberflächenrissen und gibt ein Ausblick über neue moderne Thermografieverfahren aus der Forschung. T2 - VATH Frühjahrssymposium CY - Lingen, Germany DA - 26.04.2024 KW - Thermografie KW - Laser KW - ZfP PY - 2024 AN - OPUS4-59965 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Lasers: A versatile Heat Source for Modern Active Thermographic Testing N2 - The properties of laser radiation result in a wide range of applications, making laser technologies indispensable in areas such as industry, science and medicine. The possible areas of application for thermography in this context are just as diverse. Thermography is used in laser applications when permanent monitoring and control of thermal development is necessary. Among others, this is the case in additive manufacturing, laser-based measuring devices and non-destructive testing. Furthermore, thermography is ideally suited as a testing method when it comes to ensuring the quality of the laser itself. In this talk it is outlined, how lasers can be used as a heat source in active thermographic testing. Furthermore, two special variants (spatial & temporal structured heating) are described, for which lasers are highly suitable. T2 - Webinar: Laser Technologies Benefiting from Infrared Thermography CY - Online meeting DA - 24.04.2024 KW - Thermography KW - Laser KW - NDT PY - 2024 UR - https://www.infratec.eu/press/press-releases/details/2024-03-04-laser-technologies-benefiting-from-infrared-thermography/ AN - OPUS4-59934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Nondestructive defect characterization using full-frame spatially structured super resolution laser thermography N2 - Die laserbasierte aktive thermografische Prüfung als berührungslose Methode der zerstörungsfreien Werkstoffprüfung (NDT) basiert auf der aktiven Erwärmung des Testobjekts (OuT) und Messung des resultierenden Temperaturanstiegs mit einer Infrarotkamera. Dadurch bedingt können systematische Abweichungen vom vorhergesagten Erwärmungsverhalten Aufschluss über dessen innere Struktur geben. Jedoch ist das Auflösungsvermögen für innenliegende Defekte durch die diffusive Natur der Wärmeleitung in Festkörpern begrenzt. Thermografische Super-Resolution (SR)-Methoden zielen darauf ab, diese Limitation durch die Kombination mehrerer Messungen mit jeweils unterschiedlicher strukturierter Erwärmung und mathematischer Optimierungsmethoden zu überwinden. Zur Rekonstruktion innerer Defekte mithilfe thermografischer SR-Rekonstruktionsmethodik wird für die Gesamtheit mehrerer Messungen ein schlecht gestelltes und stark regularisiertes inverses mathematisches Problem gelöst, was in einer dünnbesetzten Karte der internen Defektstruktur des OuTs resultiert. Der vorliegende Vortrag gibt einen Überblick über die geleisteten Arbeiten in diesem Gebiet im Rahmen der hier mit dem Wissenschaftspreis der DGZfP 2024 prämierten Arbeit. T2 - Jahrestagung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Thermografie KW - Laser KW - ZfP KW - Super-Resolution KW - DLP KW - DMD PY - 2024 AN - OPUS4-60007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - von Hartrott, P. A1 - Waitelonis, J. A1 - Schaarschmidt, J. A1 - Birkholz, H. A1 - Grundmann, J. A1 - Hanke, T. A1 - Hickel, Tilmann A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit T1 - Crafting High-Quality, Reliable, and FAIR Data: From Metadata, Schema and Ontologies to Data Management and Knowledge Transfer N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. In this respect, the motivation for digital transformation in materials sciences stemming from the need to handle the ever-increasing volume and complexity of data will be elaborated on. By embracing digital tools and methodologies, researchers can enhance the efficiency, accuracy, and reproducibility of their work. The benefits of digital transformation in materials sciences are manifold, including improved data management, enhanced collaboration, and accelerated innovation. Being a core component of this transformation, ensuring data reliability and reproducibility is critical for the advancement of the field, enabling researchers to build on each other's work with confidence. Implementing FAIR data principles facilitates this by making data more accessible and usable across different platforms and studies. Furthermore, Semantic Web technologies (SWT) and ontologies play a crucial role in achieving these goals. Ontologies, typically consisting of the T-Box (terminological component) and A-Box (assertional component), provide a structured framework for representing knowledge. This presentation will outline the path of ontology creation and the formal transformation procedure, highlighting the various ontology levels that organize data into meaningful hierarchies. Real-world use cases presented, such as the Tensile Test Ontology (TTO) and the Orowan Demonstrator, illustrate the practical applications of these technologies. These examples will demonstrate how ontologies can be leveraged to standardize data and facilitate interoperability between different systems and research groups. Finally, in this presentation, Ontopanel is introduced, a tool designed to aid in the creation and management of ontologies. Ontopanel simplifies the process of developing and maintaining ontologies, making it accessible to researchers and practitioners in the field. By integrating these technologies and principles, the materials science community can move towards a more digital, interconnected, and efficient future making the knowledge and education on these topics very valuable. T2 - MaRDA MaRCN FAIR Train Workshop CY - Washington, DC, USA DA - 29.07.2024 KW - FAIR KW - Metadata KW - Digitalization KW - Data Interoperability KW - Ontology KW - Education KW - Workshop PY - 2024 AN - OPUS4-60720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - A journey in science from a graduate student in physical chemistry to head of division biophotonics N2 - I will provide a personal overview of the most important steps of my career in science, a journey from a graduate student in physical chemistry in an environment dominated by male-scientists over a postdoc with a female professor in the US to the leader of a research group, head of division Biophotonics at BAM. This will include my choices of research topics, how I learnt to write well cited publications, even on topics such as reference materials and quality assurance,1-4 and eventually started to give lectures at Free University Berlin granting me the right to act as first supervisor of undergraduate and graduate students. T2 - Women in Science CY - Erlangen, Germany DA - 22.07.2024 KW - Lanthanide KW - Nanoparticle KW - Silica KW - Quantum dot KW - Polymer KW - Surface group KW - Luminescence KW - Quantitative spectroscopy KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Synthesis KW - Surface modification KW - Photophysics PY - 2024 AN - OPUS4-60724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Structural dynamics in metallic glasses due to Thermal and Mechanical Stress N2 - This talk addresses aging induced property changes of metallic glasses. Priority is given thermally and mechanically induced structural changes, of which the time-dependent dynamics is tracked using coherent scattering. Strong intermittency is observed and accelerated transport is seen at the smallest applied stresses. These findings have significant implications for how metallic glass components respond in realistic service conditions. T2 - Seminar Universität Münster 2020 CY - Münster, Germany DA - 01.12.2020 KW - Metallic glasses KW - Structure PY - 2020 AN - OPUS4-60714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Probing internal damage in glassy metals N2 - This talk covers strain localization in metallic glasses and how it can be probed non-destructively using acoustic emission and x-ray methods. The results are compared to other methods and contextualized in the context of shear-band dynamics during inhomogeneous flow of metallic glasses. T2 - Seminar Zerstörungsfreie Prüfung TU München 2023 CY - Online meeting DA - 29.06.2023 KW - Metallic glass KW - Deformation KW - Acoustic emission PY - 2023 AN - OPUS4-60718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - On an experimentalist's hard search for free volume N2 - This talk was given in honor of Prof. Frans Spaepen, faculty at Harvard University, at the occasion of his Staudinger Lecture and his honorary doctorate degree reception at ETH Zurich. It covers a 10 year long journey of how an experimentalist probes free-volume effects in metallic glasses. T2 - Symposium in honor of Frans Spaepen Honorary Doctorate ETH Zurich CY - Zurich, Switzerland DA - 08.12.2023 KW - Metallic glass KW - Deformation KW - Shear bands PY - 2023 AN - OPUS4-60717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. T1 - Coupling of structural and material design N2 - The presentations discusses a use case for the optimization of concrete structures where structural and material design are integrated in a computational workflow. The workflow is based on both physics-based and data-based models and experimental data is used to calibrate/train these models with a specific focus on the integration of ucertainties. T2 - 2nd Technical Meeting of TG.SAG.2 CY - Hannover, Germany DA - 16.04.2024 KW - Coupling of structural and material design KW - Cement Hydration Model PY - 2024 AN - OPUS4-59999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - The talk summarizes challenges in microplastic analysis. It shows the preparation of microplastic reference materials as well as the testing on homogeneity and stability. The reference material is used in an international laboratory comparison to compare different detection methods used for microplastic analysis. The methods used were µ-IR (FTIR+LDIR) for number-based methods and TED-GC/MS and Py-GC/MS for mass-based methods. The ILC was done under the umbrella of VAMAS TWA 45. Results of the participants are presented. T2 - BAM Akademie CY - Online meeting DA - 16.05.2024 KW - Microplastics KW - Reference materials KW - ILC KW - Microplastics detection KW - TED-GC/MS KW - Polymer 3R PY - 2024 AN - OPUS4-60085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ciornii, Dmitri A1 - Hodoroaba, Vasile-Dan A1 - Altmann, Korinna T1 - Validation of microplastics detection methods and proficiency testing: Suitable microplastic reference materials for interlaboratory comparison N2 - Since microplastics (MPs) can be found everywhere and are becoming a problem of high concern, it is necessary to understand their physico-chemical properties. To obtain reliable analytical data a set of validated methods for sampling, sample preparation, detection, and data evaluation are needed. To meet these needs an interlaboratory comparison (ILC) with 84 participants worldwide has been organized under the international pre-standardisation platform VAMAS (www.vamas.org/twa45/) as Project 2 “Development of standardized methodologies for characterisation of microplastics with microscopy and spectroscopy methods” within the Technical Working Area TWA 45 “Micro and Nano Plastics in the Environment”. In this ILC thermo-analytical methods (Py-GC/MS and TED-GC/MS) and vibrational methods (µ-Raman and µ-FTIR) have been tested and compared by providing a set of microplastic representative test materials and measurement protocols developed at BAM. The defined measurands were: particle number concentration, particle size distribution (PSD), and polymer identity and mass content. To increase the statistical quality, 6 samples were shipped together with blank samples. Hence, the ILC provides information on precision and accuracy of the results obtained with different methods as well as strengths and limitations of the proposed protocols. T2 - SETAC 34th Meeting CY - Seville, Spain DA - 05.05.2024 KW - ILC KW - Microplastic KW - Method validation KW - Stakeholder KW - Reference materials KW - Polyethylene KW - Polyethylene Terephtalate PY - 2024 AN - OPUS4-60039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Detektion mit Thermoanalytischen Methoden: Analytik, Referenzmaterial, Ringversuche N2 - Ich dem Vortrag geht es um die Vorstellung von thermoanalytischen Methoden für die Mikroplastik-Detektion. Verschiedene Kopplungsmöglichkeiten werden gezeigt und die Funktionsweise der TED-GC/MS wird erklärt. Im zweiten Teil werden Referenzmaterialien für die Mikroplastik-Analytik diskutiert. PET -Tabletten des PlasticTrace Projektes werden vorgestellt. Am Ende wird der VAMAS Ringversuch zur Mikroplastik-Detektion gezeigt. T2 - Plastik, Mikroplastik, Nanopartikel, PFAS und Verunreinigungen (Agilent Workshop) CY - Hamburg, Germany DA - 28.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Polymer 3R KW - Ringversuche KW - Referenzmaterial PY - 2024 AN - OPUS4-60155 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Jovičević-Klug, M. A1 - Raabe, D. T1 - Gewinnung von grünem Eisen und weiteren Wertstoffen aus Rotschlamm mittels Wasserstoffplasma N2 - Rotschlamm fällt in sehr großen Mengen bei der Herstellung von Aluminiumoxid an und wird fast ausschließlich deponiert. Es wird eine neue Technologie vorgestellt bei der das im Rotschlamm enthaltene Eisenoxid mittels Wasserstoffplasma reduziert wird. Es wird ein Reaktionsmechanismus über Titanomagnetit und Hercynit vorgeschlagen. T2 - Berliner Konferenz Metallkreisläufe CY - Berlin, Germany DA - 13.03.2024 KW - Rotschlamm KW - Wasserstoffplasma PY - 2024 AN - OPUS4-59722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna A1 - Milczewski, Frank A1 - Ciornii, Dmitri A1 - Hodoroaba, Dan T1 - Preliminary results of an interlaboratory comparison on microplastics organised by plasticsfate N2 - Microplastics are everywhere in the environment, but analytics is challenging. Since harmonisation is missing as well es suitable reference materials, BAM did under th umbrella of VAMAS funded by the EU Horizon 2020 project PlasticsFate a ILC for microplastic detection methods. Methods adressed were IR, Raman, Py-GC/MS and TED-GC/MS. The talk gives a first presentation and evaluation on the results. T2 - CUSP annual meeting and conference CY - Utrecht, Netherlands DA - 12.09.2023 KW - Microplastics KW - TED-GC/MS KW - Polymer 3R KW - Reference material KW - ILC on detection methods PY - 2023 AN - OPUS4-60036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiesner, Yosri A1 - Giovannozzi, A.M. A1 - Fadda, M. A1 - Sacco, A. A1 - Putzu, M. A1 - Norberta, S. A1 - Lorenzo, M. A1 - Miclea, P.-T. A1 - Benismail, N. A1 - Maltseva, A. A1 - van Bavel, B. A1 - Altmann, Korinna T1 - Reference material candidates for Microplastic analysis N2 - Microplastic reference material is required for validation and harmonization purposes. This includes the analysis of the pure polymer particles and the validation of the respective measurement methods. In addition, there is the harmonization of different laboratories. On the other hand, sample preparation methods must be validated and harmonized with regard to their recovery and subsequent analysis in the respective matrices. For this purpose, we produce reference material candidates in the form of tablets with different mass fractions and particle numbers of polyethelene terephthalate. In the presentation first measurement results by µ-Raman, µ-FTIR, pyrolysis-GC-MS and TED-GC/MS will be presented. T2 - SETAC Europe 34th Annual Meeting CY - Seville, Spain DA - 05.05.2024 KW - Reference material KW - Microplastics KW - PlasticTrace PY - 2024 AN - OPUS4-60019 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -