TY - CONF A1 - Kempf, A. T1 - Correlation between quasistatic und fatigue properties of additively manufactured AlSi10Mg using Laser Powder Bed Fusion N2 - In order to find a resource efficient approach for the fatigue lifetime prediction of laser powder bed fusion (L-PBF) processed AlSi10Mg material, results of tensile and fatigue tests were compared. The specimens were manufactured with three different L-PBF machines and studied in different heat treatment conditions (as-built, annealed, T6 heat treated). The investigations showed that the high attainable tensile strength properties after the manufacturing process are not beneficial in the high cycle fatigue (HCF) regime. In contrast, the applied heat treatments, which lead typically to a decrease of ultimate tensile strength, improved dramatically the fatigue behavior. Additionally, a clear correlation between the elongation at fracture and HCF resistance has been found for individual heat treatment conditions. This empiric relationship provides an estimation of the fatigue resistance in the presence of material defects and can be implemented in part and process approvals. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - AlSi10Mg KW - Tensile properties KW - Fatigue properties PY - 2021 AN - OPUS4-53792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Digitisation of the quality infrastructure - Using the example of additive manufacturing N2 - Rapidly advancing technologies and progressive digitisation are posing challenges to the established quality infrastructure (QI). In response, the key stakeholders of the German QI established the initiative QI-Digital aimed at developing new solutions for modern quality assurance. One of the central use cases herein is quality assurance for additive manufacturing, in which a fully interlinked additive manufacturing process chain is established. The intention is to collect and process data from each production step, allowing for a comprehensive digital view of the physical material flow. Within this process chain, prototypes of digital QI tools like machine readable standards and digital quality certificates are being demonstrated, tested, and evolved. This is complemented by research on the process level, comprising the evaluation and refinement of methods for in-situ and ex-situ quality assurance, as well as algorithms for registration, reduction, and analysis of process data. This paper presents the status, goals, and vision for the QI-Digital use case additive manufacturing. T2 - Metal Additive Manufacturing Conference 2023 CY - Vienna, Austria DA - 17.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Martin T1 - Eine digitale QI für die moderne Produktion: Datenbasierte Qualitätssicherung in der Additiven Fertigung N2 - Als Beispiel für moderne Produktion ist die additive Fertigung (ugs. „3D-Druck“) bei der Herstellung von hochkomplexen metallischen Bauteilen, bionisch inspiriertem Leichtbau oder Prototypen nicht mehr wegzudenken. Die Qualitätssicherung (QS) von Bauteilen für sicherheitskritische Anwendungen stellt jedoch noch eine Herausforderung dar. Die Additive Fertigung (AM) ist ein vergleichsweise junges und datenintensives Fertigungsverfahren. Daher ist es ideal geeignet, die neuen Werkzeuge einer digitalen Qualitätsinfrastruktur (QI) für die moderne Produktion zu erproben und weiterzuentwickeln. T2 - 2. QI-Digital Forum CY - Berlin, Germany DA - 10.10.2023 KW - Additive Manufacturing KW - Digitalisation KW - Quality Assurance PY - 2023 AN - OPUS4-58630 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe T1 - Computer Tomography used for inspection of critical Zones in AM parts N2 - Overview on CT for AM, starting from the CT principle, the added value of CT in Additive Manufacturing (AM), examples of CT results on AM workpieces and conclusions. T2 - IIW Annual Assembly 2018, joint seminar on AM CY - Bali, Indonesia DA - 15.07.2018 KW - Computed Tomographie KW - Additive Manufacturing KW - Added Value PY - 2018 AN - OPUS4-47357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - On the modelling of the fatigue strength of am components N2 - The topic of the presentation consists in some basic considerations on the application of fracture mechanics to fatigue live and strengh prediction of metallic componends manufatured by additive manufacturing. These are based on an approach developed at BAM which comprises elements such as the elastic-plastic modelling of the cyclic crack driving force, a physically meaningfull determination of the initial crack size and multipile crack initiation and propagation due to variations of the local geometry and material charactaristics. Spezial emphasis is put to spezific aspects of materials composed by selectiv laser melting such as surface roughness, porosity and gradiants in the microstructure. N2 - Beschreibung der IBESS-Prozedur zur zukünftigen Anwendung zur Berechnung der Schwingfestigkeit von Schweißverbindungen T2 - Additive Manufracturing Benchmarks 2018 CY - Gaithersburg, Maryland, USA DA - 18.06.2018 KW - Structural Integrity KW - Fartigue Strength KW - Additive Manufacturing PY - 2018 AN - OPUS4-46062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tabin, Jakub T1 - Deformation-Induced Martensitic Transformation In Fused Filament Fabricated Austenitic Stainless Steels During Tension At Wide Range Of Temperatures. Part 1: Experimental Results N2 - Structural components of superconducting magnets (e.g., collars, bladders, or keys) with complex shapes, operating at cryogenic temperatures (4K, 77K), as well as additional elements of tanks for storing liquid hydrogen (20K), such as hoses and valves, are made of austenitic steel. It is well known that achieving a complex shape for these elements using traditional machining methods is challenging. A viable solution lies in using additive manufacturing methods (AM), notably the cost-effective Fused Filament Fabrication (FFF) method. The scientific objective of the project is the experimental identification and numerical simulation of the evolution of the deformation-induced martensitic transformation in Fused Filament Fabricated Austenitic Stainless Steel (FFF ASS) 316L at a wide range of temperatures. We will investigate how deformation-induced phase transformation develops in printed austenitic steels, how the initial state of the sample (e.g., pore distribution) affects it, and whether deformation-induced martensitic transformation influences the rate of damage development, especially at very low temperatures. Does the manufacturing technology of the sample affect the rate of phase transformation or damage development? Finally, but no less important, is whether, as in the case of traditional austenitic steels, the adverse effect of the microdamage field is inhibited by deformation-induced martensitic transformation. Which of these effects dominates in printed austenitic steels and under what conditions? The experimental setup developed in the Institute of Fundamental Technological Research (IPPT PAN) allows for monitoring the evolution of the 3D strain field during the kinematically-controlled tensile tests of macroscopic specimens at 77K. Moreover, the correlation between plastic strain field evolution, martensitic transformation, thermal distributions and acoustic emission will be defined for FFF 316L at 77K and room temperatures. EBSD and EDS investigation of samples pre-strained in uniaxial tensile tests at a wide range of temperatures are also performed. T2 - 43rd Solid Mechanics Conference CY - Wroclaw, Poland DA - 16.09.2024 KW - Deformation-induced martensitic transformation KW - Austenitic Stainless Steel KW - Additive Manufacturing KW - DIC KW - Cryogenic temperatures PY - 2024 AN - OPUS4-61187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönsee, Eric T1 - Investigations on multi-sensor data for monitoring volume flow during the printing process N2 - Extrusion based 3D concrete printing (3DCP) is a growing technology because of its high potential for automating construction and the new possibilities of design. In conventional construction methods, a sample is taken to be representative for one material batch. However, in 3DCP continuous mixing is used which results in variations during the mixing process. Therefore, one sample is not representative for the entire structure. This leads to the necessity of continuous and real-time process monitoring. This study focuses on the variations of pressure and temperature which are caused by changes in the material due to the ongoing mixing process. Changes in material, which is transported downstream, are influencing sensor signals in different positions with a time delay. In the following, the data is analysed to investigate if the changing material and the so caused change in pressure can be used to calculate volume flow. T2 - Digital Concrete 2024 CY - Munich, Germany DA - 04.09.2024 KW - Additive Manufacturing KW - In-line Monitoring KW - Volume Flow KW - Process Control PY - 2024 AN - OPUS4-61002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Damage tolerant design of metallic AM parts N2 - Additive Manufacturing (AM) opens new possibilities in the design of metallic components, including very complex geometries (e.g. structures optimized for certain loads), optimization of materials (e.g. gradient materials) and cost-effective manufacturing of spare parts. In the recent years, it has been used for the first safety-relevant parts, but the consideration of cyclic mechanical behavior in AM is still at the very beginning. The reason for this is the complexity of mechanical material properties, i.e. inhomogeneity, anisotropy and a large number of defects frequently textured and characterized by large scattering in size. Additionally, high surface roughness and residual stresses with complex distributions are typical of AM. Due to these reasons, the transferability of experimentally determined properties from specimens to components is a challenge. This presentation provides an overview of the questions concerning the application of AM to safety-relevant components. Possible strategies for the fatigue design of such components are presented. Besides the Kitagawa-Takahashi-diagram method and the cyclic R-curve analysis as approaches for damage-tolerant design, the identification of critical locations, the problem of representative material properties and the handling of residual stresses are addressed. T2 - 4th international symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment PY - 2020 AN - OPUS4-50938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-49082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-46033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blasón Gonzalez, Sergio A1 - Chaudry, Mohsin Ali A1 - Elorriaga, A. A1 - Madia, Mauro A1 - Llavori, I. A1 - Hilgenberg, Kai T1 - Diseño de componentes fabricados aditivamente basado en propiedades locales del material T1 - Design of additively manufactured components based on locally representative material fatigue properties N2 - La tecnología de fabricación aditiva (AM) continúan progresando y permitiendo alcanzar diseños cada vez más complejos y optimizados. La industria química es uno de los sectores donde componentes AM han adquirido un gran interés. La falta hasta la fecha de una directiva europea que regule la inspección, certificación y aceptación de equipos sometidos a presión hace necesario progresar en esta línea. El objetivo que se persigue en este trabajo es el de desarrollar una metodología de diseño sobre componentes fabricados aditivamente basada en la estimación de vida a fatiga de las zonas más susceptibles de sufrir dicho tipo de fallo. El estudio comprende diversas facetas de análisis, simulaciones numéricas, análisis de la microestructura del material y una extensa campaña experimental. La evaluación de la integridad estructural se realiza aplicando mecánica de fractura. La historia térmica a lo largo del proceso de fabricación determina la microestructura del componente en cada región y, por ende, influye en las propiedades mecánicas en cada una. Se presentan los resultados preliminares de un proyecto de investigación en curso dirigido a la caracterización de propiedades mecánicas en recipientes de presión producidos por fusión láser en lecho de polvo (L-PBF, por sus siglas en inglés) de acero inoxidable 316L. Se detallan los resultados preliminares en términos de velocidad de crecimiento de grietas por fatiga (FCGR), y se comparan los resultados de probetas extraídas de diferentes regiones de los depósitos. N2 - Additive manufacturing (AM) technology continues to make progress and allows for reaching increasingly complex and optimised designs. The chemical industry is one of the sectors where AM components have acquired relevance. There is a lack of any European directive in order to regulate the inspection, certification as well as acceptance of additively manufactured (AM) equipment subjected to pressure loads, so progression in this line becomes necessary. This work aimed to develop a design methodology for AM components based on the estimation of fatigue lifetime on those regions with a higher risk of failure. Diverse facets are involved in this study, including numerical simulations, microstructure analysis and an extensive experimental campaign. The fatigue assessment is performed based on fracture mechanics. The microstructure characteristics are dependent on the thermal history along the manufacturing process for each region and, accordingly, the mechanical properties are likewise influenced. Preliminary results of an ongoing research project for characterizing the mechanical properties in demonstrator pressure vessels produced by laser powder bed fusion (L-PBF) on stainless steel 316L are presented. The preliminary findings obtained in terms of fatigue crack growth rate (FCGR) and are detailed. Results from specimens extracted from different regions of the vessel are compared. T2 - 5th Iberian Conference on Structural Integrity IbCSI 2022 CY - Coimbra, Portugal DA - 30.03.2022 KW - Fabricación Aditiva KW - Additive Manufacturing KW - Acero 316L KW - Mecánica de Fractura KW - Predicción vida a fatiga KW - Fit4AM KW - Steel 316L KW - Fracture Mechanics KW - Fatigue lifetime prediction PY - 2022 AN - OPUS4-55241 LA - spa AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - Do Microbes like Additively Manufactured Aluminium? First Details of a Corrosion Test using Sulphate-Reducing Bacteria N2 - Additively manufactured metals become relevant for industrial application. Although many studies on wet corrosion of these metals have been conducted, to the authors knowledge no study seems to contain microbiological corrosion (MIC). In the presented study an experiment was conducted on PBF-LB/AlSi10Mg to test this material's susceptibility for MIC. The tested specimen were analysed using Computed Tomography before and after the MIC experiment to enable a detailed characterisation the damage on the specimens' global and local level. A global reduction of material was observed. In addition, localised damage along process inherent features of the materials microstructure was observed. T2 - Beiratssitzung TF Umwelt CY - Berlin, Germany DA - 17.03.2025 KW - Computed Tomography KW - Additive Manufacturing KW - Biocorrosion KW - Sulphate-reducing Bacteria KW - Microbially influenced corrosion PY - 2025 AN - OPUS4-62772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Das pulverbettbasierte selektive Laserstrahlschmelzen (engl. laser powder bed fusion, L-PBF) ist die am weitesten verbreitete additive Fertigungstechnologie für die Herstellung metallischer Komponenten. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L-PBF-Bauteilen hat die Zwischenlagenzeit (engl. inter layer time, ILT) bisher kaum Beachtung in der wissenschaftlichen Literatur gefunden, obwohl sie je nach Bauraumausnutzungsgrad stark variieren kann. In diesem Vortrag werden Ergebnisse einer Studie präsentiert, die den Einfluss der ILT in Kombination mit der Bauteilhöhe und unter Berücksichtigung verschiedener Volumenenergiedichten am Beispiel der austenitischen Stahllegierung AISI 316L untersucht. Die Fertigungsprozesse wurden in-situ mittels Thermographiekamera überwacht. Auf diese Weise konnten intrinsische Vorerwärmungstemperaturen während der Bauteilfertigung lagenweise extrahiert werden. Es wurden signifikante Effekte der ILT und der Bauteilhöhe auf Wärmeakkumulation, Mikrostruktur, Schmelzbadgeometrie und Härte festgestellt. Ferner konnte ein Anstieg von Defektdichten bei einem gegenseitigen Wechselspiel aus Bauteilhöhe und ILT aufgezeigt werden. Die Zwischenlagenzeit wurde somit als kritischer Faktor für die L-PBF-Fertigung von Realbauteilen identifiziert. T2 - 74th IIW Annual Assembly and International Conference CY - Online meeting DA - 07.07.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring KW - Thermography KW - Preheating temperature KW - Inter layer time PY - 2021 AN - OPUS4-52954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A unique authenticator for additively manufactured parts derived from 3D microstructural information N2 - Additive manufacturing (AM) is rapidly emerging from rapid prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows identification, like a fingerprint, can be crucial for logistics, certification, and anti-counterfeiting purposes since nearly any geometry can be produced by AM with stolen data or reverse engineering of an original product. However, the mechanical and functional properties of the replicated part may not be identical to the original ones and pose a safety risk [2]. Several methods are already available, which range from encasing a detector to leveraging the stochastic defects of AM parts for the identification, authentication, and traceability of AM components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. Local manipulation of components may alter the properties. The external tagging features can be altered or even removed by post-processing treatments. Integrating electronic systems [4] in AM parts can be used to identify and authenticate components with complex or customized geometries. However, metal-based AM, especially in powder bed fusion (PBF-LB/M) techniques, has a strong shielding effect that interferes with the communication between the reader and the transponder. Our work suggests a methodology for the identification, authentication, and traceability of AM components using microstructural features in AM components. We will show a workflow that includes analysing 3D micro computed tomography data and selecting a set number of voids that fulfil the identification criteria. We will show the results this workflow produces for a series of 20 Al-based cuboid samples with identical processing parameters and discuss their prospects and limitations. The workflow can help to establish a non-tamperable connection between an additively manufactured part and its digital data and hence link the physical and the digital world. T2 - MSE Konferenz CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Fingerprint KW - Computed tomography PY - 2024 AN - OPUS4-62288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Improving additive manufacturing technologies by in-situ monitoring: Thermography N2 - Additive manufacturing of metals gains increasing relevance in the industrial field for part production. However, especially for safety relevant applications, a suitable quality assurance is needed. A time and cost efficient route to achieve this goal is in-situ monitoring of the build process. Here, the BAM project ProMoAM (Process monitoring in additive manufacturing) is briefly introduced and recent advances of BAM in the field of in-situ monitoring of the L-PBF and the LMD process using thermography are presented. T2 - Anwenderkonferenz Infratec GmbH CY - Online meeting DA - 04.11.2021 KW - Additive Manufacturing KW - Process monitoring KW - Thermography PY - 2021 AN - OPUS4-54026 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ temperature measurements of the LMD process by IR-spectroscopy and Thermography N2 - Temperature measurements of the LMD process by IR-spectroscopy and Thermography are presenet and compared. T2 - 2st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Thermography PY - 2021 AN - OPUS4-52565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Aktive Laserthermografie im L-PBF-Prozess zur in-situ Detektion von Defekten N2 - Die zerstörungsfreie Prüfung von metallischen Bauteilen hergestellt mit additiver Fertigung (Additive Manufacturing - AM) gewinnt zunehmend an industrieller Bedeutung. Grund dafür ist die Feststellung von Qualität, Reproduzierbarkeit und damit auch Sicherheit für Bauteile, die mittels AM gefertigt wurden. Jedoch wird noch immer ex-situ geprüft, wobei Defekte (z.B. Poren, Risse etc.) erst nach Prozessabschluss entdeckt werden. Übersteigen Anzahl und/oder Abmessung die vorgegebenen Grenzwerte für diese Defekte, so kommt es zu Ausschuss, was angesichts sehr langer Bauprozessdauern äußerst unrentabel ist. Eine Schwierigkeit ist dabei, dass manche Defekte sich erst zeitverzögert zum eigentlichen Materialauftrag bilden, z.B. durch thermische Spannungen oder Schmelzbadaktivitäten. Dementsprechend sind reine Monitoringansätze zur Detektion ggf. nicht ausreichend. Daher wird in dieser Arbeit ein Verfahren zur aktiven Thermografie an dem AM-Prozess Laser Powder Bed Fusion (L-PBF) untersucht. Das Bauteil wird mit Hilfe des defokussierten Prozesslasers bei geringer Laserleistung zwischen den einzelnen gefertigten Lagen unabhängig vom eigentlichen Bauprozess erwärmt. Die entstehende Wärmesignatur wird ort- und zeitaufgelöst durch eine Infrarotkamera erfasst. Durch diese der Lagenfertigung nachgelagerte Prüfung werden auch zum Bauprozess zeitversetzte Defektbildungen nachweisbar. In dieser Arbeit finden die Untersuchungen als Proof-of-Concept, losgelöst vom AM-Prozess, an einem typischen metallischen Testkörper statt. Dieser besitzt eine Nut als oberflächlichen Defekt. Die durchgeführten Messungen finden an einer eigens entwickelten L-PBF-Forschungsanlage innerhalb der Prozesskammer statt. Damit wird ein neuartiger Ansatz zur aktiven Thermografie für L-PBF erforscht, der eine größere Bandbreite an Defektarten auffindbar macht. Der Ansatz wird validiert und Genauigkeit sowie Auflösungsvermögen geprüft. Eine Anwendung am AM-Prozess wird damit direkt forciert und die dafür benötigten Zusammenhänge werden präsentiert. T2 - DGZfP-Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Thermografie KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 AN - OPUS4-55040 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schnieder, Verena T1 - Additive Fertigung von Nickel-Titan-Formgedächtnislegierungen aus den Elementpulvern mittels Laserpulverauftragschweißen N2 - Additive Fertigungsverfahren gewinnen aufgrund der schnellen, flexiblen und kostengünstigen Fertigung von Bauteilen zunehmend an Bedeutung. Das Laserpulverauftragschweißen (LPA) wurde anfangs hauptsächlich als Beschichtungsverfahren eingesetzt. Diese Technologie bewerkstelligt aber auch das Reparieren von verschlissenen Bauteilen, sodass diese zeitsparend und ressourcenschonend erneuert werden können. Die hohe Aufbaurate, die flexible Pulverzusammensetzung sowie die hohe Endkonturnähe ermöglichen die Entwicklung und additive Fertigung von neuen Materialien. Im Rahmen dieses Beitrages wurde das Verfahren des Laserpulverauftragschweißens zur additiven Fertigung von Nickel-Titan-Formgedächtnislegierungen angewandt. Diese Legierungsgruppe ist aufgrund der Eigenschaft der Gestalterinnerung ein äußerst interessantes Legierungssystem mit unterschiedlichen Anwendungsbereichen, wie zum Beispiel in der Luft- und Raumfahrttechnik sowie in der Medizintechnik. Zur Erzeugung einer äquiatomaren NiTi-Legierung wurden die Elementpulver in einem Verhältnis von 55,9 wt.% Nickel und 44,1 wt.% Titan miteinander vermischt. Das Auftragen von Einzelspuren, Schichten und dreidimensionalen Körpern erfolgte auf unterschiedlichen Substratplatten aus Titan-, Nickel- und Nickeltitanlegierungen. Die metallographischen Untersuchungen zeigten, dass sich in Abhängigkeit des Substratmaterials unterschiedliche Phasen ausbilden und Risse vom Substrat durch den additiven Aufbau auftreten. Bei mehrlagigem Aufbau kam es sogar zur Ablösung des additiven Aufbaus von der Substratplatte. Der artgleiche additive Aufbau, sprich NiTi-Legierung auf einem NiTi-Substrat (Ni50,8Ti49,2 in at.%), führte zur keiner Materialablösung. Das Gefüge sowie die Phasenzusammensetzungen bieten in diesem Bereich noch viel Forschungsbedarf. T2 - 39. Assistentenseminar CY - Eupen, Belgium DA - 12.09.2018 KW - Additive Fertigung KW - Additive Manufacturing KW - Laserpulverauftragschweißen KW - Formgedächtnislegierungen KW - NiTi-Legierungen PY - 2018 AN - OPUS4-46092 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Experimentelle Ermittlung zyklischer R-Kurven in additiv gefertigtem AISI 316L Stahl N2 - Diese Untersuchung beschäftigt sich mit der Charakterisierung von Kurzrisswachstum in mittels Laser-Pulverbett-Verschmelzen (LPBF - Laser Powder Bed Fusion) hergestelltem rostfreien austenitischen Stahl. Spezifischer wird die Ermittlung zyklischer R-Kurven untersucht. Diese beschreiben den Aufbau des Widerstands gegen Ermüdungsrisswachstum - d.h. des Schwellenwertes - aufgrund von Rissschließeffekten bei physikalisch kurzen Rissen. Mit Hilfe der zyklischen R-Kurven kann die Fähigkeit eines Bauteils, physikalisch kurze Risse zu arretieren, charakterisiert werden. Wir verfügen damit über eine Schnittstelle zwischen klassischer Ermüdung und Bruchmechanik. Das ist gerade auch für additiv gefertigte (AM – Additive Manufacturing) Materialien von Interesse. Diese weisen prozessintrinsische Defekte auf, die als Initiierungsstellen kurzer Ermüdungsrisse agieren. Im Rahmen der experimentellen Untersuchungen wurden zyklische R-Kurven für konventionellen und LPBF AISI-316L-Stahl ermittelt. Insbesondere wurde der Einfluss verschiedener Wärmebehandlungen (WB1: 450°C, WB2: 800°C und WB3: 900°C) auf das Wachstumsverhalten physikalisch kurzer Risse im LPBF-Material untersucht. Aufgrund hoher Eigenspannungen war die Ermittlung des Kurzrisswachstumsverhaltens bei WB1 nicht möglich. Für WB2 und WB3 ergaben sich sehr unterschiedliche zyklische R-Kurven. Untersuchungen der Eigenspannungen, der Bruchfläche (insbesondere der Rauheit) und der Mikrostruktur sollen die Ursachen für das unterschiedliche Verhalten erklären. Die Ergebnisse werden mit den Verhältnissen in konventionellem Material verglichen. T2 - Tagung des Arbeitskreises Bruchmechanik und Bauteilsicherheit CY - Online meeting DA - 18.02.2021 KW - Additive Manufacturing KW - Zyklische R-Kurve KW - Ermüdungsriss KW - L-PBF KW - 316L PY - 2021 AN - OPUS4-52250 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - D'Accardi, E. T1 - Capability of active thermography to detect and localize pores in Metal Additive Manufacturing materials N2 - A powerful tool to understand, demonstrate and explain the limits of the pulsed technique in terms of detectability and localizability of AM keyhole pores has been assessed by comparing the active thermographic approach (both experimental and FEM simulations) to Computed Tomography results; ✓ µCT results demonstrate that the intended defect geometry is not achieved; indeed a network of voids (microdefects consisting of small sharp-edged hollows with a complicated, almost fractal, inner surface) was found; ✓ both Exp-PT and FEM results explains clearly why no indication of defect related to the thermal contrasts could be found during the investigation of an uncoated surface. However, the application of further data evaluations focusing on the thermal behavior and emissivity evaluation (PPT post data processing) enable the detection of some defects; ✓ coating facilitates a closer inspection of inner defects, but inhomogeneities of the coating could impair the spatial resolution and lead to the emergence of hotspots (the FEM simulation reached its limit with this extreme geometry where a 25 µm thin disc is considered at a 1 cm thick specimen in millisecond time resolution); ✓ both Exp-PT and FEM results allow the conclusion that very short pulses of 200 ms or shorter should be sufficient to detect these defects below, but near the surface; besides a short duration of the thermal phenomenon it should be emphasized, about 0.04 s (high frame rate camera); T2 - Convegno AIAS 2020 CY - Online meeting DA - 02.09.2020 KW - Additive Manufacturing KW - Laser powderbed fusion KW - Pores KW - Thermography PY - 2020 AN - OPUS4-51922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Comparison of NIR and SWIR thermography for defect detection in laser powder bed fusion N2 - Since laser powder bed fusion (PBF-LB/M) is prone to the formation of defects during the building process, a fundamental requirement for widespread application is to find ways to assure safety and reliability of the additively manufactured parts. A possible solution for this problem lies in the usage of in-situ thermographic monitoring for defect detection. In this contribution we investigate possibilities and limitations of the VIS/NIR wavelength range for defect detection. A VIS/NIR camera can be based on conventional silicon-based sensors which typically have much higher spatial and temporal resolution in the same price range but are more limited in the detectable temperature range than infrared sensors designed for longer wavelengths. To investigate the influence, we compared the thermographic signatures during the creation of artificially provoked defects by local parameter variations in test specimens made of a nickel alloy (UNS N07208) for two different wavelength ranges (~980 nm and ~1600 nm). T2 - 13th CIRP Conference on Photonic Technologies - LANE 2024 CY - Fürth, Germany DA - 15.09.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Defect Detection KW - Thermography PY - 2024 AN - OPUS4-61285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress analysis on a DED-Arc additive manufactured high-strength steel component using the contour method N2 - Direct Energy Deposition with arc (DED-arc) or wire arc additive manufacturing (WAAM) has significantly transformed the manufacturing paradigm in recent years by the virtue of its capability to fabricate intricate, large scale metallic parts owing to high deposition rates, high efficiency, and cost effectiveness. Subsequent enhancement in efficiency can be achieved through the utilization of the high-strength structural steels. The fabrication of the intricate geometries possesses challenges in regulating the residual stresses (RS), representing a significant concern in the realm of additive manufacturing (AM). High residual stresses contribute to an increased risk of cold cracking particularly in the welding of the high strength steels arising from complex interactions among the material, process conditions and component design. Reliable residual stress evaluation is vital in the structural integrity assessment of the welded components. Therefore, in the present study, the contour method was used to analyse the full field longitudinal residual stresses in an open hollow cuboid specimen fabricated by DED-arc. In this method, the specimen is cut along a desired plane of interest and the deformation caused by the cut surface is measured using the coordinate measuring machine and an industrial non-contact 3D scanner. A different cutting and restraint methodology was adopted and its influence on the residual stresses was analysed. The results indicate that the maximum tensile residual stresses around 600 MPa occurred in the left wall of the DED-arc structure exactly two layers below from the top. Additionally, the stresses at the bottom layer of the base plate demonstrate tensile in longitudinal direction and the corresponding balancing compressive residual stresses occurred at the top layer of the base plate. The contour approach is efficient and precise way for generating a two-dimensional residual stress map. The results obtained from the contour method was further validated using the X-ray Diffraction and both sets of findings demonstrated similarity. T2 - European Conference on Residual Stresses - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - High strength steels KW - Additive Manufacturing KW - Residual stress KW - Contour methode PY - 2024 AN - OPUS4-61948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ Prüfung additiv gefertigter L-PBF-Bauteile mit aktiver Laserthermografie N2 - Die additive Fertigung von metallischen Bauteilen (Additive Manufacturing - AM; auch 3D-Druck genannt) bietet eine Vielzahl an Vorteilen gegenüber konventionellen Fertigungsmethoden. Durch den schichtweisen Auftrag und das selektive Aufschmelzen von Metallpulver im Laser Powder Bed Fusion Prozess (L-PBF) sind u.a. optimierte und flexibel anpassbare Designs und die Nutzung von neuartigen Materialien möglich. Aufgrund der Komplexität des AM-Prozesses und der Menge an Einflussfaktoren ist eine Qualitätssicherung der gefertigten Bauteile unabdingbar. Verschiedene in-situ Monitoringansätze werden bereits angewendet, jedoch findet eine dedizierte Prüfung erst im Nachgang der Fertigung ex-situ statt. Der Grund dafür ist, dass die Entstehung von geometrischen Abweichungen und Defekten auch zeitversetzt zum eigentlichen Materialauftrag und damit auch zum Monitoring stattfinden kann. Die Notwendigkeit geeigneter in-situ Prüfmethoden für L-PBF, um die Erforderlichkeit einer Nacharbeitung frühzeitig festzustellen und Ausschuss zu vermeiden ist angesichts kostenintensiver Ausgangsstoffe und einer oftmals mehrstündigen bis mehrtägigen Prozessdauer besonders hoch. Daraus motiviert wird im Rahmen des Projektes ATLAMP die Möglichkeit der aktiven Laserthermografie mit Hilfe des defokussierten Fertigungslasers untersucht. Damit ist, bei vergleichsweise geringer Laserleistung, eine zerstörungsfreie Prüfung mittels Flying Spot Thermografie möglich. Diese findet jeweils anschließend an die Fertigung einer Schicht statt, womit der reale Status des Bauteils im Verlauf des AM-Prozesses geprüft wird. Als Grundlage dafür werden im Rahmen dieser Arbeit mit AM gefertigte, defektbehaftete Probekörper zunächst losgelöst vom Fertigungsprozess untersucht. Damit werden die Grundlagen für den neuartigen Ansatz der aktiven in-situ Laserthermografie im L-PBF-Prozess mittels des Fertigungslasers geschaffen. Auf diese Weise lassen sich auch zeitversetzt auftretende Defekte zerstörungsfrei im Prozessverlauf feststellen und eine aussagekräftige Qualitätssicherung des Ist-Zustands des Bauteils erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Defekte KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/18.pdf SN - 978-3-947971-27-5 AN - OPUS4-56810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - Two approaches for multi measurand in-situ monitoring of the L-PBF process – bicolor- and RGB-optical tomography N2 - Since metal additive manufacturing (AM) becomes more and more established in industry, also the cost pressure for AM components increases. One big cost factor is the quality control of the manufactured components. Reliable in-process monitoring systems are a promising route to lower scrap rates and enhance trust in the component and process quality. The focus of this contribution is the presentation and comparison of two optical tomography based multi measurand in-situ monitoring approaches for the L-PBF process: the bicolor- and the RGB-optical tomography. The classical optical tomography (OT) is one of the most common commercial in-situ monitoring techniques in industrial L-PBF machines. In the OT spatial resolved layer-images of the L-PBF process are taken from an off-axis position in one near infrared wavelength window. In addition to the explanatory powers classical OT, both here presented approaches enable the determination of the maximum surface temperature. In contrast to thermography that may also yield maximum temperature information, the needed equipment is significantly cheaper and offers a higher spatial resolution. Both approaches are implemented at a new in-house developed L-PBF system (Sensor-based additive manufacturing machine - SAMMIE). SAMMIE is specifically designed for the development and characterization of in-situ monitoring systems and is introduced as well. T2 - ICAM2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring KW - Optical tomography PY - 2022 AN - OPUS4-56594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ defect detection for laser powder bed fusion with active laser thermography N2 - Defects are still common in metal components built with Additive Manufacturing (AM). Process monitoring methods for laser powder bed fusion (PBF-LB/M) are used in industry, but relationships between monitoring data and defect formation are not fully understood yet. Additionally, defects and deformations may develop with a time delay to the laser energy input. Thus, currently, the component quality is only determinable after the finished process. Here, active laser thermography, a non-destructive testing method, is adapted to PBF-LB/M, using the defocused process laser as heat source. The testing can be performed layer by layer throughout the manufacturing process. The results of the defect detection using infrared cameras are presented for a custom research PBF-LB/M machine. Our work enables a shift from post-process testing of components towards in-situ testing during the AM process. The actual component quality is evaluated in the process chamber and defects can be detected between layers. T2 - 2023 Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - Additive Manufacturing KW - Additive Fertigung KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-58137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Defect Detection KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-57922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - Hyperspektrale Thermografie im metallischen Laser-Pulverbettschweißen (PBF-LB/M): Grundlagen für eine in-situ Realtemperatur-Bestimmung N2 - Die additive Fertigung (Additive Manufacturing AM, auch als 3D Druck bekannt) von Metallen nimmt einen stetig wachsenden Stellenwert in industriellen Anwendungen ein. Gründe dafür sind u.a. die Möglichkeit der Umsetzung komplexer Bauteildesigns und die Nutzung neuartiger Werkstoffe. Damit hebt sich AM von konventionellen Fertigungsmethoden wie der subtraktiven Fertigung (Drehen, Fräsen, etc.) ab. Das für Metalle am weitesten verbreitete AM-Verfahren ist das Laser-Pulverbettschweißen (Laser Powder Bed Fusion PBF-LB/M, auch als Selective Laser Melting SLM bekannt). Es besitzt aktuell den höchsten Industrialisierungsgrad und die größte Anzahl an eingesetzten Maschinen. Bei PBF-LB/M liegt der metallische Ausgangswerkstoff unter Inertgasatmosphäre innerhalb einer Prozesskammer in einem Bett als Pulver vor und ein Laser schmilzt dieses lokal auf. Durch wiederholtes Auftragen einer neuen Pulverschicht und anschließendes selektives Schmelzen mit Hilfe des Lasers findet der lagenweise Aufbau eines Bauteils statt. Die dabei auftretenden lokalen Temperaturverteilungen bestimmen sowohl die Eigenschaften des gefertigten Bauteils als auch das mögliche Auftreten von Defekten wie Poren oder Risse. Durch diese Relevanz der thermischen Historie wäre die Aufzeichnung der auftretenden Realtemperaturen in zeitlicher und räumlicher Abhängigkeit optimal. Mit quantitativen Werten wären Vergleichbarkeit und Wiederholbarkeit des AM-Prozesses gegeben, was sich auch positiv auf Qualität und Sicherheit des gefertigten Bauteils auswirkt. Außerdem wäre ein Beitrag zur Validierung von Simulationen sowie zur Gewinnung eines tieferen Verständnisses des Fertigungsprozesses gegeben. Jedoch findet aktuell lediglich ein qualitatives Monitoring statt (bspw. mittels Überwachung des Schweißbades durch eine Photodiode) und sicherheitsrelevante Bauteile müssen zeit- und kostenaufwändig im Nachgang ex-situ geprüft werden. Grund dafür sind auch die herausfordernden Bedingungen des PBF-LB/M-Prozesses mit hohen Scangeschwindigkeiten bei geringem Durchmesser des Laserspots. Des Weiteren erschweren die auftretenden Emissionsgradänderungen mit hoher Dynamik (zeitlich, räumlich) und den gegebenen Abhängigkeiten (temperatur-/wellenlängenabhängig) eine berührungslose Temperaturbestimmung basierend auf emittierter Infrarotstrahlung deutlich. Klassische Thermografie bietet zwar sehr gute qualitative Einblicke, ist dabei jedoch ohne eine aufwändige Temperaturkalibrierung inklusive Bildsegmentierung und Zuweisung von vorher ermittelten Emissionsgraden für eine verlässliche Bestimmung der Realtemperatur nicht ausreichend. Aus diesem Grund wird in dieser Veröffentlichung der Ansatz der hyperspektralen Thermografie für den PBF-LB/M Prozess vorgestellt: Die emittierte Infrarotstrahlung wird gleichzeitig bei einer Vielzahl von benachbarten Wellenlängenbereichen gemessen. Dies wird in dieser Untersuchung mittels einer selbst zusammengestellten hyperspektralen Linienkamera, die im kurzwelligen Infrarotbereich arbeitet, realisiert. Hierbei wird die thermische Strahlung einer Linie auf dem Messobjekt spektral aufgespalten und detektiert, sodass die spektrale spezifische Ausstrahlung entlang dieser Linie vermessen werden kann. Bewegt sich das Schmelzbad des PBF-LB/M Prozesses bei ausreichender Bildfrequenz durch diese Linie, ist eine räumliche Rekonstruktion eines effektiven Schmelzbades möglich. Ein Ansatz, um aus diesen hyperspektralen Daten die gesuchten Emissionsgrade sowie die Realtemperatur zu ermitteln, sind Methoden der Temperatur-Emissionsgrad-Separation (TES). Ein Hauptproblem besteht darin, dass n spektrale Messungen verfügbar sind, jedoch n+1 Kenngrößen für jeden Bildpixel gesucht werden (n Emissionsgrade + eine Temperatur). TES-Methoden liefern die Möglichkeit, dieses mathematisch unterbestimmte Problem verlässlich und nachvollziehbar zu approximieren, indem der spektrale Emissionsgrad mit wenigen Freiheitsgraden analytisch parametriert wird. Mit Hilfe dieses Ansatzes werden Setup und Methoden an SAMMIE (Sensor-based Additive Manufacturing Machine), einer Forschungsmaschine für PBF-LB/M, angewendet. Erste Ergebnisse unter AM-Prozessbedingungen werden gezeigt, welche die Grundlage für die Bestimmung von Realtemperaturen im PBF-LB/M-Prozess bilden. Dies leistet einen wichtigen Beitrag zur verbesserten Vergleichbarkeit und Wiederholbarkeit der Fertigung, zur Validierung von Simulationen sowie zum Verständnis des Prozesses selbst. Das unterstützt langfristig dabei das Vertrauen in die Sicherheit von AM-Produkten zu stärken. T2 - TEMPERATUR 2024 CY - Berlin, Germany DA - 05.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Schmelzbadtemperatur KW - Hyperspectral Imaging KW - Emissionsgrad KW - Quantitative Temperatur PY - 2024 AN - OPUS4-60753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE – PBF-LB/M Research System for the Development of in-situ Monitoring methods N2 - The additive manufacturing of metals has now reached a level of maturity that enables its use in many branches of industry or brings it within reach. The main advantages are the ability to produce complex components that cannot be produced conventionally or only at great expense, as well as in the production of highly individualized components in small quantities. However, the additive manufacturing process is highly complex and prone to errors. In order to guarantee the quality control required particularly for safety-relevant components, complex downstream nondestructive testing NDT of the individual components is currently necessary. In-situ process monitoring and testing could offer alternatives, but these have not yet reached a sufficient level of functionality. Industrial production facilities offer little or no flexibility and accessibility to enable extensive investigations in this area. For this reason, we developed a system for the powder bed fusion process of metals (PBF-LB/M) called SAMMIE. It offers a completely open system architecture with full control over the process and flexible access to the build chamber, e.g., optically both on-axis and off-axis to the production laser. In this contribution, we present the system and show first experimental results of in-situ monitoring and testing, e.g., high-resolution thermographic melt pool monitoring, multispectral optical tomography, and high-speed videos of the process. SAMMIE enables us to conduct fundamental investigations that will help to further develop in-situ process monitoring and testing, gain new insights into the process, and improve its safety and reliability. T2 - 48th MPA-Seminar CY - Stuttgart, Germany DA - 08.10.2024 KW - PBF-LB/M KW - In situ monitoring KW - Custom machine KW - Additive Manufacturing KW - Process monitoring PY - 2024 AN - OPUS4-61350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - PBF-LB/M: Prozess Monitoring mittels Multispektraler OT N2 - Die metallische additive Fertigung hat in den letzten Jahren in der industriellen Fertigung zunehmend an Bedeutung gewonnen. Hierbei dominiert das Laser-Pulverbettschweißen von Metallen (PBF/LB-M) die Fertigung von kleinformatigen Bauteilen mit hoher Oberflächengüte. Die anspruchsvolle und kostspielige Qualitätssicherung stellt aber weiterhin ein Hindernis für eine breitere und kostengünstigere Anwendung der additiven Fertigung dar. Dies resultiert teilweise aus fehlenden zuverlässigen In-situ-Monitoringsystemen. Belastbarere Prozessüberwachungsdaten würden eine oft erforderliche teure nachgelagerte Prüfung mittels Computertomografie entbehrlich machen. Die Aufzeichnung der thermischen Signaturen des Aufbauprozess mittels Thermografie-Kameras zeigen hier vielversprechende Ergebnisse. Eine Korrelation zu auftretender Porosität, Delaminationen und Deformationen scheinen möglich. Die geringe räumliche Auflösung und die hohen Anschaffungskosten für thermografische Kamerasysteme stehen jedoch einer größeren industriellen Nutzung im Wege. Ein bereits industriell angewendeter Ansatz zur in-Situ Überwachung des PBF-LB/M Prozesses ist die Optische Tomografie (OT). Hierbei wird die emittierte Prozessstrahlung jeder Bauteilschicht mittels einer hochauflösenden günstigen Kamera für den sichtbaren Wellenlängenbereich in einer Langzeitbelichtung dokumentiert. Die zeitliche Information der emittierten Strahlung geht hierbei verloren. Der gesamte Bauprozess kann jedoch in einem vergleichsweise kleinen Datensatz dokumentiert werden (ein Bild pro Schicht). Eine direkte Korrelation zu auftretenden Defekten gestaltet sich aufgrund der reduzierten thermischen Informationsdichte jedoch schwierig. In diesem Beitrag soll deshalb das Prinzip der Multispektralen Optischen Tomografie (MOT) vorgestellt und erste Messergebnisse an der Forschungsanlage SAMMIE diskutiert werden. Bei der MOT handelt es sich um eine Übertragung des Prinzips der Quotientenpyrometrie auf das etablierte Verfahren der Optischen Tomografie. Die auftretende Prozessstrahlung wird in mehreren Wellenlängenbereichen ortsaufgelöst über die gesamte Bauplattform erfasst und zeitlich in einer Langzeitbelichtung integriert. Hierbei kommen günstige Kamerasysteme für den sichtbaren Wellenlängenbereich zum Einsatz. Das erfasste Signal I jedes Bildpixels für jeden separat erfassten Wellenlängenbereich kann als Maß für das zeitliche Integral der spezifischen Ausstrahlung M des Schmelzbades in diesem Wellenlängenbereich gesehen werden. Nach dem Stefan-Boltzmann-Gesetz hängt die abgestrahlte thermische Leistung P eines idealen Schwarzen Körpers in der vierten Potenz von dessen absoluten Temperatur T ab. Wird nur, wie z.B. bei der klassischen OT angewendet, der nahinfrarote Wellenlängenbereich betrachtet, lässt sich mit dem Planck’schen Strahlungsgesetz sogar eine Proportionalität zur siebten Potenz der Temperatur zeigen. Deshalb liegt ein starker Einfluss der maximal auftretenden Oberflächentemperatur Tmax auf das erfasste Messsignal vor. Das erfasste Signal I wird aber auch durch die spektrale Transmission τ der verwendeten optischen Komponenten des Kamera-Setups, z.B. Filter und Objektive, durch die spektrale Sensitivität S der verwendeten Kamera-Sensoren und den nur sehr schwer zu bestimmenden Emissionsgrad ε der emittierenden (flüssigen) Oberfläche beeinflusst. In einer ersten Näherung wird das Schmelzbad hier als Graukörper, also ein Körper mit wellenlängenunabhängigem Emissionsgrad ε, betrachtet. Basierend auf dieser Annahme und vermessenen optischen Eigenschaften des verwendeten Systems ist es möglich, eine erste Schätzung der maximalen Oberflächentemperatur Tmax vorzunehmen, selbst ohne genaue Kenntnis des tatsächlichen Emissionsgrades ε. Dies wird durch die Anwendung des Planck‘schen Strahlungsgesetzes und die Quotienten Bildung aus den einzelnen erfassten Signalen I ermöglicht. Auch bei diesem Verfahren geht die zeitliche Information einer Schicht, also das Aufwärm- und Abkühlverhalten des Schmelzbades, verloren. Zudem sind die Messergebnisse in Hinblick auf tatsächlich gemessene „maximal auftretende Oberflächentemperatur“ mit gebotener Zurückhaltung zu interpretieren. Trotzdem konnten erste Ergebnisse bereits zeigen, dass die MOT-Daten auch in Bereichen mit Doppelbelichtungen (das teilweise notwendige mehrfache Scannen eines Bereiches mittels des Fertigungslasers) im Gegensatz zur klassischen OT erwartbare Maximaltemperaturen liefern. Abbildung 1 zeigt das erfasste Messergebnis für drei aufeinanderfolgende Schichten eines Bauteils einmal mit MOT (links) und einmal mit einfacher OT (rechts). Deutlich zu erkennen ist das durch die doppelte Belichtung hohe Signal bei der OT. Die Daten der MOT zeigen hier keine erhöhten Werte. Um die ermittelten Temperaturwerte mittels MOT besser einordnen zu können, sind u.a. vergleichende Messungen an Referenzmaterialien geplant. Um die Auswertung der gemessenen Daten zu verbessern, wird zudem der Zeitverlauf des Abkühlens und Aufheizens des Schmelzbades sowie die Einflüsse von Prozessbeiprodukten wie Schmauch und Spritzer näher untersucht. Auch werden Messungen zum Emissionsgrad ε an additiv gefertigten Proben und Metallschmelzen vorgenommen. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Optische Tomografie KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE: Eigenbau-Anlage für Metall-AM zur Sensorentwicklung und Qualifizierung N2 - Im additiven Fertigungsprozess Laser-Pulverbettschweißen wird Metallpulver lagenweise mittels eines Lasers aufgeschmolzen, um Bauteile zu generieren. Hierbei werden die Eigenschaften der Bauteile zu einem großen Teil durch die im Verlauf des Prozesses vorliegenden Temperaturen bestimmt. Dies beinhaltet unter anderem Materialeigenschaften wie Mikrostruktur, Härte, thermische und elektrische Leitfähigkeiten sowie die Ausbildung von Defekten wie z.B. Anbindungsfehler, Keyhole-Porosität (Gaseinschlüsse) oder auch die Ausbildung von Rissen. Zur Überwachung bzw. Vorhersage dieser Eigenschaften sowie zum Abgleich von Simulationen ist eine orts- und zeitaufgelöste Messung der Temperaturverteilung im Prozess daher von herausragender Bedeutung. In der Industrie kommen optische Verfahren, die auf der Messung der thermischen Strahlung basieren, regelmäßig zum Einsatz. Allerdings dienen diese bislang nur der statistischen Auswertung und der Identifikation von Abweichungen vom Normalprozess. Der quantitativen Auswertung zur Temperaturbestimmung stehen aktuell noch eine Vielzahl von Herausforderungen entgegen. Einerseits stellt der Prozess an sich hohe Anforderungen an die Datenerfassung und -auswertung: der Emissionsgrad verändert sich dynamisch im Prozess und lokale Schmauchbildung sorgt für potenzielle Absorption oder Streuung der thermischen Strahlung oder auch des Fertigungslasers. Weiterhin stellt der hochdynamische Prozess hohe Anforderungen an Orts- und Zeitauflösung der eingesetzten Sensorik (z.B. Kameratechnik). Andererseits erschweren an üblichen kommerziell erhältlichen Fertigungsanlagen praktische Hindernisse wie eine eingeschränkte optische Zugänglichkeit und der fehlende Zugriff auf die Anlagensteuerung sowie fehlende Möglichkeiten der Synchronisation der Messtechnik mit dem Prozess eine eingehende Untersuchung dieser Effekte. Um letztere Hindernisse zu umgehen, wurde an der BAM die Forschungsanlage SAMMIE (sensor-based additive manufacturing machine) entwickelt. Einerseits bietet das System alle Möglichkeiten, die auch übliche kommerzielle Systeme bieten. Dies beinhaltet die Fertigung ganzer Bauteile (maximale Größe ca. 65mm x 45 mm x 30 mm) und den Einsatz einer Inertgasatmosphäre inkl. gefiltertem Schutzgasstrom. Andererseits bietet es aber auch einen besonders kompakten Bauraum, um die Sensorik möglichst nah an den Prozess führen zu können, sechs optische Fenster zur Prozessbeobachtung aus unterschiedlichen Winkeln und die Möglichkeit der Prozessbeobachtung koaxial zum Fertigungslaser. Des Weiteren besteht eine einfache Austauschbarkeit aller Fenster, Spiegel und Strahlteiler, um den gesamten optischen Pfad der aktuellen Messaufgabe flexibel anzupassen. Die komplette Anlagensteuerung ist eine Eigenentwicklung und bietet daher auch völlige Anpassbarkeit. Eine synchrone und frei konfigurierbare Triggerung diverser Sensoriken und synchrone Datenerfassung bieten maximale Kontrolle über die Sensorsteuerung. Dieser Beitrag gibt einen Überblick über die Fertigungsanlage SAMMIE. Wissenschaftliche Ergebnisse sowie laufende Arbeiten an der Anlage werden in weiteren Beiträgen vorgestellt. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - Emissivity – Gamechanger for quantitative in-situ monitoring N2 - For a deep process understanding of the laser powder bed fusion process (PBF-LB/M), recording of the occurring surface temperatures is of utmost interest and would help to pave the way for reliable process monitoring and quality assurance. A notable number of approaches for in-process monitoring of the PBF-LB/M process focus on the monitoring of thermal process signatures. However, due to the elaborate calibration effort and the lack of knowledge about the occurring spectral directional emissivity, only a few approaches attempt to measure real temperatures. In this study, to gain initial insights into occurring in the PBF-LB/M process, measurements on PBF-LB/M specimens and metal powder specimens were performed for higher temperatures up to T = 1290 °C by means of the emissivity measurement apparatus (EMMA) of the Center for Applied Energy Research (CAE, Wuerzburg, Germany). Also, measurements at ambient temperatures were performed with a suitable measurement setup. Two different materials—stainless steel 316L and aluminum AlSi10Mg—were examined. The investigated wavelength λ ranges from the visible range (λ-VIS = 0.40–0.75 µm) up to the infrared, λ = 20 µm. The influence of the following factors were investigated: azimuth angle φ, specimen temperature TS, surface texture as for PBF-LB/M surfaces with different scan angles α, and powder surfaces with different layer thicknesses t. T2 - Rapid.Tech 3D 2024 CY - Erfurt, Germany DA - 14.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Emissivity KW - Additive Manufacturing PY - 2024 AN - OPUS4-60148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon T1 - A comparison of machine learning approaches for porosity prediction in PBF-LB/M based on thermography N2 - Metal-based additive manufacturing processes are increasingly used in industry to produce complex-shaped components. In this regard, the laser-based Powder Bed Fusion process (PBF-LB/M) is one of the key technologies due to its capability to produce components in high spatial accuracy. The formation of porosity during manufacturing poses a serious risk to the safety of the printed parts. For quality assessment, in-situ monitoring technologies such as thermography can be used to capture the thermal history during production. It was shown that discontinuities within the thermal history can be correlated with the probability of porosity or defect formation. In this context, Machine Learning (ML) algorithms have achieved promising results for the task of porosity prediction based on thermographic in-situ monitoring data. One important technique is the use of thermogram features for porosity prediction that are extracted from the raw data (e.g., features related to the melt pool geometry or spatter generation). However, the reduction from large thermogram data to discrete features holds the risk of losing potentially important thermal information and, thereby, introducing bias in the model. Therefore, we present a raw data-based deep learning approach that uses thermographic image sequences for the prediction of local porosity. The model takes advantage of the self-attention mechanism that considers not only the thermogram information but also its positional context within the sequence. The model is used to predict porosity in the form of a many-to-one regression. It is trained and tested on a dataset retrieved from the manufacturing of HAYNES282 cuboid specimens. The model results are compared against state-of-the-art thermogram feature-based ML models and artificial neural networks. The raw data model outperforms its feature-based counterparts in terms of prediction scores and, therefore, seems to make better use of the information available in the thermogram data. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Machine learning KW - Porosity prediction PY - 2024 AN - OPUS4-62472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - SAMMIE - Research PBF-LB/M system for the development of in-situ monitoring methods N2 - By allowing economic on-demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM is to find ways to assure the safety and reliability of the additively manufactured parts to become applicable in most fields. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. However, only a few of these techniques are commercially available and are not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. Since commercial AM machines are not designed for research applications, they provide only limited access to the build chamber during the process and little control over the exact timing and parameters of the process. Therefore, for our research at BAM, we built a laser powder bed fusion system (PBF-LB/M), called “Sensor-based Additive Manufacturing MachInE” (SAMMIE). It provides a fully open system architecture with flexible accesses to the build camber and full control of the complete process. In this contribution, we show first results using thermographic cameras and optical tomography. The flexibility of SAMMIE allows us to use the multiple cameras either fixed relatively to the build plate or coaxially to the process laser. T2 - 20th World Conference on Non-Destructive Testing (WCNDT) CY - Incheon, South Korea DA - 27.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Custom machine KW - Additive Manufacturing KW - Thermography PY - 2024 AN - OPUS4-62471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -