TY - CONF A1 - Mieller, Björn T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröter, Felix T1 - Fluorescence? Not on my Shift! Excitation- Shifted UV Raman Microspectroscopy N2 - Spectroscopic analysis of samples provides elemental information, which is useful when the sample is homogenous. But many samples are not and consequently the creation of maps detailing the spatial composition of materials is needed. Raman microscopy can be used for this exact purpose but suffers a big drawback. The inherently weak Raman scattering results in long measurement times, especially when maps with many data points are created. This is due to the long exposure times needed when visible light lasers are used. A shift to UV-Lasers significantly increases the Raman intensity, as it scales with the fourth power of the inverse of the laser wavelength. But UV excitation often leads to fluorescence which can obscure the relatively weak Raman signal. Consequently, UV-Raman can only be used with specially prepared samples, for example through photo-bleaching, or with samples producing no fluorescence background in the measurement region. A solution is proposed that uses shifted-excitation Raman difference spectroscopy (SERDS) in a confocal microscope to obtain fluorescence-free Raman spectra. This is possible due to the collection of two Raman spectra at different excitation wavelengths. SERDS then allows for the calculation of just the Raman signal from the difference spectrum, which eliminates any fluorescence backgrounds, as they are not excitation wavelength dependent. The presented approach employs a polarized beamsplitter to irradiate the same spot with two lasers of different wavelengths which share the same beam path in the microscope. Consequently, a SERDS UV Raman Microscope is created, which utilizes the speed of UV-Raman without the drawbacks of possible broad fluorescence backgrounds. Here we present the instruments methodology and some first results. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - UV Raman Spectroscopy KW - UV Raman Microspectroscopy KW - Confocal Microscopy KW - Excitation-Shifted Raman Spectroscopy PY - 2025 AN - OPUS4-62734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blume, Simon T1 - Exploiting Lithium Self-Absorption in a Laser-Induced Breakdown Plasma for Isotopic Analysis via Spatial Heterodyne Spectroscopy N2 - Lithium-ion batteries are ubiquitous in modern life. From powering consumer electronics to enabling electric mobility and energy storage, they are a key building block of a sustainable future. Determination of the ratio of the two naturally abundant stable isotopes, 7Li and 6Li, provides access to a wide variety of information, such as studying the aging processes of lithium-ion batteries or elucidating the isotopic fingerprinting of natural or recycled sources of lithium. However, accurately measuring the lithium isotope ratio in complex samples remains challenging, often requiring either extensive sample pretreatment or specialized equipment, thus impeding in-situ and high-throughput demands of global industries. Recognition and determination of the individual lithium isotopes with conventional laser-induced breakdown spectroscopy (LIBS) setups is nearly impossible. While LIBS offers several advantages, such as obviating time- and resource-intensive sample preparation and enabling rapid measurements, the high temperature (~20,000 K) of the plasma, as well as the Stark-broadening caused by the nascent free electrons spectrally broaden the atomic emission lines to such an extent that the isotopic shift of the lithium doublet at 670 nm cannot be resolved. Since, the excited state energy for this transition amounts to only 14,900 cm-1, lithium exhibits a pronounced self-absorption dip in the emission signal. This self-absorption dip is significantly less affected by the broadening effects, therefore, allowing for the resolution of the isotopic shift from its line shape. Spatial heterodyne spectroscopy (SHS) offers the superior resolution capabilities necessary to differentiate the individual isotopic contributions. To address the generally limited sensitivity of SHS, a high-repetition-rate (>10 kHz) laser allows the accumulation of more than 10,000 lasing events per spectral recording for a sufficient signal-to-noise ratio and gain statistical validity. Optical lithium fluoride serves as a model sample to showcase the analytical performance. Additionally, the impact of the laser parameters on the self-absorption will also be discussed. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Isotopic Analysis KW - Spatial Heterodyne Spectroscopy PY - 2025 AN - OPUS4-63559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Multi-Scale Analysis of Commercially Available Sodium-Ion Cells N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells. Two different SIB-cells with different specification were compared regarding electrode size, thickness and further parameters. Furthermore, the composition of the active materials and electrolyte was investigated and compared. T2 - Solid State Ionics (SSI) CY - London, United Kingdom DA - 15.07.2024 KW - Sodium Ion-Cells KW - Multi-Scale PY - 2024 AN - OPUS4-60764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Yi T1 - Advanced Repetition-Rate Modulation and Computational Strategies for Background-Free LIBS Using Non-Gated Spectrometers N2 - Laser-induced breakdown spectroscopy (LIBS) is recognized for its rapid, direct elemental analysis capabilities. However, its general adoption is constrained by the reliance on expensive, high-power consumption, gated cameras such as intensified charge-coupled devices (CCDs). These devices, while sensitive, are expensive and possess low frame rates, limiting their efficacy in dynamic or challenging environments. Our study proposes an innovative approach that leverages non-gated spectrometers in conjunction with the framework of correlation spectroscopy to isolate analyte signals responsive to a specific repetition-rate modulation pattern, thereby yielding spectra with zero background. We utilized a diode-pumped solid-state laser, with repetition rates ranging from 10 Hz to 30 kHz, to induce plasma in aqueous solutions containing various alkaline and earth-alkaline metals. With a non-gated single-grating linear CCD spectrometer, we found that the continuum signal plateaued at approximately 7 kHz. In contrast, atomic emissions from the dissolved analytes showed continued increases. Notably, atomic emissions from the solvent (water) were observable only above 8.5 kHz, at a significant high rate of increase. Through computational synthesis of a modulation pattern, we determined an optimized scheme that effectively discriminates continuum and analyte signals; this pattern was optimized with a genetic algorithm. The spectral matrix correlating signal intensity with laser repetition rate and wavelength was used as the input of the model. Meanwhile, the fitness function that extracts the background-free spectra was built in-house and inspired by the Gardner transform, which exploits the power of Fourier transform, allowing for flagging and splitting analyte signal from other undesired features. This approach bypasses the limitations associated with gated cameras, while providing a cost-effective alternative for robust LIBS applications. This advancement is particularly relevant in field, portable and remote applications, aligning with the ongoing demand for accessible, high-performance analytical tools in diverse scientific fields. T2 - SCIX 2024 Conference CY - Raleigh, NC, USA DA - 20.10.2024 KW - LIBS KW - Data Processing KW - High Repetition Rate KW - Repetition Rate Modulation KW - Data-Oriented Experimental Design PY - 2024 AN - OPUS4-62137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of X-ray refraction to non-destructive characterization of and composites T2 - 14th International Conference of the European Ceramic Society CY - Toledo, Spain DA - 2015-06-21 PY - 2015 AN - OPUS4-33974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Tieftemperaturfügen mit Nano- und Submikronsilberpasten T2 - DKG-Symposium "Fügen von Keramik: Grundlagen - Verfahren - Anwendungen" CY - Erlangen, Germany DA - 2012-12-04 PY - 2012 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-27285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arlt, Tobias T1 - Tomographic methods for investigation for fuel cell materials T2 - Ulm Electro Chemical Talks CY - Ulm, Germany DA - 2010-06-15 PY - 2010 AN - OPUS4-21518 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Anita T1 - Eine sichere Zukunft für Lithium-Ionen Batterien N2 - Eine sichere Zukunft hat eine Technologie dann, wenn sie die Gesellschaft auch von ihrer Sicherheit überzeugen kann. Dies ist insbesondere für Lithiumbatterien von hoher Bedeutung. Die BAM trägt auf den verschiedene Ebenen auf vielfältige Art und Weise dazu bei, diese Sicherheit zu untersuchen und zu verbessern. T2 - 4. Batterieforum Berlin Brandenburg CY - Potsdam, Germany DA - 22.11.2024 KW - LIthiumbatterien KW - Sicherheit PY - 2024 AN - OPUS4-62328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of Fibre Breaks under Time Dependent Loads in CFRP Materials of Pressure Vessels N2 - BAM has discovered that the reliability of tested composite pressure vessel will be altered when the loading speed is varied. The ageing of composite materials in general gives negative effect to the structure, however there might be positive effect occurs due to the load redistribution between the fibres. The study on the negative effect of ageing has been compared favourably with the fibre break model from Mines ParisTech. To improve the model's capability, this positive effect should also be implemented. The problem however to evaluate real scale model that might take extensive computation time. The reduced volume method then was proposed to improve the calculation time. The next study is then to check the approach on different loading condition and compare the result with experimental data provided by BAM. T2 - PhD Day 2018 CY - Evry, France DA - 20.06.2018 KW - Fibre Break Accumulation KW - Carbon Fibre Pressure Vessels KW - Time Effect KW - Integral Range PY - 2018 AN - OPUS4-45567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - A few Aspects of the Current Understanding of DPF Materials Thermal and Mechanical Properties N2 - Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, whereby porosity and solid matter are intermingled. Moreover, they very often display a microcrack network, resulting from the strong anisotropy of the microscopic coefficient of thermal expansion (CTE). Mechanical, thermal, and filtration properties, they all strongly depend on the morphology of both solid matter and porosity, and on the degree of microcracking (also, the microcrack density), which is in its turn tightened to the grain size. Recent industrial and academic research has enormously progressed in understanding the microstructure-property-performance relationships existing in these complicated materials: - Using 3D computed tomography (CT) at different resolutions, and several X-ray refraction-based techniques, porosity and pore orientation could be quantitatively evaluated (in the example of cordierite). - Neutron and X-ray Diffraction has been instrumental to disclose a) the non-linear character of the stress-strain response, and b) the negative CTE of these materials, and its consequences on the materials properties; - Analytical and numerical models have been elaborated to rationalize these behaviours in terms of microcracking and microstructural features. Here these results will be reviewed, and a outlook at (some of the) outstanding problems will be given. T2 - HELSMAC CY - Cambridge UK DA - 7.04.2016 KW - Thermal KW - Materials PY - 2016 AN - OPUS4-35752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blume, Simon T1 - Femtosecond Laser-induced XUV Spectroscopy (LIXS) for Elemental Analysis N2 - In a typical laser-induced breakdown spectroscopy (LIBS) setup, emissions from collisional excitation of the atoms in the later stages of the plasma are detected and provide information about the elemental fingerprint of the sample. However, precise measurements, in particular quantification efforts, suffer from fluctuations of the intensity of the detected emission lines due to matrix effects and plasma-flicker noise, as well as significant background noise. In contrast, the early stages of the plasma are dominated by electron-ion recombination and Bremsstrahlung, which lead to sharp and intense x-ray emissions with consistent intensity profiles between laser pulses and suppressed background noise, therefore improving the limit of detection, especially for lighter elements. These emissions are detected in laser-induced XUV spectroscopy (LIXS).[1] Introduction of a femtosecond laser (pulse length ~100 fs) to the LIXS setup fundamentally changes the laser energy absorption and ablation process. The laser pulse energy is absorbed and redistributed by multiphoton absorption and inverse Bremsstrahlung and operates on a time frame faster than the plasma formation. Additionally, the plasma formation itself is accelerated leading to signal generation in the XUV-range before generation of the undesired background emissions. Thus, utilization of a femtosecond laser allows for further suppression of broadband emissions from the plasma allowing for sharper separation of the emission lines and improved limit of detection. This work presents the results of the combination of a LIXS setup with a femtosecond laser and assess the capabilities of this system with a model sample of cathode material from a spent lithium-ion battery. T2 - AMACEE 2025 CY - Brno, Czech Republic DA - 26.8.2025 KW - LIXS KW - Femtosecond laser KW - Instrumentation PY - 2025 AN - OPUS4-64118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palásti, Dávid jenö T1 - Interferometric sensing in the UV range – Investigation and comparison of the all-reflective spatial heterodyne spectrometer designs N2 - Spatial heterodyne spectrometers (SHS) are optical interferometric devices, working in the UV and visible spectral ranges [1]. The most common SHS setup is similar to the Michelson interferometer, both utilizes a beam splitter in the incoming beam path. In case of the SHS the split beams are not aimed towards orthogonal mirrors, but reflective optical gratings, set under a selected angle. These optical gratings diffract the beams, the direction of every wavelength will depend on the grating constant and the angle of the gratings. The wavefronts belonging to different wavelengths are going to cross each other under a unique angle, resulting in a spatial interference, which is recorded by a digital camera. This relatively compact setup provides high resolution and light throughput, which properties were harnessed for tasks requiring good line separation and/or high sensitivity [2]. However, SHS are only applicable on wavelengths for which an adequate transmissive beam splitter is available like the visible range, but not the far UV. To overcome this limitation, different all-reflective designs were introduced [3]. These instruments utilize symmetric optical gratings for the splitting and recombination of the beams. Although these SHS devices solve the main limitations of the traditional ones, they come with their fair share of drawbacks as well, such as more complex arrangement and the requirement for more delicate tuning. The behaviour of the traditional SHS is well documented [4,5], but in regards of the all-reflective ones we have much less available information. In this current study we utilized computational modelling to predict the behaviour of the all-reflective SH spectrometers, with special attention to the effects of the different alignment errors. Later we utilize this knowledge to fine tune an SHS for sensing (LIBS, Raman) in the UV region. Furthermore, we are introducing two new all-reflective SHS setups and compering them to their older counterparts. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - SHS KW - Spectroscopy PY - 2025 AN - OPUS4-63556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Anwendung der Master-Sinter-Kurve bei druckunterstützter Sinterung von Low Temperature Co-Fired Ceramics T2 - DKG-Jahrestagung 2014 CY - Clausthal-Zellerfeld, Germany DA - 2014-03-24 PY - 2014 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-30472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Evaluating Porosity in Cordierite DPF Materials: Advanced X-ray Techniques and New Statistical Anlaysis Methods T2 - CIMTEC 2014 CY - Montecatine Terme, Italy DA - 2014-06-08 PY - 2014 AN - OPUS4-30875 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Analyse von Schädigungsprozessen in Beton - Was leistet die CT? Teil1: Einblick in die Computertomographie N2 - Ein Nachteil der klassischen Durchstrahlungstechnik mit Röntgenstrahlen ist die, in der Abbildung des Untersuchungsobjektes, fehlende Tiefeninformation. Die Anwendung von radiografischen Verfahren, die das Objekt unter zwei oder mehreren Winkelpositionen durchstrahlen, erlauben die Rekonstruktion räumlicher Abbildungen. Dazu zählen Stereoradiografie, Translations- und Rotationslaminographie. Bei der Computertomographie erfolgt die Durchstrahlung unter einem Winkelbereich von 180° oder 360°. Die dabei aufgenommenen Projektionen werden anschließend durch Anwendung der Fourier Transformation und der gefilterten Rückprojektion zu einem 3D-Bilddatensatz rekonstruiert. Verschiedene systembedingte Artefakte, die das Ergebnis negativ beeinflussen können, lassen sich durch geeignete Meß- und Rekonstruktionsparameter, sowie einer nachfolgende Bildverarbeitung eliminieren oder reduzieren. T2 - Summer School im Rahmen des DFG Schwerpunktprogramms 2020 "Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab" CY - Hotel Park Soltau, Soltau, Germany DA - 25.06.2018 KW - Computertomographie KW - Durchstrahlungsverfahren KW - Bildverarbeitung KW - Rekonstruktionsverfahren KW - Bildartefakte PY - 2018 AN - OPUS4-45432 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra T1 - Characterization of multiphase metal matrix composites by means of CT and neutron diffraction N2 - The present study examines the relationship between the microstructure of multiphase MMC and their damage mechanisms. The matrix AlSi12CuMgNi was combined with 15% vol. Al2O3 (short fibres) and with 7% vol. Al2O3 + 15% vol. SiC (short fibres and whiskers, respectively). The experimental approach encompasses 3D microstructure characterization by means of computed tomography of samples (a) as-received, (b) after heat treatment, and (c) after compression tests at room temperature. The volume fraction of different phases, their distribution, their orientation and the presence of defects and damage are studied. Influence of addition of SiC whiskers on mechanical properties of composite was investigated. Phase-specific load partition analysis for samples with fibre plane parallel to load was perform by using neutron diffraction measurements during in-situ compression. It shows damage in the Si phase, while Al2O3 short fibres carry load without damage until failure. The computed tomography observations confirm the load partition analysis. T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - CT KW - Neutron diffraction KW - Aluminium KW - Composite PY - 2016 AN - OPUS4-38395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas T1 - 3D Charakterisierung wasserstoffunterstüzter Risse in Stahl mittels Synchrotron-Refraktions-CT N2 - Die Fehlertoleranz moderner hochfester Stähle gegenüber Prozessfehlern beim Fügen nimmt stetig ab und erfordert eine immer kritischere Beurteilung der Ergebnisse aus den vorhandenen Prüfverfahren. Deren Aussagekraft ist häufig zu gering und daher muss zum einen das wissenschaftliche Verständnis der Mikrokaltriss-Entstehung in diesen Stählen vertieft werden und zum anderen müssen die Prüfmethoden und Bewertungskriterien angepasst werden. Dies erfordert ein besseres Verständnis insbesondere der Kopplung von Eigenspannungen, Wasserstoffgehalten und der Wirkung äußerer Kräfte auf die Rissentstehung und das Risswachstum. Erstmals soll mittels 3D-Synchrotron-Refraktions-Topographie an der BAMline am BESSY die Rissentstehung in mit Wasserstoff beladenen Zugproben charakterisiert werden. Diese Kenntnisse sollen in weiteren Untersuchungen auf Schweißnähte übertragen werden. T2 - MDDK – Master-, Diplomanden- und Doktorandenkolloquium CY - Universität Magdeburg, Germany DA - 23.06.2016 KW - Duplexstahl KW - Wasserstoffunterstützte Rissbildung KW - Computertomographie KW - Synchrotron-Refraktion PY - 2016 AN - OPUS4-36733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -