TY - CONF A1 - Schilling, Markus T1 - Interoperabilität und Wiederverwendung von Materialdaten: Der Weg zu Daten- und Wissensrepräsentationen in der PMD N2 - Die Integration und Wiederverwendung von Wissen und Daten aus der Herstellung, Bearbeitung und Charakterisierung von Materialien wird im Zuge der digitalen Transformation in der Materialwissenschaft und Werkstofftechnologie in verschiedenen Projekten behandelt. Dabei liegt der Fokus auf der Interoperabilität von Daten und Anwendungen, die nach den FAIR-Prinzipien erstellt und veröffentlicht werden. Zur Umsetzung eines komplexen Datenmanagements und der Digitalisierung im Bereich der Materialwissenschaften gewinnen Ontologien zunehmend an Bedeutung. Sie ermöglichen sowohl menschenlesbare als auch maschinenverständliche und -interpretierbare Wissensrepräsentationen durch semantische Konzeptualisierungen. Im Rahmen des Projektes Plattform MaterialDigital (PMD, materialdigital.de), welches in dieser Präsentation vorgestellt wird, werden Ontologien verschiedener Ebenen entwickelt (verbindende mid-level sowie Domänen-Ontologien). Die PMD-Kernontologie (PMD Core Ontology - PMDco) ist eine Ontologie der mittleren Ebene, die Verbindungen zwischen spezifischeren MSE-Anwendungsontologien und domänenneutralen Konzepten herstellt, die in bereits etablierten Ontologien höherer Ebenen (top-level Ontology) verwendet werden. Sie stellt somit einen umfassenden Satz von durch Konsensbildung in der Gemeinschaft (geteiltes Vokabular) entstanden Bausteinen grundlegender Konzepte aus der Materialwissenschaft und Werkstofftechnik (MSE) dar. In dieser Präsentation wird die PMDco adressiert. Weiterhin wird eine auf die PMDco bezogene normenkonforme ontologische Repräsentation zur Speicherung und Weiterverarbeitung von Zugversuchsdaten – die Tensile Test Ontology (TTO) – präsentiert, die in enger Zusammenarbeit mit dem zugehörigen DIN-Standardisierungsgremium NA 062-01-42 AA erstellt wurde. Dies umfasst den Weg von der Entwicklung einer Ontologie nach Norm, der Konvertierung von Daten aus Standardtests in das interoperable RDF-Format bis hin zur Verbindung von Ontologie und Daten. Auf Grundlage der dabei entwickelten Struktur und Vorgehensweise können weitere Materialcharakterisierungsmethoden semantisch beschrieben werden, woraus sich in diesem Zusammenhang Kooperationsmöglichkeiten ergeben. T2 - 20. Sitzung des NA 062-01-43 AA CY - Online meeting DA - 28.05.2024 KW - Semantische Daten KW - Plattform Material Digital KW - Ontologie KW - Normung KW - Wissensrepräsentation PY - 2024 AN - OPUS4-60178 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Ongoing VAMAS interlaboratory comparisons on nanoparticles size and shape as pre standardisation projects for harmonized measurements N2 - Traceable morphological and chemical characterization of nanomaterials with respect to the various possible sizes, size distributions, shapes, and concentrations of real-world nanoparticles (NPs) is a challenging task. Particularly for the nonspherical, non-monodisperse nanoparticles – as typically for most of the commercial particles, including their strong tendency to agglomerate, there is a lack of standard operation procedures providing accurate nanoparticle characterisation. In the framework of the pre-standardisation framework of VAMAS (Versailles Project on Advanced Materials and Standards, www.vamas.org) two interlaboratory comparison (ILC) studies are being carried out under the Technical Working Area (TWA) 34 “Nanoparticle Populations”:i) Project #15 addresses the analysis of the size and shape distribution of TiO2 bipyramidal NPs by traceable imaging methods such as TEM, SEM, STEM-in-SEM, AFM as well as with SAXS as an ensemble method. This ILC is thought as the next level development of the case studies exemplified in the published ISO standards ISO 21363 and ISO 19749. It was agreed to complete the first ILC with the NPs already prepared according to the same procedure on a TEM grid, and, at a later stage, to carry out second ILCs with the same NPs distributed to the participants as liquid suspensions together with protocols for the uniform NP deposition on suited substrates - as developed and optimized within the European project nPSize. Once having good deposition protocols available, the door for automated image analysis gets opened. Corresponding image analysis protocols and reporting templates have been distributed to the ILC participants, too. ii) Project #16: two spherical SiO2 NP samples with bi-modal size distributions in two nominal relative number concentrations were prepared and distributed also as liquid suspensions accompanied by sample preparation, measurement, and image analysis protocols and reporting templates. Here, the NP concentration is the primary parameter to be measured. For the imaging methods it is targeted to measure the relative nanoparticle concentrations (relative populations of the two modes). The results of all the participating laboratories, in both ILCs, compiled in comparative representations will be shown and discussed for the first time. The reduction of the measurement uncertainties associated to the size, shape and number-concentration results induced by the significant improvement of the sample preparation on substrates (as single particles with a high-density coverage), combined with welldefined image analysis procedures will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - VAMAS KW - Interlaboratory comparison KW - Electron microscopy KW - Particle size distribution KW - Article concentration PY - 2024 AN - OPUS4-60184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological and chemical analysis of mesoporous mixed IrOx-TiOy thin films as electrode materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - 2024 Spring Meeting of the European Materials Research Society (E-MRS) CY - Strasbourg, France DA - 27.05.2024 KW - Mesoporous KW - Thin films KW - Iridium oxide KW - Titanium oxide KW - Thin film analysis KW - Porosity KW - SIMS KW - Auger electron spectroscopy PY - 2024 AN - OPUS4-60185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Accuracy, Uncertainty, Probability of Detection N2 - This talk presents the concepts of measurement accuracy, uncertainty (in contrast to error analysis) an probability of detection for non-destructive testing. The relevant guidelines (GUM, Mil.Std.) are intrduced and practical examples given. T2 - USES2 Training Week 2 CY - Berlin, Germany DA - 24.06.2024 KW - Uncertainty KW - Pod KW - Measurements PY - 2024 AN - OPUS4-60467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chamorro, C. R. T1 - Thermodynamic (p, ρ, T) characterization of H2-enriched natural gases N2 - Hydrogen-enriched natural gas, H2NG is a mixture of natural gas and H2 that can be used on existing natural gas infrastructure with little or even no modification to be applied H2NG is thus an option in the transition from fossil fuels to a hydrogen economy, as it can reduce greenhouse gas emissions and can accelerate the adoption of H2 from renewable sources. Theoretically, H2 can be mixed with NG in any ratio, but H2NG mixtures with up to 20 vol-% of H2 represent the most realistic near term option due to technical and economic reasons. The addition of H2 to natural gas alters the thermodynamic properties of the mixture, which affects its transport, storage, and combustion characteristics. In this work, we present experimental density measurements for different H2NG mixtures, performed with a high-precision single sinker densimeter from 250 to 350 K and up to 20 MPa. The mixtures were prepared gravimetrically according to ISO 6142-1 for maximum precision in their composition. T2 - The 22nd European Conference on Thermophysical Properties ECTP 2023 CY - Venice, Italy DA - 10.09.2023 KW - Hydrogen-enriched natural gas KW - Single-sinker densimeter KW - High-pressure density KW - Equations of state PY - 2023 AN - OPUS4-60473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Konert, Florian T1 - Evaluation of hydrogen effect on hardened and annealed 100Cr6 steel N2 - The use of hydrogen demands high safety requirements, since hydrogen can be absorbed by metallic materials and may cause hydrogen embrittlement (HE) under certain conditions. Slow strain rate (SSR) tensile testing is a widespread method to quantify the hydrogen-induced ductility loss of alloys. Here, the hollow specimen technique was used to evaluate the effect of 150 bar hydrogen on the tensile properties of solution annealed and hardened 100Cr6 steel, which is a common material for bearing systems. This technique reduces the required amount of hydrogen and minimizes the duration and costs of the tests performed compared to in-situ tensile tests in autoclaves. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Hydrogen Embrittlement KW - Hollow Specimen Technique KW - 100Cr6 PY - 2024 AN - OPUS4-60476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drexler, Andreas A1 - Konert, Florian T1 - Hydrogen Solubility in Steels – What is the Role of Microstructure? N2 - Hydrogen gas plays a key role in the European energy transition strategy. When transmitting and storing compressed hydrogen gas, safety is one of the most important conditions. With increasing hydrogen pressure and temperature, more hydrogen is absorbed by the steel components, such as pipelines or valves, and may lead to embrittlement. Although, a deep understanding of microstructure on the hydrogen solubility in steels is missing. Classical Sieverts’ law is only valid at high temperatures and low gas pressures. For that purpose, new theory is presented, which explains the role of microstructure on hydrogen solubility. Hydrogen trapping at microstructural defects is a thermally activated mechanism and causes an increase of the hydrogen solubility with decreasing temperatures. This mechanism has to be considered in cryogenic applications, such liquid or compressed hydrogen storage. T2 - EPRI Workshop on Hydrogen Embrittlement 2024 CY - Oxford, UK DA - 23.06.2024 KW - Hydrogen KW - Sieverts’ law KW - Hydrogen solubility in steels KW - Hydrogen trapping PY - 2024 AN - OPUS4-60477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Measurement of Lateral Dimensions of Particles & Flakes (2D) by Imaging Methods N2 - An overview with the basics of size and shape measurement of particles and 2D structures according to established methodologies (and popular imaging processing software packages) with imaging techniques is given. Main descriptors are explained based on practical cases are determined interactively at the flipchart. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Nanoparticles KW - 2D materials KW - Lateral dimensions KW - ISO KW - Imaging PY - 2024 AN - OPUS4-60454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Elisabeth T1 - Towards a high-entropy alloy thin-film reference material N2 - Analyzing materials composed of multiple elements with spectroscopic techniques such as X-ray Photoelectron Spectroscopy (XPS), Auger-Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA), can be challenging due to spectral overlap. Moreover, each analytical method introduces its own set of challenges, e.g., the strong secondary fluorescence effect for neighbor elements in EPMA, thus, making the accurate elemental quantification in such materials difficult. When the material is available as thin film, additional constraints are inherently present. To provide a reference material for these analytical challenges high entropy alloys (HEAs) are excellent candidates. Currently, there is no thin film reference available containing more than 2 elements. Unlike traditional alloys, which typically consist of one or two main elements and smaller amounts of secondary elements, HEAs are characterized by the presence of multiple principal elements in almost equal proportions. This unique composition results in a high degree of disorder at the atomic level, leading to exceptional mechanical, physical, and often unexpected properties. HEAs have garnered significant attention in materials science and engineering due to their potential applications in a wide range of industries, from aerospace and automotive to electronics and renewable energy. For the preparation of a dedicated thin film reference material, we have chosen to prepare HEAs by magnetron sputtering, since it is not associated with elemental segregation that may occur due to the high configurational entropy of HEAs, which promotes atomic rearrangements. Our goal was to prepare films with a homogeneous thickness and defined chemical composition to be analyzed by various methods dedicated to surface analysis. The material, consisting of titanium, chromium, manganese, iron, and nickel was deposited as film on silicon substrates - to our knowledge the first HEA thin film of this type reported in literature. A set of different thickness of the films was chosen, on the one hand to facilitate the analysis with different techniques, and on the other side to evaluate the limitations of the respective methods. The films morphology was characterized as prepared by SEM followed by the analysis of their 2D compositional homogeneity by EDX, XRF, ToF-SIMS and XPS. in-depth chemical composition was evaluated by ToF-SIMS and AES. The outcomes of analyzing the initial batches of films will be presented. T2 - European Conference on Applications Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 10.06.2024 KW - High-entropy alloy KW - Thin film KW - Magnetron sputtering PY - 2024 AN - OPUS4-60455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Experimental Research Of A Tank For A Cryogenic Fluid With a Wall Rupture In a Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 AN - OPUS4-60456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar T1 - Experimental and Numerical Investigation on Multi-layer Insulation Thermal Deterioration N2 - To reduce carbon dioxide emissions, energy carries such as hydrogen consider to be a solution. Consumption of hydrogen as a fuel meets several restrictions such as its low volumetric energy density in gas phase. To tackle this problem, storage as well as transportation in liquid phase is recommended. To be able to handle this component in liquid phase, an efficient thermal insulation e.g., MLI insulation is required. Some studies have been revealed vulnerability of this type of insulation against high heat flux, for instance a fire accident. Some investigations have been depicted the importance of consideration of the MLI thermal degradation in terms of its reflective layer. However, limited number of studies have been focused on the thermal degradation of spacer material and its effect on the overall heat flux. In this study, through systematic experimental measurements, the effect of thermal loads on glass fleece, glass paper as well as polyester spacers are investigated. The results are reported in various temperature and heat flux profiles. Interpreting the temperature profiles revealed as the number of spacers in the medium increases, the peak temperature detectable by the temperature sensor on the measurement plate decreases. Moreover, the contribution of each individual spacer in all cases regarding the experimental temperature range is assessed to be around 8%. This value may increase to around 50% for glass paper and polyester spacers, and to around 25% for glass fleece spacers as the number of spacer layers increases up to six layers. To utilize the outcomes of the experiment later and integrate the results into numerical and CFD simulations, a model is proposed for the mentioned experimental temperature range up to 300°C to predict a heat flux attenuation factor. The model proposes a fitting factor that can reproduce the least square fitted line to the experimental data. T2 - 15th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions Naples (ISHPMIE) CY - Naples, Italy DA - 10.06.2024 KW - Multi-Layer Insulation KW - Cryogenic KW - Liquid Hydrogen KW - Heat Transfer KW - Hydrogen Storage PY - 2024 AN - OPUS4-60457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Davenport, John A1 - Lorek, Andreas A1 - Garland, Stephen A1 - Schwanke, Volker A1 - Wernecke, Roland T1 - Gasfeuchtemessung in der Normung N2 - Schwefelhexafluorid (SF6) ist ein 22.800-mal stärkeres Treibhausgas als CO2, wird aber aufgrund seiner isolierenden Eigenschaften in Mittel- und Hochspannungssystemen wie Schaltanlagen eingesetzt. Voraussetzung für die Durchschlagfestigkeit ist ein geringer Wasserdampfgehalt. Viele aktuelle Feuchtigkeitssensoren zeigen jedoch eine Querempfindlichkeit gegenüber CO2. Diese Richtlinienarbeit zielt darauf ab, den aktuellen Stand der Technik zu erweitern und neue Erkenntnisse zu gewinnen. Abschließend erfolgt eine Erweiterung der Richtlinie zur Gasfeuchte-Messung VDI/VDE 3514. T2 - GMA/ITG – Fachtagung Sensoren und Messsysteme 2024 CY - Nuremberg, Germany DA - 11.06.2024 KW - Gassensorik KW - Industrienormen KW - SF6 PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604597 DO - https://doi.org/10.5162/sensoren2024/P32 SP - 547 EP - 549 PB - GMA/ITG – Fachtagung Sensoren und Messsysteme 2024 CY - Nürnberg AN - OPUS4-60459 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar T1 - Investigation of Super Insulation degradation of a tank for cryogenic goods. Effect of fire on the storage of Cryogenic fluids N2 - Cryogenic liquefied gases, such as liquid hydrogen (LH2) and liquefied natural gas (LNG), are becoming more popular as eco-friendly energy sources. However, using these gases more often increases the risk of accidents, making it important to conduct thorough risk assessments. The storage systems for these gases rely on thermal superinsulation (TSI), which can fail under extreme heat, especially during fires. Therefore, it is essential to study how and why TSI fails. This research (part of PhD topic) aims to examine insulation performance, thereby improving the overall safety of cryogenic storage systems. T2 - Colloquium of Departement 3 CY - Berlin, Germany DA - 27.05.2024 KW - Investigation KW - Insulation degradation KW - Tank for cryogenic goods PY - 2024 AN - OPUS4-60462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skłodowska, Anna Maria A1 - Lay, Vera A1 - Baensch, Franziska A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - Microseismicity monitoring in materials for nuclear waste storage repositories N2 - One of the major tasks in nuclear waste management is to design safe and reliable sealing structures for radioactive waste repositories. Particularly for salt as a host rock, engineered barrier systems for underground waste disposal must be constructed of well-understood (cementitious) materials that will sustain environmental conditions and ensure high durability. Within the SealWasteSafe project, we studied two materials with a potential for sealing structures for nuclear waste repositories: an innovative alkali-activated material (AAM) and standard salt concrete (SC). To analyze the development of microstructural changes within the materials, we monitored microseismicity (aka acoustic emission monitoring) occurring during the hardening and setting period in two 340-liter-cubic specimens for up to ~250 days. The monitoring results showed, that in the first 61 days, fewer events occurred in AAM compared to SC. After this time the number of events in AAM sharply increased and significantly exceeded those observed in SC. However, the source localization analysis revealed that the increase of microseismicity in AAM material was not related to the formation of macro-cracks within the material but was mainly caused by the surface effects. Accompanying analysis of the test specimens with additional methods (such as e.g., X-ray CT) proved that no macro-cracks were observed inside the AAM specimen. Further analysis in the time and frequency domains helped to characterize the tested materials and to estimate their potential to be used for engineered barriers in nuclear waste repositories. Overall, our study shows the potential of microseismicity monitoring for feasibility studies and quality assurance in a broad range of applications, also in structural health monitoring. T2 - 84. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Jena, Germany DA - 10.03.2024 KW - Microseismicity KW - Nuclear waste repositories KW - Acoustic emission KW - SealWasteSafe project KW - Salt rock KW - Alkali-activated materia PY - 2024 AN - OPUS4-60549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skłodowska, Anna Maria T1 - Long-term acoustic emission monitoring of a new alkali-activated material for sealing structures in nuclear waste repositories N2 - The crucial part of nuclear waste storage is the construction of sealing structures made of reliable, well-understood, and safe materials. Within the SealWasteSafe project, we compared the performance of an innovative alkali-activated material (AAM) and standard salt concrete (SC), as potential materials for sealing structures for nuclear waste repositories. Two 340-liter-cubic specimens were studied for up to ~250 days by a multisensory monitoring setup. Specifically, the long-term acoustic emission monitoring aimed to analyze the development of microstructural changes within materials. The monitoring analysis showed fewer acoustic emission events in AAM compared to SC in the first 61 days. After approximately two months of monitoring, the number of AE events in AAM significantly exceeded the number of events in SC. The analysis showed, however, that the increased AE activity was mainly caused by surface effects of the AAM material and not by the formation of cracks within the material. This contribution presents the use of acoustic emission analysis, both in the time and frequency domains, for monitoring and characterization of materials with potential use as engineering barriers for nuclear waste repositories. T2 - 186th Meeting of the Acoustical Society of America CY - Ottawa, Canada DA - 13.05.2024 KW - Acoustic emission monitoring KW - Alkali-activated material KW - SealWasteSafe KW - Nuclear waste repositories KW - Salt concrete KW - Sealing structures PY - 2024 AN - OPUS4-60551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skłodowska, Anna Maria A1 - Lay, Vera A1 - Baensch, Franziska A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - Acoustic emission monitoring for engineered barriers in nuclear waste disposal N2 - To safely dispose of nuclear waste in underground facilities, engineered barrier systems are needed to seal shafts and galleries. The material used in these barriers must be adapted to the host rock parameters. Shrinking and cracking must be avoided to provide a barrier with almost zero permeability. For repositories in salt rock environments, several types of salt concrete (SC) are possible construction materials. Within the project SealWasteSafe, we compared the behavior of an innovative alkali-activated material (AAM) with standard SC in their hydration and hardening phase. To monitor the microstructural changes within the two materials SC and AAM, acoustic emission (AE) signals have been recorded for up to ~250 days on 340-liter-cubic specimens. The phenomenon of AE is defined as the emission of elastic waves in materials due to the release of localized internal energy. Such energy release can be caused by the nucleation of micro-fracture, e.g., in concrete while curing or when exposed to load. The occurrence of AE events gives first rough indications of microstructural changes and potentially occurring cracking and thus, provides insights for structural health monitoring (SHM). The results show, that for the first 28 days after casting, less AE activity was detected in the AAM compared to SC. After 61 days, in the AAM material, the number of AE events exceeded those observed in the SC. However, the majority of the AE detected and located in AAM was related to surface effects, and not to microstructural changes or occurring cracks within the bulk volume. Additionally, the source location analysis indicated, that despite lower activity in SC, we observed some clustering of the events. In contrast, in AAM, the activity inside the specimen is randomly distributed over the whole volume. The monitoring results help to estimate the material’s sealing properties which are crucial to assess their applicability as sealing material for engineered barriers. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Acoustic emission monitoring KW - Nuclear waste repositories KW - Event localization KW - SealWasteSafe project PY - 2024 AN - OPUS4-60552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian T1 - Development of a Hydrogen Fire Test Rig for Thermal Testing N2 - A new hydrogen-based test rig is being developed for a feasibility study on the use of hydrogen as an energy source for thermal testing in accordance with the IAEA SSR-6 guidelines for transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions (SSR-6 & SSG-26) does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - IAEA Fire KW - H2 Fire KW - IAEA Regulations PY - 2024 AN - OPUS4-60554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian T1 - Development of a Hydrogen Fire Test Rig for Thermal Testing N2 - A new hydrogen-based test rig is being developed for a feasibility study on the use of hydrogen as an energy source for thermal testing in accordance with the IAEA SSR-6 guidelines for transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions (SSR-6 & SSG-26) does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. T2 - 1st JF BMUV Förderprogramm CY - Berlin, Germany DA - 22.05.2024 KW - IAEA Fire KW - H2 Fire KW - IAEA Regulations PY - 2024 AN - OPUS4-60555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chacon Castro, Jose Pablo A1 - Schneider, Rika A1 - Greiner, Andreas A1 - Schartel, Bernhard T1 - Flame retardant poly(limonene carbonate): material innovation as a game changer N2 - The global plastic industry relies on fossil-based materials, presenting environmental challenges. A sustainable polymer namely poly(limonene carbonate) (PLimC), made of limonene and CO2 as two monomers from non-food sources, shows advances in various applications where additives such as flame retardants (FRs) are crucial to comply with fire safety measures. The variety of FRs is wide, and therefore the approach involved conducting a comparative study of four different halogen-free flame retardant systems that are conventionally used in polycarbonates and polyolefins to understand which FR enhances the flame resistance of PLimC most effectively. The primary task of the project is to conduct experimental evaluations to analyze the thermal properties, flammability, and fire behavior of each system. This data will offer valuable insights towards the advancement of safer and more sustainable materials. T2 - Polymers for Sustainable Future 2024 CY - Prague, Czech Republic DA - 24.06.2024 KW - Poly(limonene carbonate) KW - Flame retardancy KW - Fire science PY - 2024 AN - OPUS4-60556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank T1 - Transport nach Zwischenlagerung, Besonderheiten des letzten Transports N2 - Transportierbarkeit von Transport- und Lagerbehältern für radioaktive Stoffe, welche nach eine längerfristigen trockenen Zwischenlagerung transportiert werden müssen. Überblick über die aktuellen Regelwerke und Richtlinien sowie die Zeitpläne für das Finden eines Endlagers für hochradioaktive Stoffe und die damit verbundene verlängerte Zwischenlagerung. Des Weiteren werden das für die verlängerte Zwischenlagerung notwendige Alterungsmanagement und die noch erforderlichen Forschungstätigkeiten vorgestellt. T2 - BGZ Fachworkshop Zwischenlagerung CY - Berlin, Germany DA - 16.11.2021 KW - Transportbehälter KW - Radioaktive Stoffe KW - Transport KW - Zwischenlagerung KW - IAEA PY - 2021 AN - OPUS4-60505 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -