TY - CONF A1 - Mirabella, Francesca T1 - ToF-SIMS as a new tool for nano-scale investigation of ps-laser-generated surface structures on titanium substrates N2 - In recent years, the fabrication of laser-generated surface structures on metals such as titanium surfaces have gained remarkable interests, being technologically relevant for applications in optics, medicine, fluid transport, tribology, and wetting of surfaces. The morphology of these structures, and so their chemistry, is influenced by the different laser processing parameters such as the laser fluence, wavelength, pulse repetition rate, laser light polarization type and direction, angle of incidence, and the effective number of laser pulses per beam spot area. However, the characterization of the different surface structures can be difficult because of constraints regarding the analytical information from both depth and the topographic artifacts which may limit the lateral and depth resolution of elemental distributions as well as their proper quantification. A promising technique to investigate these structures even at the nano-scale is Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), a very surface sensitive technique that at the same time allows to perform depth-profiling, imaging and 3D-reconstruction of selected ion-sputter fragment distributions on the surface. In this study we combine chemical analyses such as Energy Dispersive X-ray spectroscopy (EDX) and high-resolution scanning electron microscopy (SEM) analyses with ToF-SIMS to fully characterize the evolution of various types of laser-generated micro- and nanostructures formed on Ti and Ti alloys at different laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz), following irradiation by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment or under argon gas flow. We show how this combined surface analytical approach allows to evaluate alteration in the surface chemistry of the laser-generated surface structures depending on the laser processing parameters and the ambient environment. T2 - European Materials Research Society (EMRS) Fall Meeting 2021 CY - Online meeting DA - 20.09.2021 KW - ToF SIMS KW - Nano characterization PY - 2021 AN - OPUS4-53366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of mesoporous thin IrOx-TiOx mixed oxide films for understanding the impact of synthesis conditions N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of thin porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the homogenous dispersion of the active species within the porous matrix. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by complementary analysis of SEM/EDS, ToF-SIMS, NanoSIMS, AES and spectroscopic ellipsometry. Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films can be prepared by a well-established Synthesis route via soft-templating. IrOx-TiOx films are very sensitive to the conditions of synthesis. Analysis by SEM and NanoSIMS imaging suggests IrOx-TiOx films with and without a homogenous dispersion of IrOx within the TiOx film matrix under different synthesis conditions. Auger electron spectroscopy (AES) analysis in the depth-profile mode as well as cross-section line-scan AES measurements of an inhomogeneous IrOx-TiOx film indicate the presence of an IrOx-rich Phase dispersion both at the surface of IrOx-TiOx film as well as within the film. The contribution will assess in detail the sensitivity of the synthesis conditions and the characterization of the thin metal oxide films. Moreover, the correlation between and comparison to other measurement techniques will be discussed. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Mesoporous films KW - Iridium oxide KW - SIMS KW - SEM/EDS KW - Titanium dioxide KW - Ellipsometry KW - Auger Electron Spectroscopy PY - 2019 AN - OPUS4-49234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Investigations at BAM on Fuel Cladding Integrity and DPC Seal Performance N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) winter meeting 2022 CY - Charlotte, NC, USA DA - 07.11.2022 KW - Metal seal KW - Fuel cladding KW - Ring compression test KW - Brittle failure PY - 2022 AN - OPUS4-56400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Morphological and Chemical Nanoscale Analysis of Mesoporous Mixed IrO x TiO y Thin Films as Electrode Materials N2 - Porous films play an important role particularly in energy applications like photovoltaics, electrolysis or batteries. Thin film properties such as thickness, chemical composition, crystallinity of the framework, and porosity define the activity of the porous films. The accurate morpho-chemical characterisation of mesoporous thin films is a challenging analytical task which requires the consideration of new analytical approaches based on the combination of data of different methods able to address the structure and chemical composition at the nanoscale. In this contribution we characterise thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with Energy-Dispersive X-ray Spectroscopy (EDS) at an SEM applied in a dedicated “thin film analysis” approach (1). Thus, the film mass deposition, film thickness and the film density can be determined. Further, by dividing the measured film density to an assumed (theoretical) metal oxide framework (skeletal) density, the thin film porosity can be extracted, too. In order to assess the homogeneity of the thin film properties like the chemical composition, Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Auger Electron Spectrometry are applied in the depth profiling mode, so that possible in-depth gradients are detected. Lateral inhomogeneities in the chemical composition and structure of the thin mesoporous films are also identified by applying the same methods in the line-scan or mapping mode, which can be further combined with in-depth sputtering for 3D information. The role of the spatial resolution of the analytical methods considered, which can go down well below 100 nm, will be highlighted. T2 - Microscopy and Microanalysis 2024 CY - Cleveland, OH, USA DA - 28.07.2024 KW - Auger electron spectroscopy KW - Iridium oxide KW - Mesoporous thin films KW - SIMS KW - Titanium oxide KW - Porosity PY - 2024 AN - OPUS4-60805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias T1 - Investigations on the Long-term Behavior of Metal Seals for Dual Purpose Casks N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 AN - OPUS4-49018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rackwitz, Vanessa T1 - Check and specification of the performance of EDX spectrometers attched to the SEM - A new test material and an uptaded software package T2 - PRORA 2013 Fachtagung Prozessnahe Röntgenanalytik CY - Berlin, Germany DA - 2013-11-21 PY - 2013 AN - OPUS4-29568 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - Nano and Advanced Materials - Competences at BAM and perspectives N2 - This presentation gives an overview about the competencies and the characterization possibilities of nanoparticles at BAT, based on this the development of the OECD TG 125 at BAM. It further describes research activities at BAM concerning the characterization of nanoparticles and the way to the digital representation of these characterization possibilities. It concludes with the challenges of a digital product passport (DPP) for nanomaterial based products and the need of a digital materials passport (DMP). Finally, the activities of BAM are presented which address the former mentioned challenges from ESRP and DPP. T2 - Austausch Helmholtz Hereon / Digipass & BAM CY - Berlin, Germany DA - 07.07.2025 KW - Nanomaterials KW - ESPR KW - DPP KW - Nano KW - Advanced Materials PY - 2025 AN - OPUS4-64974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia T1 - Gebäudebegrünung mit Biofilmen: Herausforderungen und Chancen N2 - Der Vortrag stellt die Ergebnisse der Forschungsarbeiten zur Biorezeptivität von Betonfassaden sowie der gezielten Applikation von Algen dominierten Biofilmen auf Betonfassaden vor. Insbesondere werden die Anforderungen an eine repräsentative Prüfmethode erläutert. T2 - BuGG-Tag der Forschung und Lehre Gebäudegrün 2024 CY - Leipzig, Germany DA - 26.09.2024 KW - Begrünung KW - Biorezeptivität KW - Beton KW - Biofilm PY - 2024 AN - OPUS4-62221 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René T1 - Spectroscopic ellipsometric analysis of elemental composition and porosity of mesoporous iridium-titanium mixed oxide thin films for electrocatalytic splitting of water N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge for modern analytical techniques and requires approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by spectroscopic ellipsometry (SE). Mesoporous iridium oxide - titanium oxide (IrOx-TiOx) films were prepared via dip-coating of a solution containing a triblock-copolymer as structure-directing agent, an iridium precursor as well as a titanium precursor in ethanol. Deposited films with different amounts of iridium (0 wt%Ir to 100 wt%Ir) were synthesized and calcined in air. The thin films were analyzed with SE using the Bruggeman effective medium approximation (BEMA) for modelling. The results were compared with electron probe microanalysis (EPMA) as part of a combined SEM/EDS/STRATAGem Analysis. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Mesoporous iridium-titanium mixed oxides KW - Thin films KW - Spectroscopic ellipsometry KW - Oxygen evolution reaction KW - EPMA KW - Ellipsometric porosimetry PY - 2019 AN - OPUS4-48387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Investigations of the effect of hydrogen in an argon glow discharge T2 - 2000 Winter Conference on Plasma Spectrochemistry CY - Fort Lauderdale, FL, USA DA - 2000-01-10 PY - 2000 AN - OPUS4-3133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Influences on the low temperature sealability of elastomer O-rings T2 - International Rubber Conference 2015 CY - Nuremberg, Germany DA - 2015-06-29 PY - 2015 AN - OPUS4-33752 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abram, Sarah-Luise T1 - Iron oxide nanoparticles as a reference material candidate for particle size measurements N2 - This poster presentation covers the development of iron oxide nanoparticles as reference material candidate in the context of the project "Nanoplattform". T2 - EMRS Spring Meeting CY - Online meeting DA - 31.05.2021 KW - Iron oxide nanoparticles KW - Reference material KW - Particle size KW - Transmission electron microscopy KW - Small angle x-ray scattering PY - 2021 AN - OPUS4-52773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Procop, Mathias T1 - The determination of the efficiency of energy dispersive X-ray spectrometers by a new reference material T2 - 9th Europ. Workshop of Europ. Microbeam Anal. Soc. and 3rd Meeting of International Union of Microbeam Analysis Societies CY - Florence, Italy DA - 2005-05-22 PY - 2005 AN - OPUS4-7133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja T1 - Quantitative chemichal depth-profiling by synchrotron-radiation-XPS N2 - Synchrotron-radiation enables the adjustment of the XPS information depth and, thus, the visualization of depth profiles of the elemental composition within the first 10 nm of a surface. This project deals with the analysis of core-shell nanoparticles. It constitutes first steps towards a valid methodology for studying the surface chemistry of nanoparticles in a quantitative and accurate manner. T2 - Eighth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 07.12.2016 KW - XPS KW - Synchrotron KW - Depth-profiling KW - Core@Shell Nanoparticles PY - 2016 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-38782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Low temperature properties of elastomer seals - Comparison between purely static and partially released seals - N2 - Rubber is widely used as sealing material in various applications. In many fields the function of seal materials at low temperatures is necessary. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly temperature dependent. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic behaviour to stiff energy-elastic behaviour, that allows nearly no strain or retraction, due to the glass transition. Hence rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. Therefore the lower operation temperature limit of rubber seals should be determined in dependence of the material properties. In the past we investigated the material properties and sealing behaviour of elastomeric seals at low temperatures. Additionally we started to study the effect of a small partial release of elastomer seals at low temperatures. To study the influence of dynamic events on seal performance and to enhance the understanding of occurring seal failure, a setup for a fast partial seal release was designed. In this contribution we focus on the correlation of material properties and component behaviour under different application conditions. It is desired to widen the understanding of the process of seal failure at low temperature. T2 - 12. Kautschuk Herbst Kolloquium CY - Hannover, Germany DA - 22.11.2016 KW - Seal behaviour KW - Partial release KW - Low temperature KW - Leakage rate PY - 2016 AN - OPUS4-38500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Staude, Andreas T1 - The Influence of data filtering on dimensional measurements with CT T2 - 18th WCNDT - World Conference on Non-Destructive Testing CY - Durban, South Africa DA - 16.04.2012 PY - 2012 AN - OPUS4-26126 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Zencker, Uwe A1 - Völzke, Holger A1 - Schulze, Dietmar T1 - Testing and numerical simulation of elastomeric seals under consideration of time dependent effects N2 - Due to delays in the siting procedure to establish a deep geological repository for spent nuclear fuel and high level waste and in construction of the already licensed Konrad repository for low and intermediate level waste, extended periods of interim storage will become more relevant in Germany. BAM is involved in most of the cask licensing procedures and is responsible for the evaluation of cask-related long-term safety issues. Elastomeric seals are widely used as barrier seals for containers for low and intermediate level radioactive waste. In addition they are also used as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). To address the complex requirements resulting from the described applications, BAM has initiated several test programs for investigating the behavior of elastomeric seals. These include experiments concerning the hyperelastic and viscoelastic behavior at different temperatures and strain rates, the low temperature performance down to -40°C, the influence of gamma irradiation and the aging behavior. The first part of the paper gives an overview of these tests, their relevant results and their possible impact on BAM’s work as a consultant in the framework of approval and licensing procedures. The second part presents an approach of the development of a finite element model using the finite element code ABAQUS®. The long-term goal is to simulate the complex elastomeric behavior in a complete lid closure system under specific operation and accident conditions. T2 - ASME 2016 Pressure Vessels & Piping Conference (PVP2016) CY - Vancouver, BC, Canada DA - 17.07.2016 KW - Elastomeric seals KW - Testing KW - Low temperature behavior KW - Aging KW - Simulation KW - Time dependent effects PY - 2016 SN - 978-0-7918-5045-9 VL - 7 SP - Paper 63192, 1 EP - 10 AN - OPUS4-37046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - This study presents a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy & Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Core-shell particles KW - 3D image analysis KW - Roughness KW - SEM tilting KW - Batch analysis PY - 2022 AN - OPUS4-55452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - MinimUm Information Requirements for Electron Microscopy and Surface analysis Data For Risk Assessment of Nanoforms N2 - The European legislation has responded to the wide use of nanomaterials in our daily life and defined the term “nanoform” in the Annexes to the REACH (Registration, Evaluation, Authorization of Chemicals) Regulation. Now specific information of the nanomaterials is required from the companies when registering the appropriate materials in a dossier. In the context of REACH eleven physicochemical properties were considered as relevant, of which the following six are essential for registration of nanoforms (priority properties): chemical composition, crystallinity, particle size, particle shape, chemical nature of the surface (“surface chemistry”), and specific surface area (SSA). A key role is the reliable, reproduceable and traceable character of the data of these priority properties. In this context, we want to discuss which ‘analytical’ information is exactly required to fulfill these conditions. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS) were chosen as the most popular surface analytical methods. Both methods allow a detailed understanding of the surface chemistry with an information depth below ten nanometers. As a rather bulk method for the analysis of nanoforms, Electron Probe Microanalysis (EPMA) in the version with energy dispersive X-ray spectroscopy (EDS) is considered for the quick identification of the main chemical elements present in the sample. Furthermore, Scanning Electron Microscopy (SEM) results are discussed which provide results on particle size and shape. Thus, four of the six priority properties can be obtained with these methods. T2 - Nanosafe 2020 CY - Online meeting DA - 17.11.2020 KW - Risk assessment KW - Nanomaterials KW - Standardization KW - Regulation PY - 2020 AN - OPUS4-51612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -