TY - CONF A1 - Wu, Cheng-Chieh T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 AN - OPUS4-37523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh T1 - Approximate model for geometrical complex structures N2 - Many engineering structures are made of composite materials or metal foam. To simulate the deformational behaviour of these structures often requires a high number of discretisation elements. This in turn yields a very large system of linear equations that are extremely time and memory consuming or practically impossible to solve. It is therefore desirable to find an approach to overcome this obstacle. T2 - 33rd Danubia- Adria Symposium on Advances in Experimental Mechanics CY - Portorož, Slovenia DA - 20.09.2016 KW - Inverse analysis KW - Finite element method KW - Least-squares adjustment PY - 2016 AN - OPUS4-37524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fomine, Pavel T1 - Approximale model of chemical equilibrium in heterogeneous gas-particles mixtures T2 - 4th International Seminar on Fire and Explosion Hazards CY - Londonderry, Northern Ireland DA - 2003-09-08 PY - 2003 AN - OPUS4-3927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blümel, Peter T1 - Approval of packagings with alternative HDPE grades based on comparative testing T2 - The 15th IAPRI World Conference on Packaging CY - Tokyo, Japan DA - 2006-10-04 PY - 2006 AN - OPUS4-14260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wöhlecke, Andreas T1 - Approval of geosynthetics, polymers and leak detection systems for German landfills N2 - Geokunststoffe spielen sowohl im internationalen als auch im deutschen Deponiebau eine Schlüsselrolle. Seit dem Erscheinen der Deponieverordnung (DepV) im Jahre 2009 bedürfen Geokunststoffe, Polymere und Dichtungskontrollsysteme einer Zulassung durch die BAM, wenn diese in deutschen Deponieabdichtungssystemen eingesetzt werden sollen. Die DepV stellt dabei allgemeine Anforderungen an die Geokunststoffe und den Zulassungsprozess für die Produkte auf. Geokunststoffe müssen danach ihre Funktion unter allen zu erwartenden äußeren und inneren Einflüssen über einen Zeitraum von mindestens 100 Jahren erfüllen. Dichtungskontrollsysteme müssen ihre Funktion über mindestens 30 Jahre erfüllen. Die Anforderungen der DepV werden durch die Zulassungsrichtlinien der BAM in konkrete technische Anforderungen für die Produkte aber auch für das Qualitätsmanagement und den Einbau etc. überführt. Bei der Erarbeitung der Zulassungsrichtlinien wird die BAM durch einen Fachbeirat, der sich aus Experten aus allen relevanten Bereichen zusammensetzt, beraten. Der Vorsitz des Fachbeirats liegt beim UBA. Es soll eine kurze Übersicht über die Produkte und die wichtigsten Anforderungen gegeben werden. Zudem soll erläutert werden, durch welche Maßnahmen in der Produktion und auf der Deponiebaustelle eine gleichbleibende Qualität der Produkte gewährleistet wird. T2 - COLLOQUIUM DEPARTMENT 4 „MATERIALS AND THE ENVIRONMENT” CY - Berlin, Germany DA - 14.11.2018 KW - Deponien KW - Geokunststoffe KW - Polymere KW - Dichtungskontrollsysteme PY - 2018 AN - OPUS4-46659 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Approval of existent waste packages and new package design in preparation for the KONRAD repository T2 - Waste Management Symposia WM2008 CY - Phoenix, AZ, USA DA - 2008-02-24 PY - 2008 AN - OPUS4-17938 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cohen, Zina T1 - Approche archéométrique de fragments de la Génizah du Caire conservés à la Bibliothèque Universitaire de Cambridge N2 - Quelles informations sur les matériaux d'écriture peut on obtenir grâce à des analyses archéométriques ? T2 - Konferenz Journée FSP-PATRIMA / EPHE CY - Paris, France DA - 24.01.2017 KW - Ink KW - Manuscript KW - XRF analysis PY - 2017 AN - OPUS4-46048 LA - fra AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosner, M. T1 - Approaching realistic measurement uncertainty of Delta11B data T2 - Goldschmidt Conference 2013 CY - Florence, Italy DA - 2013-08-25 PY - 2013 AN - OPUS4-29085 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin T1 - Approaching distributed ground motion sensing at high and low frequency ranges N2 - The phase and reflection spectrum of a standard distributed acoustic sensor based on an interferometer are used for fast and slow dynamic measurements, respectively, enabling the system to simultaneously measure various types of ground movement. T2 - 28th International Conference on Optical Fiber Sensors (OFS-28) CY - Hamamatsu, Japan DA - 20.11.2023 KW - Distributed acoustic sensing KW - Ground movement monitoring KW - Geomonitoring KW - Interferometer-based KW - DAS PY - 2023 AN - OPUS4-59097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Osterloh, Kurt T1 - Approaching an understanding of risk: a subject for the EFNDT Working Group 5 "NDT Technology for Public Security and Safety" T2 - 3rd EFNDT WG5 Workshop "NDT Technology for Public Security and Safety" CY - Berlin, Germany DA - 2012-10-22 PY - 2012 AN - OPUS4-27499 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krause, Ulrich T1 - Approaches towards a generic methodology for storage of hazardous energy carriers and waste products T2 - Proceedings of 2nd International iNTegRisk conference CY - Stuttgart, Germany DA - 2010-06-15 PY - 2010 N1 - Geburtsname von Vela-Wallenschus, Iris: Vela, I. - Birth name of Vela-Wallenschus, Iris: Vela, I. AN - OPUS4-21845 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard T1 - Approaches to the modelling of rafting and of its influence on the mechanical behaviour in Single Crystals Ni-base superalloys T2 - COST 538 Meeting, BAM CY - Berlin, Germany DA - 2005-04-28 PY - 2005 AN - OPUS4-12233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Approaches to the Determination of the Spectral Characteristics of Confocal Spectral Imaging Systems and Comparability of Data T2 - ANAKON 2005 CY - Regensburg, Germany DA - 2005-03-15 PY - 2005 AN - OPUS4-7450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As nanopipettes are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. For exploring these effects, quartz nanopipettes were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The inner channel of the sensing region was exposed with focused ion beam (FIB) milling as a dedicated sample preparation method for nanoscale surface analysis. The sample characterisation involved scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and low-energy energy dispersive x-ray spectroscopy (EDX). The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes, and allow for the study of different surface functionalisation at the all-important sensing region. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Nanopipettes KW - FIB KW - Surface analysis KW - Surface modification KW - Silanisation PY - 2024 AN - OPUS4-60449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Approaches to Sensitive and Multiplexed Assays for Robust, Reliable and User-friendly Point-of-Need Analysis N2 - Analytical assays that can be used outside of a dedicated laboratory environment have received unprecedented attention all around the globe during the last one and a half years, in which the world was struggling with and trying to contain the SARS-CoV-2 pandemic. However, besides their current prominence in the field of medical diagnostics, rapid tests and assays have also become increasingly important in other areas ranging from food and feed via security and forensics to environmental management. The advantage is obvious: taking the assay to the sample instead of bringing the sample to the laboratory minimizes the time between first suspicion and first decision taking. Especially today, where mobile communication devices with powerful computing capabilities and onboard cameras are omnipresent, the majority of the global population possesses the basic skills of operating a powerful detector, ready at their fingertips. The stage is thus set for a much broader use of analytical measurements in terms of prognostics and prevention. Today, however, tests for single parameters are still prevailing, whether it is a SARS-CoV-2 biomarker, the glucose level in blood or the concentration of lead in a water sample. Also, for industrial use, many mobile analytical systems still target a single parameter, and several separate runs or tests have to be used even if one wants to screen for only a small number of key parameters. Current challenges in the field thus lie with the development of low-number multiplexing strategies while allowing for robust, reliable, fast, and user-friendly operation and while still reaching the required sensitivities. This lecture will give an overview of various generic approaches developed in BAM’s Chemical and Optical Sensing Division over the years to address these challenges. In particular, it will highlight how the combination of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need. Selected examples will introduce key aspects of such systems like tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid mesoporous nanomaterials, gated indicator release systems, molecularly imprinted polymers, microfluidic devices, test strips and smartphone-based analysis. T2 - Advanced Analytical Technologies Seminar CY - Online meeting DA - 08.12.2021 KW - Rapid tests KW - Multiplexing KW - Trace analysis PY - 2021 AN - OPUS4-54002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bremser, Wolfram A1 - Paul, Andrea T1 - Approaches to measurement uncertainty estimates for nominal properties N2 - Qualitative reference materials (RM) cover a wide range of the overall RM market. Proficiency testing providers attract up to a thousand of participants in PT schemes purely oriented on qualitative results. The RM used for these kinds of PT are poorly regulated, nevertheless with a more and more general acceptance of accreditation in the field of RM production and PT provision, there is an ever increasing interest in assessing producers and providers according to rules already well accepted in the field of quantitative analysis. The basic governing document, ISO 17034:2016, is written in a form that, at least for the overwhelming majority of requirements, may be applied to both qualitative and quantitative RM. However, problems remain. In particular, the expression of uncertainty of a purely qualitative result is still unresolved, and under discussion, the latter now lasting already dozens of years. Some handles would be needed. In the poster, existing approaches and some pragmatic, new ways to tackle the problem are displayed and discussed. T2 - Advanced Mathematical and Computational Tools for Metrology; AMCTM (XI) CY - Glasgow, Scotland, UK DA - 29 August 2017 KW - Nominal properties KW - Qualitative RM PY - 2017 AN - OPUS4-42467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Approaches to Lifetime Multiplexing with Quantum Dots and Organic Dyes: First Examples T2 - Kolloquium im Rahmen der FluoPlex-Treffen am Max-Planck-Institut für Molekulare Genetik CY - Berlin, Germany DA - 2008-06-17 PY - 2008 AN - OPUS4-18062 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bremser, Wolfram T1 - Approaches to data evaluation for inter-laboratory studies T2 - ILS-BAM-DIBt Workshop CY - Berlin, Germany DA - 2008-04-09 PY - 2008 AN - OPUS4-18514 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Approaches of Trunnion Design T2 - IAEA Working Group Meeting on Tie-Down System Design CY - IAEA Vienna, Austria DA - 2015-02-23 PY - 2015 AN - OPUS4-32791 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Approaches for PFAS Sum-Parameter Analysis -from Materials to Environment N2 - Im Rahmen des Vortags wurden PFAS Analysemethoden auf Basis der optischen Spektroskopie (HR-CS-GFMAS) vorgestellt. Anhand ausgewählter Applikationsbeispiele wurde die Leistungsfähigkeit der Methode dargelegt. Beispiele waren dabei u.a. aus dem Bereich Oberflächenwasseranalytik, Pflanzen und Böden. T2 - VD LUFA Kongress CY - Oldenburg, Germany DA - 09.09.2025 KW - HR-CS-GFMAS KW - PFAS KW - Summenparameter PY - 2025 AN - OPUS4-65127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Approaches for PFAS Sum-Parameter Analysis - from Materials to Environment N2 - Im Rahmen des Vortags wurden PFAS Analysemethoden auf Basis der optischen Spektroskopie (HR-CS-GFMAS) vorgestellt. Anhand ausgewählter Applikationsbeispiele wurde die Leistungsfähigkeit der Methode dargelegt. Beispiele waren dabei u.a. aus dem Bereich Oberflächenwasseranalytik, Pflanzen und Böden. T2 - Industrie Anwenderseminar PFAS 2025 CY - Online meeting DA - 30.06.2025 KW - PFAS KW - HR-CS-GFMAS KW - Summenparameter PY - 2025 AN - OPUS4-65125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Matthias T1 - Approach to the improvement of the traceability for (S)Voc-measurement T2 - 7th Gas Analysis Symposium & Exhibition CY - Rotterdam, Netherlands DA - 2013-06-05 PY - 2013 AN - OPUS4-29625 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nohr, Michael T1 - Approach to a reference material for emission testing T2 - MACPoll Workshop: "Novel (S)VOC gas standards for indoor air monitoring" CY - Berlin, Germany DA - 2014-02-13 PY - 2014 AN - OPUS4-30251 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Apel, Andreas T1 - Approach for the use of Acceleration Values for Packages of Radioactive Material under Routine Conditions of Transport T2 - Radioactive Materials Transport and Storage Conference 2012 (RAMtransport 2012) CY - London, England DA - 2012-05-22 PY - 2012 AN - OPUS4-26610 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Approach for the Investigation of Elastomer Seal long termin Behavior for Transport and Storage Packages T2 - Delft, Netherlands DA - 2014-05-26 PY - 2014 AN - OPUS4-30668 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert T1 - Approach for determining the length of the bar in compliance with the IAEA 1m puncture test N2 - The paper focuses on the preliminary determination of the bar length and the experimental performance of the 1m-puncture test in compliance with the guidelines of the IAEA under the given boundary conditions. Following aspects have to be considered concerning the determination of an appropriate length of the bar to obtain maximum damage to the specimen: the design of the package, its drop orientation and the impact point as well as a pre-damage of the package resulting from a previous 9m drop test. According to the Regulations the minimum length of the bar is defined as 20 cm, which has to be adapted to the outer surface of the package, especially to packages with large impact limiters. In this context, two main aspects are important: First, the realisation of a maximum puncture load applied to the package while no other component of the package has contact with the impact target. Second, the reduction of the risk of buckling and maximising the stiffness of the bar by a length which is as short as possible. In order to optimize the bar length, finite element calculations are often done by simulating the global behaviour of the package during the puncture test. The evaluation of the conducted puncture test regarding IAEA compliance is done by analysing deceleration measurements. The paper presents a possible approach to determine the length of the bar and the construction of a form-fitted connection to the target showing various examples of puncture tests. T2 - RAMTRANSPORT 2018 CY - London, UK DA - 16.05.2018 KW - Puncture test KW - Bar length KW - Numerical simulation PY - 2018 AN - OPUS4-45027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael T1 - Approach for calculation of apparent hydrogen diffusion coefficients with permeation experiments in CrMoV steel weld joints T2 - Steel & Hydrogen - 2nd International Conference on Metals and Hydrogen CY - Gent, Belgium DA - 2014-05-05 PY - 2014 AN - OPUS4-30695 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg T1 - Approach for analysis of environmental impact of geosynthetics in aquatic systems by example of the Baltic Sea N2 - Whereas the behavior of geosynthetics in landfill engineering is well studied and documented since decades, little is known on application in applications such as coastal protection or ballast layers for wind energy plants. However, due to the rapid expansion of offshore wind energy, rising water levels and more extreme weather conditions as a result of climate change more and more hydraulic engineering projects will be realized in the future. Construction with geosynthetics has various advantages, but it has to be ensured that there is no negative environmental impact from the application of geosynthetics in hydraulic engineering. It is expected that any effect will be visible only on the long-term. Therefore, accelerated testing is needed to derive requirements for geosynthetics in hydraulic engineering. T2 - 7th IEEE/OES Baltic Symposium, Clean and Safe Baltic Sea and Energy Security for the Baltic countries CY - Klaipeda, Lithuania DA - 12.06.2018 KW - Geosynthetics KW - Artificial ageing KW - Micro plastic PY - 2018 AN - OPUS4-45206 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisenacher, Germar T1 - Approach for a Finite Element Material Model for Wood for Application in Mechanical Safety Cases of Transport Packages T2 - INMM 52nd Annual Meeting CY - Palm Desert, CA, USA DA - 2011-07-17 PY - 2011 AN - OPUS4-24231 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Talis, Torben T1 - Applying Time Series Extrinsic Regression to Parameter Estimation Problems for Dynamic Models - an Alternative for Gradient-Free Approaches? N2 - Time series analysis is a well-established field within the machine learning community, with two prominent applications being time-series forecasting, i.e., surrogate models, predicting the next time step for the systems outputs, and time-series classification, where complete timeseries are mapped to discrete labels, e.g. a sensor is either working or defective. Time-Series Extrinsic Regression (TSER), however, is a method for predicting continuous, time-invariant variables from a time series by learning the relation between these underlying parameters and the complete dynamic time series of the outputs without focusing on the recent states. E.g., it can be used to predict the heart rate based on an ECG signal. TSER as a research field was only established in 2021, but it is gaining traction ever since and it is used e.g. in the field of manufacturing technology to predict steel surface roughness from laser reflection measurements. It is applied, when there are no models available. Parameter Estimation (PE) is a common task in chemical engineering. It is used to adjust model parameters to better fit existing dynamic models to experimental time series data. This becomes more challenging in higher dimensions and for dynamic systems, where sensitivity and identifiability may change over time. There already exists a multitude of algorithms to solve the problem, including second-order methods that leverage information from Jacobian and Hessian matrices, as well as gradient-free optimization techniques, such as particle swarm optimization (PSO) or simulated annealing. However, with the growing establishment of machine learning (ML) in an increasing number of domains, the question arises as to whether, and if so, how, ML in general and TSER in particular can be employed to solve PE problems. This study marks the first application of TSER to PE problems. A comparative analysis is conducted between TSER and PSO, in terms of prediction accuracy, computational cost and data efficiency. We investigate, whether it is viable to use TSER, when there is a model available. Our methodology to regress model parameters via ML builds on the typical assumption, that a structurally correct and rigorous model, which can be simulated at low cost, is available. At the beginning, the boundaries of the parameter space are defined. This space is then sampled using Sobol sequences and the model is simulated. The resulting trajectories, along with their corresponding parameters, constitute the training data set. These trajectories are transformed through application of the “RandOm Convolutional Kernel Transform” method resulting in novel features, which are subsequently used to train the regressor model. This regressor returns predictions for the parameters. In a case study, the method is applied to predict the heat transfer and kinetic parameters of a batch reactor based on simulated data. However, real measurements are often not continuously available, but are taken only at rare, discrete points in time, and different variables are measured at different, asynchronous intervals. This is also mimicked in the synthetic training data, so the influence of heterogeneity on the results can be shown and over- or undersampling strategies are applied to counteract the effect. T2 - European Symposium on Computer Aided Process Engineering 35 CY - Gent, Belgium DA - 06.07.2025 KW - Time Series Extrinsic Regression KW - Parameter Estimation KW - Machine Learning PY - 2025 AN - OPUS4-65155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Hongyi T1 - Applying experimental determined kinetic parameters to the simulation of vegetation fire in the Fire Dynamics Simulator N2 - Although intense wildfire research has been done in the US and in Australia, it cannot be transferred directly to the situation in Europe as the local vegetation has a significant influence on the fire spread. The EU-funded project TREEADS and the so-called German pilot within the project are concentrating on wildfire in Europe. Extensive experimental research is done on local vegeta-tion in Germany and the experimental results are used to adjust the Fire Dynam-ics Simulator (FDS) to local vegetation as a fuel in the calculations. The particle model and the boundary fuel model are developed for the simulation of forest fires. Both models require the kinetic input for the dehydration, pyrolysis, and char oxidation process. This three-step simplified model describes the basic fuel combustion kinetic. Most published simulations use the default kinetic input of pine needles from FDS user manual. To adjust the simulation to local vegetation, the corresponding kinetic parame-ters have been experimental investigated. Samples of pine needles, moss and other falling leaves were collected, air dried and grinded into powder. The TG analysis of all these samples were done under different heating rate of 5, 10 and 20K/min. The activation energy and the corresponding pre-exponential factor were calcu-lated. The results show that fire spread depends significantly on the vegetation and comparison with small scale experiments show good agreement using the new kinetic parameters. The new model is applied to a larger scenario and will be compared to the results of large-scale experiments for further validation of the model. T2 - Wood and Fire Safety 2024 CY - Štrbské Pleso, Slovakia DA - 12.05.2023 KW - Simulation KW - Forest KW - FDS KW - Fire Dynamics Simulator KW - Kinetic parameters KW - Vegetation fire PY - 2024 AN - OPUS4-60256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker T1 - Applying Artificial Endurance Tests for the Performance of Vehicle Coatings T2 - Tagung "International Best Practice in Vehicle Coatings" CY - Brussels, Belgium DA - 2005-02-23 PY - 2005 AN - OPUS4-7350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Jan P. T1 - Applying a two-layer quadrupole model for quantitative thermography at overload-induced delaminations in GFRP N2 - The applicability of 1D-quadrupole-model on the depth estimation of overload-induced delaminations is tested in this contribution. While classical 1D-methods like Pulsed Phase Transformation and Thermographic Signal Reconstruction determine the depth of a defect by one parameter, a two-layer quadrupole model provides two parameters: depth and thermal resistance. In addition, the convectional losses at the surfaces may be considered. The defect investigated is a large-scale delamination in glass fibre reinforced polymer generated by tension overload. T2 - Advanced Infrared Technology & Applications (AITA) CY - Florenz, Italy DA - 16.9.2019 KW - Aktive Thermographie KW - Nicht-lineare Regression KW - 1D-Simulation KW - GFK PY - 2019 AN - OPUS4-49133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlüter, Vivien T1 - Applizierung und Validierung von Faser-Bragg-Gitter-Sensoren am Beispiel von Windenergieanlagen T2 - VDI/VDE-GMA Expertenforum "Strukturmonitoring 2008" CY - Nuremberg, Germany DA - 2008-05-06 PY - 2008 AN - OPUS4-17396 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai T1 - Applikationen von Medium-Resolution-NMR-Spektroskopie in der Prozessanalytik: Potential und Herausforderungen T2 - ProcessNet-Jahrestagung CY - Karlsruhe, Germany DA - 2012-09-10 PY - 2012 AN - OPUS4-26710 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zientek, Nicolai T1 - Applikationen der Medium-Resolution-NMR-Spektroskopie in der Prozessanayik T2 - ProcessNET Jahrestagung 2012 CY - Karlsruhe, Germany DA - 2012-09-10 PY - 2012 AN - OPUS4-28097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahman, Mehbub-Ur T1 - Applied Modeling and Inverse Profiling in Electromagnetic Non-Destructive Evaluation T2 - 20th International Symposium on Electromagnetic Theory (EMTS 2010) CY - Berlin, Germany DA - 2010-08-16 PY - 2010 AN - OPUS4-25256 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Applied Crystallography as a tool for a better understanding of Fundamental Questions of high temperature corrosion phenomena N2 - Corrosion Science Meets X-Rays, Neutrons and Electrons. The presentation gives an overview on current research activities applying in-situ X-ray diffraction and spectroscopy for a better understanding of fundamental mechanisms of high temperature corrosion. Additionally the knowledge gain by applying neutron powder diffraction and EBSD analysis is presented. T2 - Joint meeting of german and polish crystallographic association 2020 CY - Wroclaw, Poland DA - 24.02.2020 KW - Corrosion KW - Oxidation KW - In situ KW - Diffraction PY - 2020 AN - OPUS4-50483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ryll, Tom William T1 - Applied and Technical Mineralogy:� high-throughput automated platform for in-situ monitoring of CaSO4 formation N2 - In this project we investigate nucleation pathways by utilizing synchrotron-XRD and running a case-study on calcium sulfate and its polymorphs. To accomplish this, we developed a modular automation setup for reactions in solution to run synthesis and control reaction conditions. So far we successfully characterized the recycling process of gypsum (CaSO4*2H2O) and are now investigating the formation of anhydrite (CaSO4*0H2O) as well as possible applications for the automation setup and analysis. T2 - Geo4Göttingen 2025 CY - Göttingen, Germany DA - 14.09.2025 KW - Recycling KW - Gypsum KW - Synchrotron-X-ray-diffraction KW - Raman-spectroscopy KW - Automation PY - 2025 AN - OPUS4-64139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo T1 - Applications on Surface Functionalization by Laser-Induced Periodic Surface Structures (LIPSS) N2 - In recent years, the understanding on the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical and chemical properties of many materials. Such structures strongly depend on the used polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. Some specific formation mechanisms to explain every situation are still to be uncovered, but the most accepted explanation relies on the interference of the incident laser beam with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periodicities ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelength, pulse duration and repetition rate laser sources, customized micro- and nanometric spatial resolutions and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces and bacterial and cell growth for medical devices among many others. T2 - 38th International Congress on Applications of Lasers and Electro Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser ablation KW - Surface functionalization KW - Applications PY - 2019 AN - OPUS4-49473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of X-ray refraction to non-destructive characterization of ceramics and composites N2 - X-ray refraction is analogous to visible light deflection by matter, with two main differences: 1- convex objects cause divergence (i.e., the refraction index n is smaller than 1), and 2- deflection angles are very small, from a few seconds to a few minutes of arc (i.e., n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks, and quantify their densities in bulk (light) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We will thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in ceramic science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in diesel particulate filter silicates; 3) fiber de-bonding in metal and polymer matrix composites; 4) micro-cracking of glass-precursor -eucryptite. We will see that the use of X-ray refraction analysis yields quantitative results, also directly usable in available models. T2 - FiMPART 2017 CY - Bordeaux, France DA - 09.07.2017 KW - Refraction radiography KW - Ceramics KW - Refraction tomography KW - Composites PY - 2017 AN - OPUS4-41040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of X-ray refraction to non-destructive characterization of ceramics and composites N2 - X-ray refraction is analogous to visible light deflection by matter, with two main differences: 1- convex objects cause divergence (i.e., the refraction index n is smaller than 1), and 2- deflection angles are very small, from a few seconds to a few minutes of arc (i.e., n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks, and quantify their densities in bulk (light) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We will thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in ceramic science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in diesel particulate filter silicates; 3) fiber de-bonding in metal and polymer matrix composites; 4) micro-cracking of glass-precursor -eucryptite. We will see that the use of X-ray refraction analysis yields quantitative results, also directly usable in available models. T2 - Herbsttreffen des Verbandes der Keramik Industrien CY - Fraunhofer IWM, Freiburg im Breisgau, Germany DA - 27.10.2016 KW - Röntgenrefraktion KW - Kompositen KW - Keramiken KW - Computertomographie KW - TF Material PY - 2013 AN - OPUS4-38301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of X-ray refraction to non-destructive characterization of and composites T2 - 14th International Conference of the European Ceramic Society CY - Toledo, Spain DA - 2015-06-21 PY - 2015 AN - OPUS4-33974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Applications of x-ray computed tomography in material science N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field material characterization by X-ray imaging is presented. The principle of X-ray Computed Tomography (XCT) is explained. The multiple examples of application of quantitative analysis by XCT are reported, such as additive manufacturing, Li-ion battery, concrete research. T2 - Lecture for PhD students at Politecnico di Torino CY - Turin, Italy DA - 14.03.2024 KW - X-ray computed tomography KW - Additive manufacturing PY - 2024 AN - OPUS4-59689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, Lei T1 - Applications of Thermo-Calc in Weld Metallurgy T2 - Thermo-Calc Anwendertreffen CY - Aachen, Germany DA - 2015-09-03 PY - 2015 AN - OPUS4-34398 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deresch, Andreas T1 - Applications of RT Modelling T2 - Fall School "Modelling and Simulation for Non Destructive Evaluation" CY - Saclay, France DA - 2014-10-13 PY - 2014 AN - OPUS4-32685 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Applications of photoluminescence lifetime measurements in the life and material sciences N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats and increased sensitivities. This – flanked by recent technical advancements and the availability of simple to use, commercial time-resolved photoluminescence measuring devices at reasonable costs - calls for the exploitation of the species- and environment-specific photoluminescence parameter luminescence lifetime. In this context, time-resolved photoluminescence measurements of different classes of molecular and nanocrystalline emitter and luminescent particles in different time windows are presented and examples for applications such as lifetime multiplexing and barcoding in conjunction with fluorescence lifetime imaging microscopy (FLIM) and flow cytometry are given. T2 - Eingeladener Vortrag bei dem Workshop von Picoquant „Time-resolved fluorescence“ CY - Berlin, Germany DA - 17.11.2022 KW - Dye KW - Quantum dot KW - Upconversion nanocrystal KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Reference material PY - 2022 AN - OPUS4-57048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan T1 - Applications of peroxy-fuels in vehicle propulsion T2 - COMBURA Symposium 2012 CY - Maastricht, Netherlands DA - 2012-10-03 PY - 2012 AN - OPUS4-26615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina V. T1 - Applications of laser-induced periodic surface structures (LIPSS) N2 - Applications of laser-induced periodic surface structures (LIPSS, ripples) upon irradiation of solid materials by fs-laser pulses are reviewed. This includes the colorization of technical surfaces, the control of surface wetting, the mimicry of the natural texture of animal integuments for realizing specific fluid transport functionalities, the tailoring of surface colonization by bacterial biofilms, and the improve-ment of the tribological performance of nanostructured metal surfaces. T2 - 7th International LIPSS Workshop 2017 CY - Cottbus, Germany DA - 28.09.2017 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser ablation KW - Nanostructures KW - Surface functionalization PY - 2017 AN - OPUS4-42356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -