TY - CONF A1 - Pignatelli, Giuseppe A1 - Altenburg, Simon A1 - Scheuschner, Nils T1 - Simultaneous temperature measurement during LMD by OES and thermography N2 - While sensors for monitoring the energy source, the melt pool size or temperatures during the process of metal-based Additive Manufacturing (AM) systems are commercially available, the impact of their results on the part quality are often unclear. In the BAM project ProMoAM, results of different process monitoring techniques are combined to achieve quality assurance for the produced parts during the build. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L are presented. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Additive Manufacturing KW - Spectroscopy KW - Thermographie KW - LMD PY - 2019 AN - OPUS4-48525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Zerbst, Uwe T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon J. A1 - Breese, Philipp P. A1 - Oster, Simon A1 - Becker, Tina T1 - SAMMIE: Eigenbau-Anlage für Metall-AM zur Sensorentwicklung und Qualifizierung N2 - Im additiven Fertigungsprozess Laser-Pulverbettschweißen wird Metallpulver lagenweise mittels eines Lasers aufgeschmolzen, um Bauteile zu generieren. Hierbei werden die Eigenschaften der Bauteile zu einem großen Teil durch die im Verlauf des Prozesses vorliegenden Temperaturen bestimmt. Dies beinhaltet unter anderem Materialeigenschaften wie Mikrostruktur, Härte, thermische und elektrische Leitfähigkeiten sowie die Ausbildung von Defekten wie z.B. Anbindungsfehler, Keyhole-Porosität (Gaseinschlüsse) oder auch die Ausbildung von Rissen. Zur Überwachung bzw. Vorhersage dieser Eigenschaften sowie zum Abgleich von Simulationen ist eine orts- und zeitaufgelöste Messung der Temperaturverteilung im Prozess daher von herausragender Bedeutung. In der Industrie kommen optische Verfahren, die auf der Messung der thermischen Strahlung basieren, regelmäßig zum Einsatz. Allerdings dienen diese bislang nur der statistischen Auswertung und der Identifikation von Abweichungen vom Normalprozess. Der quantitativen Auswertung zur Temperaturbestimmung stehen aktuell noch eine Vielzahl von Herausforderungen entgegen. Einerseits stellt der Prozess an sich hohe Anforderungen an die Datenerfassung und -auswertung: der Emissionsgrad verändert sich dynamisch im Prozess und lokale Schmauchbildung sorgt für potenzielle Absorption oder Streuung der thermischen Strahlung oder auch des Fertigungslasers. Weiterhin stellt der hochdynamische Prozess hohe Anforderungen an Orts- und Zeitauflösung der eingesetzten Sensorik (z.B. Kameratechnik). Andererseits erschweren an üblichen kommerziell erhältlichen Fertigungsanlagen praktische Hindernisse wie eine eingeschränkte optische Zugänglichkeit und der fehlende Zugriff auf die Anlagensteuerung sowie fehlende Möglichkeiten der Synchronisation der Messtechnik mit dem Prozess eine eingehende Untersuchung dieser Effekte. Um letztere Hindernisse zu umgehen, wurde an der BAM die Forschungsanlage SAMMIE (sensor-based additive manufacturing machine) entwickelt. Einerseits bietet das System alle Möglichkeiten, die auch übliche kommerzielle Systeme bieten. Dies beinhaltet die Fertigung ganzer Bauteile (maximale Größe ca. 65mm x 45 mm x 30 mm) und den Einsatz einer Inertgasatmosphäre inkl. gefiltertem Schutzgasstrom. Andererseits bietet es aber auch einen besonders kompakten Bauraum, um die Sensorik möglichst nah an den Prozess führen zu können, sechs optische Fenster zur Prozessbeobachtung aus unterschiedlichen Winkeln und die Möglichkeit der Prozessbeobachtung koaxial zum Fertigungslaser. Des Weiteren besteht eine einfache Austauschbarkeit aller Fenster, Spiegel und Strahlteiler, um den gesamten optischen Pfad der aktuellen Messaufgabe flexibel anzupassen. Die komplette Anlagensteuerung ist eine Eigenentwicklung und bietet daher auch völlige Anpassbarkeit. Eine synchrone und frei konfigurierbare Triggerung diverser Sensoriken und synchrone Datenerfassung bieten maximale Kontrolle über die Sensorsteuerung. Dieser Beitrag gibt einen Überblick über die Fertigungsanlage SAMMIE. Wissenschaftliche Ergebnisse sowie laufende Arbeiten an der Anlage werden in weiteren Beiträgen vorgestellt. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Breese, Philipp P. A1 - Oster, Simon A1 - Becker, Tina A1 - Scheuschner, Nils T1 - SAMMIE – Forschungssystem für die additive Fertigung von Metallen (PBF-LB/M) zur Entwicklung von In-situ-Überwachungs- und -prüfmethoden N2 - Die additive Fertigung von Metallen hat inzwischen einen Reifegrad erreicht, der einen Einsatz in vielen Industriezweigen ermöglicht oder in greifbare Nähe rückt. Die Vorteile liegen vor allem in der Möglichkeit der Fertigung komplexer Bauteile, die sich konventionell nicht oder nur sehr aufwändig produzieren lassen, sowie in der Fertigung von hochindividualisierten Bauteilen in kleinen Stückzahlen. Allerdings ist der additive Fertigungsprozess hoch komplex und fehleranfällig. Um eine insbesondere für sicherheitsrelevante Bauteile notwendige Qualitätskontrolle zu gewährleisten, ist aktuell aufwändige nachgelagerte ZfP der einzelnen Bauteile notwendig. Alternativen könnten die In-situ-Prozessüberwachung und -prüfung bieten, die aktuell aber noch keinen ausreichenden Entwicklungsstand erreicht haben. Industrielle Fertigungsanlagen bieten keine oder nur geringe Flexibilität und Zugänglichkeit, um umfangreiche Untersuchungen auf diesem Gebiet zu ermöglichen. Daher haben wir an der BAM ein System für den Prozess des selektiven Laserschmelzens (PBF-LB/M) entwickelt, genannt SAMMIE. Es bietet eine komplett offene Systemarchitektur mit voller Kontrolle über den Prozess und flexiblem Zugang zur Baukammer, z.B. optisch sowohl direkt als auch koaxial zum Fertigungslaser. In diesem Beitrag stellen wir das System vor und zeigen erste experimentelle Ergebnisse der In-situ-Überwachung und -prüfung: Thermografische Schmelzbadüberwachung, optische Tomografie und In-situ-Laserthermografie. SAMMIE ermöglicht uns grundlegende Untersuchungen, die helfen werden, die In-situ-Prozessüberwachung und -prüfung weiterzuentwickeln, neue Erkenntnisse über die additive Fertigung zu gewinnen und die Sicherheit und Zuverlässigkeit des Prozesses zu verbessern. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60149 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Bruno, Giovanni A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD, USA DA - 07.10.2019 KW - Residual stress KW - Additive Manufacturing KW - Diffraction PY - 2019 AN - OPUS4-49822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Sprengel, Maximilian A1 - Madia, Mauro A1 - Kromm, Arne T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD DA - 07.10.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Bruno, Giovanni T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Fritsch, Tobias A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Schröder, Jakob T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Fritsch, Tobias A1 - Evans, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hofmann, Michael A1 - Pirling, Thilo A1 - Kromm, Arne A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Residual stress in simple and complex geometries manufactured by laser powder bed fusion N2 - Design of freedom, performance improvement, cost reduction and lead time reduction are key targets when manufacturing parts in a layer-by-layer fashion using the laser powder bed fusion process (LPBF). Many research groups are focussed on improving the LPBF process to achieve the manufacturing of sound parts from a structural integrity perspective. In particular, the formation and distribution of residual stress (RS) remains a critical aspect of LPBF. The determination of the RS in LPBF benefits from the use of neutron diffraction (ND), as it allows the non-destructive mapping of the triaxial RS with a good spatial resolution. Two case studies are presented based on experiments carried out on the angular-dispersive neutron diffractometers Strain Analyser for Large Scale Engineering Applications (SALSA) (Institut Laue Langevin, Grenoble) and STRESS-Spec (FRM II, Garching). The RS in LPBF parts having a rectangular and more complex geometry (lattice structure) is analysed. The former example discusses the mapping of the RS in a rectangular body manufactured from stainless steel 316L. The manufacturing of these parts was monitored using an in-situ thermography set-up to link the RS to the thermal history. The latter discusses the RS in a lattice structure manufactured from the nickel base superalloy IN625. This geometry is challenging to characterise, and the use of a X-ray computed tomography twin is presented as tool to support the alignment of the ND experiment. The results from these case studies show a clear link between the thermal history and the RS magnitudes, as well as giving insights on the RS formation. T2 - 1st International Conference on Advanced Manufacturing for Air, Space and Land Transportation CY - Online meeting DA - 07.03.2022 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress formation in selective laser melted parts of Alloy 718 N2 - Additive manufacturing (AM) by selective laser melting (SLM) offers ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses which develop during the process can limit the application of SLM parts because they can reduce the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. This study aims at the characterization of residual stresses in SLM parts by using different measurement techniques. The material used is the nickel based super Alloy 718. Microstructure as well as surface and bulk residual stresses were characterised. For residual stress analysis X-ray, synchrotron and neutron diffraction were applied. The results show different residual stress states dependent on the penetration depth in the sample offered by the different measurement techniques. Samples of Alloy 718 manufactured by SLM process can show high tensile residual stresses in the surface as high as the yield strength of the wrought alloy. Residual stresses in the bulk show considerably lower stress values. T2 - 1st International Congress on Welding, Additive Manufacturing and associated non-destructive testing - ICWAM CY - Metz, France DA - 17.05.2017 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual stresses PY - 2017 AN - OPUS4-40345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Scharf- Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Schwentenwein, M. A1 - Günster, Jens T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Prozessinduzierte Vorerwärmung beim pulverbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Heraus-forderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring PY - 2021 AN - OPUS4-53729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Properties of powder-in-tube formed magnetocaloric materials N2 - This talk gives an overview of the shaping options for magnetocaloric materials. We have shown that powder-in-tube processing of these functional materials is a straightforward and efficient way to obtain wires and stacked structures for heat exchange. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Wandtke, Karsten A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Additive Manufacturing KW - High-strength steel KW - Residual stresses PY - 2021 AN - OPUS4-53328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Pelkner, Matthias T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Roveda, Ilaria A1 - Serrano-Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan A1 - Konert, Florian A1 - Poka, Konstantin A1 - Merz, Benjamin A1 - Sobol, Oded A1 - Böllinghaus, Thomas T1 - Performance of Conventional and Additive Manufactured Austenitic Stainless Steels under Gaseous Hydrogen Environment using in-situ Hollow Specimen Technique N2 - Hydrogen and its derivatives (e.g. ammonia) are considered as a suitable energy carrier in the future supply of renewable energy. Hydrogen transportation systems require pipes, valves and fittings, among other components. In this sense, austenitic stainless steels are commonly used structural materials for pure hydrogen applications. Stable austenitic alloys, like AISI 316L, are often assumed to be practically unsusceptible to hydrogen embrittlement. At the same time, a number of studies show the influence of hydrogen even in 316L under some circumstances. Some other studies state that this embrittlement could be avoided by using steel grades with a higher nickel equivalent which contributes to a more stable austenitic phase. Nonetheless, 316L is widely used in hydrogen atmospheres since many years because of lower costs and positive practical experience. For these reasons, not only 316L but also 304 could be further utilized by identifying the exact constraints. With increasing demand for components regarding hydrogen applications, additive manufacturing technologies are getting increasingly important complementary to conventional manufacturing. In the context of additive manufacturing, 316L is a common material as well. The manufacturing process offers great advantages due to higher freedoms in design and the possibility for customized components in small batches. For example, valves with improved flow characteristics and reduced component weight can be produced. Nevertheless, there is still lack of experience and experimental results concerning additively manufactured parts under hydrogen service. Therefore, the influence on the material properties for additively manufactured parts in hydrogen environments needs to be further investigated. In the present work, slow strain rate testing (SSRT) has been applied using hollow specimens. This testing procedure allows to perform practicable and faster in-situ tests in comparison to tests in autoclaves and investigate the influence of hydrogen on the mechanical properties. Conventional AISI 304 and 316L specimens as well as additively manufactured 316L specimens were tested at room temperature and a pressure of 200 bar. Elongation at fracture and relative reduction of area (RRA) have been used to evaluate the influence of hydrogen. It is shown that the influence of hydrogen is more pronounced in 304 than in 316L. Furthermore, potentially influencing factors such as surface roughness, microstructure and porosity are discussed. T2 - International Hydrogen Conference CY - Park City, Utah, USA DA - 17.09.2023 KW - Hydrogen KW - Hollow Specimen Technique KW - Additive Manufacturing KW - Austenitic Steels PY - 2023 AN - OPUS4-58776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina A1 - Breese, Philipp P. A1 - Oster, Simon A1 - Altenburg, Simon J. T1 - PBF-LB/M: Prozess Monitoring mittels Multispektraler OT N2 - Die metallische additive Fertigung hat in den letzten Jahren in der industriellen Fertigung zunehmend an Bedeutung gewonnen. Hierbei dominiert das Laser-Pulverbettschweißen von Metallen (PBF/LB-M) die Fertigung von kleinformatigen Bauteilen mit hoher Oberflächengüte. Die anspruchsvolle und kostspielige Qualitätssicherung stellt aber weiterhin ein Hindernis für eine breitere und kostengünstigere Anwendung der additiven Fertigung dar. Dies resultiert teilweise aus fehlenden zuverlässigen In-situ-Monitoringsystemen. Belastbarere Prozessüberwachungsdaten würden eine oft erforderliche teure nachgelagerte Prüfung mittels Computertomografie entbehrlich machen. Die Aufzeichnung der thermischen Signaturen des Aufbauprozess mittels Thermografie-Kameras zeigen hier vielversprechende Ergebnisse. Eine Korrelation zu auftretender Porosität, Delaminationen und Deformationen scheinen möglich. Die geringe räumliche Auflösung und die hohen Anschaffungskosten für thermografische Kamerasysteme stehen jedoch einer größeren industriellen Nutzung im Wege. Ein bereits industriell angewendeter Ansatz zur in-Situ Überwachung des PBF-LB/M Prozesses ist die Optische Tomografie (OT). Hierbei wird die emittierte Prozessstrahlung jeder Bauteilschicht mittels einer hochauflösenden günstigen Kamera für den sichtbaren Wellenlängenbereich in einer Langzeitbelichtung dokumentiert. Die zeitliche Information der emittierten Strahlung geht hierbei verloren. Der gesamte Bauprozess kann jedoch in einem vergleichsweise kleinen Datensatz dokumentiert werden (ein Bild pro Schicht). Eine direkte Korrelation zu auftretenden Defekten gestaltet sich aufgrund der reduzierten thermischen Informationsdichte jedoch schwierig. In diesem Beitrag soll deshalb das Prinzip der Multispektralen Optischen Tomografie (MOT) vorgestellt und erste Messergebnisse an der Forschungsanlage SAMMIE diskutiert werden. Bei der MOT handelt es sich um eine Übertragung des Prinzips der Quotientenpyrometrie auf das etablierte Verfahren der Optischen Tomografie. Die auftretende Prozessstrahlung wird in mehreren Wellenlängenbereichen ortsaufgelöst über die gesamte Bauplattform erfasst und zeitlich in einer Langzeitbelichtung integriert. Hierbei kommen günstige Kamerasysteme für den sichtbaren Wellenlängenbereich zum Einsatz. Das erfasste Signal I jedes Bildpixels für jeden separat erfassten Wellenlängenbereich kann als Maß für das zeitliche Integral der spezifischen Ausstrahlung M des Schmelzbades in diesem Wellenlängenbereich gesehen werden. Nach dem Stefan-Boltzmann-Gesetz hängt die abgestrahlte thermische Leistung P eines idealen Schwarzen Körpers in der vierten Potenz von dessen absoluten Temperatur T ab. Wird nur, wie z.B. bei der klassischen OT angewendet, der nahinfrarote Wellenlängenbereich betrachtet, lässt sich mit dem Planck’schen Strahlungsgesetz sogar eine Proportionalität zur siebten Potenz der Temperatur zeigen. Deshalb liegt ein starker Einfluss der maximal auftretenden Oberflächentemperatur Tmax auf das erfasste Messsignal vor. Das erfasste Signal I wird aber auch durch die spektrale Transmission τ der verwendeten optischen Komponenten des Kamera-Setups, z.B. Filter und Objektive, durch die spektrale Sensitivität S der verwendeten Kamera-Sensoren und den nur sehr schwer zu bestimmenden Emissionsgrad ε der emittierenden (flüssigen) Oberfläche beeinflusst. In einer ersten Näherung wird das Schmelzbad hier als Graukörper, also ein Körper mit wellenlängenunabhängigem Emissionsgrad ε, betrachtet. Basierend auf dieser Annahme und vermessenen optischen Eigenschaften des verwendeten Systems ist es möglich, eine erste Schätzung der maximalen Oberflächentemperatur Tmax vorzunehmen, selbst ohne genaue Kenntnis des tatsächlichen Emissionsgrades ε. Dies wird durch die Anwendung des Planck‘schen Strahlungsgesetzes und die Quotienten Bildung aus den einzelnen erfassten Signalen I ermöglicht. Auch bei diesem Verfahren geht die zeitliche Information einer Schicht, also das Aufwärm- und Abkühlverhalten des Schmelzbades, verloren. Zudem sind die Messergebnisse in Hinblick auf tatsächlich gemessene „maximal auftretende Oberflächentemperatur“ mit gebotener Zurückhaltung zu interpretieren. Trotzdem konnten erste Ergebnisse bereits zeigen, dass die MOT-Daten auch in Bereichen mit Doppelbelichtungen (das teilweise notwendige mehrfache Scannen eines Bereiches mittels des Fertigungslasers) im Gegensatz zur klassischen OT erwartbare Maximaltemperaturen liefern. Abbildung 1 zeigt das erfasste Messergebnis für drei aufeinanderfolgende Schichten eines Bauteils einmal mit MOT (links) und einmal mit einfacher OT (rechts). Deutlich zu erkennen ist das durch die doppelte Belichtung hohe Signal bei der OT. Die Daten der MOT zeigen hier keine erhöhten Werte. Um die ermittelten Temperaturwerte mittels MOT besser einordnen zu können, sind u.a. vergleichende Messungen an Referenzmaterialien geplant. Um die Auswertung der gemessenen Daten zu verbessern, wird zudem der Zeitverlauf des Abkühlens und Aufheizens des Schmelzbades sowie die Einflüsse von Prozessbeiprodukten wie Schmauch und Spritzer näher untersucht. Auch werden Messungen zum Emissionsgrad ε an additiv gefertigten Proben und Metallschmelzen vorgenommen. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Optische Tomografie KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - On the modelling of the fatigue strength of am components N2 - The topic of the presentation consists in some basic considerations on the application of fracture mechanics to fatigue live and strengh prediction of metallic componends manufatured by additive manufacturing. These are based on an approach developed at BAM which comprises elements such as the elastic-plastic modelling of the cyclic crack driving force, a physically meaningfull determination of the initial crack size and multipile crack initiation and propagation due to variations of the local geometry and material charactaristics. Spezial emphasis is put to spezific aspects of materials composed by selectiv laser melting such as surface roughness, porosity and gradiants in the microstructure. N2 - Beschreibung der IBESS-Prozedur zur zukünftigen Anwendung zur Berechnung der Schwingfestigkeit von Schweißverbindungen T2 - Additive Manufracturing Benchmarks 2018 CY - Gaithersburg, Maryland, USA DA - 18.06.2018 KW - Structural Integrity KW - Fartigue Strength KW - Additive Manufacturing PY - 2018 AN - OPUS4-46062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikrocomputertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - Seminar Yxlon CY - Dresden, Germany DA - 15.05.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50157 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikro-Computertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - TU München Vortragsreihe CY - Munich, Germany DA - 24.01.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50156 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno A1 - Mishurova, Tatiana A1 - Roveda, Ilaria A1 - Schicchi Said, D. A1 - Darvishi Kamachali, Reza A1 - Evans, Alexander A1 - Agudo Jácome, Leonardo A1 - Serrano-Munoz, Itziar T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Le, Quynh-Hoa A1 - Yarysh, Anna T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Magnetocaloric materials for cooling and harvesting of low-grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. For thermomagnetic materials, we used a commercial magnetocaloric alloy with a transition temperature of 300 K. T2 - Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Energy harvesting KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Günster, Jens T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - LSD-3D printing: a novel technology for the Additive Manufacturing of ceramics N2 - The layer-wise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for Additive Manufacturing (AM). A slurry with small organic content is repetitively spread as thin layers on top of each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). Each layer is then dried, resulting in the stacking of a dry powder bed with high powder packing. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 15th Conference & Exhibition of the European Ceramic Society (ECerS2017) CY - Budapest, Hungary DA - 09.07.2017 KW - Layerwise Slurry Deposition KW - Ceramics KW - Additive Manufacturing KW - 3D Printing PY - 2017 AN - OPUS4-44171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise slurry deposition: an approach for dense powder-beds in additive manufacturing and its application to technical ceramics N2 - Several Additive Manufacturing (AM) processes are based on the deposition of a powder to form a powder-bed layer-by-layer which typically has a low packing density (35-50%) and consequently hinders the ability of sintering ceramic parts to full density. The layerwise slurry deposition (LSD) is an innovative process for the deposition of layers in AM. In the LSD, a slurry with no or small organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). When coupled with a printing head or with a laser, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder-bed. This approach has been successfully applied to silicate ceramics, but implementing technical ceramic slurries is more challenging, because the water is drained too quickly from the suspension into the pores of the previous porous layer. In this presentation, the variables involved in the LSD will be analyzed and the latest improvements in the deposition setup will be described. The application of the LSD to technical ceramics has the potential of generating additive manufacturing parts which in the green state are comparable to those produced by slip casting. T2 - 40th International Conference and Expo on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 24.01.2016 KW - Layerwise slurry deposition KW - 3D printing KW - Additive Manufacturing PY - 2016 AN - OPUS4-37455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Diener, S. A1 - Lima, P. A1 - Katsikis, N. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - In powder bed Additive Manufacturing (AM) technologies, a part is produced by depositing and piling up thin powder layers. In each layer, the cross section of the object to build is defined by locally consolidating the powder, by sintering/melting the material (powder bed fusion technologies) or by ink jetting a binder (binder jetting technologies). These are already leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been challenging so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer. The LSD offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and enables the production of parts with physical and mechanical properties comparable to pressed or slip-casted parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - ICACC 2019 - 43rd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise KW - Slurry PY - 2019 AN - OPUS4-47865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lima, Pedro A1 - Lüchtenborg, Jörg A1 - Günster, Jens A1 - Mühler, T. T1 - Layerwise slurry deposition for Additive Manufacturing: from densely packed powder beds to dense technical ceramics N2 - Several Additive Manufacturing (AM) processes are based on the deposition of a powder to form a powder bed layer-by-layer, which typically has a low packing density (35-50%) and consequently hinders the ability of sintering ceramic parts to full density. The layerwise slurry deposition (LSD) is an innovative process for the deposition of layers in AM. In the LSD, a slurry with no or small organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). When coupled with a printing head or with a laser, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder-bed. The LSD combined with inkjet binder printing (LSD-print) was applied to a submicron Al2O3 powder to produce samples which had a comparable density to uniaxially pressed samples, both in the green and in the sintered state. T2 - 92nd DKG Annual Meeting & Symposium on High-Performance Ceramics 2017 CY - Berlin, Germany DA - 19.03.2017 KW - Layerwise slurry deposition KW - Ceramic KW - Additive Manufacturing KW - 3D Printing PY - 2017 AN - OPUS4-44169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Čapek, J. A1 - Polatidis, E. A1 - Bruno, Giovanni T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Evans, Alexander A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Insight into the residual stress formation in additively manufactured austenitic steel 316l N2 - Overview of residual stresses in austenitic stainless steel 316l manufactured by laser baser powder bed fusion and determined via x-ray and neutron diffraction T2 - Doktorandenseminar der Otto-von-Guericke Universität CY - Magdeburg, Germany DA - 28.11.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Straße, Anne A1 - Oster, Simon A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Maierhofer, Christiane T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -