TY - CONF A1 - Schlick-Hasper, Eva T1 - Ablauf des Zustimmungsverfahrens zu alternativen Methoden zum Wasserbad in der BAM N2 - Dieser Vortrag gibt einen Überblick über den Ablauf zur Zustimmung alternativer Methoden der Dichtheitsprüfung für gefüllte Druckgaspackungen nach ADR 6.2.6.3.2. T2 - IGA-Herbstforum CY - Frankfurt am Main, Germany DA - 24.11.2023 KW - Druckgaspackungen KW - Zustimmung KW - Alternative Dichtheitsprüfverfahren PY - 2023 AN - OPUS4-59032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp T1 - micro-XRF und XANES-Analytik von PFAS N2 - Ergebnispräsentation über gesammelte Ergebnisse der Synchrotron F µ-XRF und -XANES Spektroskopischen Untersuchungen von PFAS und PFAS-haltigen Materialien T2 - Online-Seminar des Fortbildungsverbundes Boden und Altlasten Baden-Württemberg CY - Online meeting DA - 07.12.23 KW - PFAS KW - XANES KW - XRF KW - Röntgenspektroskopie KW - Synchrotron PY - 2023 AN - OPUS4-59077 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - PhD Seminar CY - Online meeting DA - 12.10.2023 KW - Mechanochemistry KW - In situ PY - 2023 AN - OPUS4-59022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Investigating the mechanism and kinetics of the mechanochemical synthesis of multi-component systems N2 - Mechanochemistry is a promising and environmentally friendly approach for synthesizing (novel) multicomponent crystal systems. Various milling parameters, such as milling frequency, milling time, and ball diameter have been shown to influence the mechanisms and rates of product formation. Despite increasing interest in mechanochemistry, there is still limited understanding of the underlying reactivity and selectivity mechanisms. Various analytical techniques have been developed to gain insight into the mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy and thermography. Using these techniques, we have studied the formation of (polymorphic) cocrystals, organometallic compounds and salts, and elucidated the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For example, our study of the mechanochemical chlorination reaction of hydantoin revealed that normalisation of the kinetic profiles to the volume of the grinding ball clearly showed that physical kinetics dominate the reaction rates in a ball-milling transformation. Attempts to interpret such kinetics in purely chemical terms risk misinterpretation of the results. Our results suggest that time-resolved in situ investigation of milling reactions is a promising way to fine-tune and optimise mechanochemical processes. T2 - ISIC 2023 CY - Glasgow, Scotland DA - 05.09.2023 KW - Mechanochemistry KW - Polymorphy KW - In situ PY - 2023 AN - OPUS4-59023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Understanding mechanochemical reactions: Real-time insights and collaborative research N2 - Mechanochemistry emerges as a potent, environmentally friendly, and straightforward approach for crafting novel multicomponent crystal systems. Various milling parameters, including milling frequency, time, filling degree of the milling jar, ball diameter, vessel size, degree of milling ball filling, and material of jars, are recognized influencers on the mechanisms and rates of product formation. Despite the growing interest in mechanochemistry, there exists a gap in understanding the mechanistic aspects of mechanochemical reactivity and selectivity. To address this, diverse analytical methods and their combinations, such as powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography, have been developed for real-time, in situ monitoring of mechanochemical transformations. This discussion centers on our recent findings, specifically investigating the formation of (polymorphic) cocrystals and metal-organic frameworks. Through these studies, we aim to unravel the impact of milling parameters and reaction sequences on the formation mechanism and kinetics. Notably, in the mechanochemical chlorination reaction of hydantoin, normalizing kinetic profiles to the volume of the milling ball unequivocally demonstrates the conservation of milling reaction kinetics. In this ball-milling transformation, physical kinetics outweigh chemical factors in determining reaction rates. Attempting to interpret such kinetics solely through chemical terms poses a risk of misinterpretation. Our results highlight that time-resolved in situ investigations of milling reactions provide a novel avenue for fine-tuning and optimizing mechanochemical processes. T2 - Brimingham Green chemistry CY - Birmingham, England DA - 08.09.2023 KW - Mechanochemistry KW - Green Chemistry PY - 2023 AN - OPUS4-59024 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. T1 - Seminar on Smelling Drones – Part 1: Introduction to Aerial Robot Olfaction N2 - This seminar series comprises three lectures on drones and ground robots capable of sensing chemical substances and two accompanying hands-on workshops on nano drones equipped with chemical sensors. In the first lecture, Dr. Neumann will talk on a summary of aerial robot olfaction and his research. In the second and third lectures, more details of the nano drones equipped with chemical sensors will be provided, and the participants can get hands on experience of the nano drones in the accompanying workshops. The lectures will be given in English. This seminar series is supported by FY2023 Researcher Exchanges Program in UEC. T2 - Seminar Series on Smelling Drones CY - Tokyo, Japan DA - 28.11.2023 KW - Mobile robotic olfaction KW - Aerial robot KW - Gas source localization KW - Gas distribution mapping PY - 2023 AN - OPUS4-59129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. T1 - Seminar on Smelling Drones – Part 3: Deep Dive: Bout-based Gas Source Localization using Aerial Robot Swarms N2 - This seminar series comprises three lectures on drones and ground robots capable of sensing chemical substances and two accompanying hands-on workshops on nano drones equipped with chemical sensors. In the first lecture, Dr. Neumann will talk on a summary of aerial robot olfaction and his research. In the second and third lectures, more details of the nano drones equipped with chemical sensors will be provided, and the participants can get hands on experience of the nano drones in the accompanying workshops. The lectures will be given in English. This seminar series is supported by FY2023 Researcher Exchanges Program in UEC. T2 - Seminar Series on Smelling Drones CY - Tokyo, Japan DA - 28.11.2023 KW - Mobile robotic olfaction KW - Nano aerial robot KW - Gas source localization KW - Bouts KW - Distributed robotics KW - Swarm PY - 2023 AN - OPUS4-59131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grunert, Wiebke T1 - EU project ODYSSEUS N2 - Fortschrittsbericht über das EU-Projekt ODYSSEUS (BAM VH 2550). T2 - International technical exchange at BKA CY - Wiesbaden, Germany DA - 08.11.2023 KW - Homemade explosives KW - HME KW - Precurser PY - 2023 AN - OPUS4-58801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cohen, Zina T1 - Beyond the text: What writing materials of the Cairo Genizah tell us N2 - Results: - Four types of inks were measured iron gall (vitriolic and non vitriolic), carbonic, mixed and vegetable inks. - We need to start analyzing systematically the organic part of the inks. - Great variety in the composition of the inks. - No correlation between the type of ink used and any other criteria apart from a personal preference. - Inks purchased by (some) scribes. - Reconstruction of the chronology of writing and signing of certain legal documents. - Comparison with documents written by the Muslim court. T2 - Ink Workshop CY - Munich, Germany DA - 28.06.2022 KW - Ink analyses KW - Manuscript studies KW - X-Ray fluorescence analyses KW - Cairo Genizah KW - Middle Ages PY - 2022 UR - https://www.naher-osten.uni-muenchen.de/wasistlosaminstitut/veranstaltungsarchiv/veranstaltungen-2022/inkworkshop/index.html AN - OPUS4-58874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kasch, Thomas T1 - Oxygen service – Tests, Risks and Accidents N2 - Materials and components for oxygen service must be tested and found suitable for their intended use. For a fire or burn out, three requirments have to be present: Fuel, Oxygen and an ignition source. The presentation gives practival examples for all these three requirements and explaines the background and the assessment criteria of tests at BAM. However, risks still exist and can lead to severe accidents. Some accidents, their effects as well as the possible causes are presented to raise awareness of the specific dangers when handling oxygen. T2 - International Teadit Open House CY - Kirchbichl, Austria DA - 07.09.2023 KW - Oxygen KW - Risks KW - Accidents KW - Tests PY - 2023 AN - OPUS4-58452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger T1 - It's just a point of view – Destructions and creations of cultural objects by artifact pests N2 - Woodworms, carpet beetles, clothes moths and termites are well known pests on artifacts of cultural importance. Lately also silverfish have gained importance. Protection of our cultural heritage for future generations is not a new task but the methods have changed. Conventional use of pesticides in the past has preserved precious objects up to the presence, which otherwise probably would have been lost over time due to the destruction by insects and microbes. However, several of the objects were contaminated with poisons in such a manner that they became unsafe to be handled and thus are useless for exhibitions or scientific studies. Today, the concept of Integrated Museum Pest Management (IMPM) provides guidance for non-residue treatments of infested objects, followed by save storage or display under pest free (or maximum pest reduced) environments. Inert fumigants, physical and biological control measure, precise monitoring, threshold evaluations and detailed knowledge of the pest`s biology are key elements within IMPM. Woodworms, clothes moths and termites, however, are not always considered as only pests. Some professionals have also used them to produce new pieces of art or for the installation of ephemeral displays. Under more or less controlled conditions, the insects´ destructive nature on wood or textiles has been turned around to a process of creation with aesthetic or philosophical messages. Destructive or creative - it just depends on the point of view! T2 - XII European Congress of Entomology CY - Heraklion, Greece DA - 16.10.23 KW - Museum Pests KW - Integrated Museum Pest Management (IMPM) KW - Cultural Entomology PY - 2023 AN - OPUS4-58651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - In-situ hot isostatic pressing combined with x-ray imaging and diffraction of laser powder bed fusion ti-6al-4v N2 - Hot Isostatic Pressing (HIP) is often introduced to tackle the porosity issue in additively manufactured (AM) materials. For instance, HIP post-processing is recommended to improve fatigue resistance of Laser powder bed fusion (PBF-LB) manufactured parts [1, 2]. Even though HIP cannot completely remove porosity, it significantly decreases the defect population and its average size below the critical threshold value leading to early crack initiation. In the present study, in-situ investigation of HIP procedure of PBF-LB Ti-6Al-4V parts was carried out to gain further insights into the densification mechanism occurring during HIP. The in-situ observations at high pressure and high temperature are uniquely possible at the PSICHE beamline of the Soleil synchrotron (France), thanks to the Ultrafast Tomography on a Paris-Edinburgh Cell (UToPEC) and the combination of the fast phase-contrast tomography and energy-dispersive diffraction [3, 4]. A detailed methodology was developed to ensure that the correct pressure and temperature were maintained during the experiments. The results allowed an estimation of the global dentification rate during HIP of PBF-LB Ti-Al-4V material, as well as a detailed quantitative characterization of the influence of pore size and shape on the densification process, thereby understanding the effectiveness of HIP process on different pore categories. After 20 mins, 75% of porosity can be considered as closed or has size below the resolution of the XCT reconstruction. We also observed that the smallest defects showed higher densification rate, while the defect shape did not have significant effect on such rate. The current development of in-situ HIP experiment allows experimental quantification and validation of the simulation work. Ultimately it paves the road to tailoring the HIP procedure for different materials depending on the porosity and microstructure. T2 - AAMS 2023 CY - Madrid, Spain DA - 26.09.23 KW - Additive manufacturing KW - HIP KW - X-ray computed tomography PY - 2023 AN - OPUS4-58482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrer, Christian T1 - Entwicklungen bei der Normung von Explosivstoffen und Pyrotechnik N2 - Vorstellung der aktuellen Arbeiten im CEN/TC 321 und CEN/TC 212 sowie Ausblick auf wesentliche Themen in den Bereichen zivile Explosivstoffe und pyrotechnische Gegenstände. Des Weiteren wird der Normungsauftrag der KOM für die Pyrotechnik vorgestellt und die damit verbundenen Herausforderungen und Möglichkeiten erläutert. T2 - 20. Sitzung des Sachverständigenausschusses für explosionsgefährliche Stoffe CY - Berlin, Germany DA - 18.09.2023 KW - Explosivstoffe KW - Pyrotechnik KW - Normungsauftrag PY - 2023 AN - OPUS4-58621 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Melzer, Michael A1 - Nattuveettil, Keerthana T1 - Digital Calibration Certificates: Transforming Efficiency and Safety in Hydrogen Refuelling Station N2 - Digital Certificates have emerged as a pivotal element in automation and digitalisation. This presentation highlights the added value of a digitalised metrology, its impact on the workflows on the calibration service providing and receiving side as well as their significance in enhancing the quality infrastructure. An overview of digital calibration certificates (DCC) for temperature sensors, including their structure and role in establishing trust in hydrogen refuelling stations (HRS), will be discussed. Additionally, it explores the impact of DCC on optimising efficiency in the hydrogen refuelling process. Exploring the paradigm shift brought about by Industry 4.0, where machines possess the ability to autonomously interpret digital certificate data, leads to streamlined safety checks and reduced human intervention. We will discuss how automated verification of machine-readable certificates contributes to maintaining and elevating safety standards over human-readable certificates. Furthermore, we will take a deep dive into the application of DCCs in HRS, showcasing how they enhance operational efficiency, accuracy, and maintenance by enabling real-time monitoring and adjustment of process data. By exploring the interdependent relationship between digital certificates, machine-readable environments, and HRS optimisation, this presentation will provide valuable insights into harnessing cutting-edge technologies to create a safer, more efficient, and technologically empowered hydrogen refuelling process. T2 - H2Safety@BAM : Hydrogen Colloquium CY - Online meeting DA - 06.09.2023 KW - Digital Calibration Certificate KW - Digitalization KW - Digital Traceability KW - QI-Digital KW - Hydrogen Infrastructure PY - 2023 UR - https://www.bam.de/Content/DE/Standardartikel/Themen/Energie/Wasserstoff/wasserstoff.html AN - OPUS4-58353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Importance of Spectral Resolution for Accurate Plasma Diagnostics with Implications for Calibration-Free LIBS N2 - In the LIBS literature, almost every second article reports the determination of the plasma temperature using the Boltzmann plot method or the determination of the electron density using the Stark line broadening relation. The first requires the measurement of the integrated intensities of the spectral lines, and the second requires the measurement of the linewidth, under the same assumption of optical thinness. It is taken for granted that this can be easily done either by working with the raw spectra or by fitting an appropriate function to the observed spectral lines. As a rule, reported data are not verified either by an alternative method (e.g., Thomson scattering) or by computer simulations using synthetic spectra. However, the question of how to extract the necessary information from the raw spectral data is not as simple as it might seem. The quality of such an extraction will depend critically on the type of spectral instrument used, its resolution, and the noise superimposed on the data. The problem is that we do not see the spectrum emitted by the plasma, but the spectrum distorted by the measurement; an exaggerated example of such a distortion is shown in Fig. 1. The elimination of this distortion belongs to the class of inverse problems, the so-called ill-posed problems, whose successful solution crucially depends on the quality of the information available. When it comes to spectroscopy, quality of information primarily means high spectral resolution and low noise. Not all spectrometers used in LIBS can provide the quality needed to solve the inverse problem; this casts doubt on many published plasma measurements. The current presentation will be devoted to general shortcomings in the processing of spectral data and inaccuracies in the determination of plasma parameters resulting from these shortcomings. The analysis is based on the use of synthetic spectra produced by plasma with known characteristics, i.e., temperature, species densities, and electron density. The estimation of errors caused by inadequate processing of spectral data is made by comparing the initial and reconstructed plasma parameters. Recipes will be given for which the analytic function best approximates the observed spectral lines, and how data processing errors affect accuracy of calibration-free LIBS will be discussed. These issues were only partially covered in previously published works, for example [1, 2, 3]. T2 - EMS LIBS 2023 CY - Porto, Portugal DA - 04.09.2023 KW - Laser induced breakdown spectroscopy KW - Calibration-free analysis KW - Data processing PY - 2023 AN - OPUS4-58590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved Data Processing for Accurate Plasma Diagnostics and Calibration-Free LIBS N2 - Many applications of LIBS require the measurement of plasma temperature and electron density, which in turn requires knowledge of the integrated line intensity and the shape of the spectral lines. While the integral intensity is preserved as light passes through the spectrometer, the shape emitted by an individual atom or ion is greatly distorted. This is due, firstly, to the transfer of light through the plasma (self-absorption), secondly, to the influence of the instrumental function of the spectrometer, and, thirdly, to the aberrations of the optical system. In addition, processing of spectral information, such as background removal, noise reduction, deconvolution, and line fitting, introduces additional errors in the reconstructed linewidth and line integral, which leads to erroneous temperature and electron density values. This communication will be devoted to the general shortcomings of spectral data processing and the resulting inaccuracies in determining the plasma parameters. The analysis is based on the use of synthetic spectra generated by plasma with known temperature and particle density. The estimation of errors caused by inadequate processing of the spectral data is made by comparing the initial and determined plasma parameters. As a result, an improved data processing method will be proposed that takes into account the spectrum distortion by the instrumental function and integration on the pixel detector. The former is accounted for by convolution (instead of deconvolution) of the estimated line profile using a predetermined slit function, and the latter is achieved by piecewise integration of the line profile by the pixel detector, taking into account the pixel size and uniform or non-uniform pixel separation. Recommendations will be made for which analytic function best approximates the observed spectral lines and examples will be given for the application of this routine to calibration-free LIBS using both synthetic and experimental data. T2 - SciX 2023 CY - Sparks, USA DA - 08.10.2023 KW - Laser induced plasma KW - Calibration-free analysis KW - Plasma modeling KW - Emission spectroscopy PY - 2023 AN - OPUS4-58591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Platform MaterialDigital Core Ontology (PMDco): A Community Driven Mid-Level Ontology in the MSE Domain N2 - Knowledge representation in the materials science and engineering (MSE) domain is a vast and multi-faceted challenge: Overlap, ambiguity, and inconsistency in terminology are common. Invariant and variant knowledge are difficult to align cross-domain. Generic top-level semantic terminology often is too abstract, while MSE domain terminology often is too specific. The PMDco is designed in direct support of the FAIR principles to address immediate needs of the global experts community and their requirements. The illustrated findings show how the PMDco bridges semantic gaps between high-level, MSE-specific, and other science domain semantics, how the PMDco lowers development and integration thresholds, and how to fuel it from real-world data sources ranging from manually conducted experiments and simulations as well as continuously automated industrial applications. T2 - Patents4Science CY - Berlin, Germany DA - 05.10.2023 KW - Knowledge Representation KW - Semantic Interoperability KW - FAIR data management KW - Knowledge graph and ontologies KW - PMD Core Ontology PY - 2023 AN - OPUS4-58507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald T1 - OECD TG 125 Particle size and size distribution of Nanomaterials N2 - This presentation was held in an OECD Webinar introducing the newly developed and published OECD TG 125 on particle size and size distribution. The presentation is explaining the structure if the TG 125 and addresses all included methods and methodologies in a short and understandable way for the broader public. The presentation includes sections about nano-particles and nano-fibres. T2 - Webinar Series on Testing and Assessment Methodologies CY - Online meeting DA - 07.02.2023 KW - Nano KW - Nanomaterials KW - OECD KW - Test guideline KW - Size PY - 2023 UR - https://www.oecd.org/chemicalsafety/nanomet/presentations-webinar-nanomaterials-particle-size-distribution-test-guideline-125.pdf AN - OPUS4-58447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - POF-based monitoring system using digital I-OFDR for strain detection in road construction N2 - We present a prototype of a distributed POF sensing system for strain detection in road construction and civil engineering ready to be used in practical applications. The system is based on a cost-efficient digital incoherent optical frequency domain reflectometry (I-OFDR). In this approach, the strain-induced changes in the Rayleigh backscattering profile along a perfluorinated polymer optical fiber (PF-POF) are determined by measuring the complex transfer function of the sensing fiber using a compact digital data acquisition unit. The digital unit replaces an oversized vector network analyzer (VNA) enabling suitability of the measurement system for out-door use and providing a significant reduction of the total system costs at the same time. The entire sensor con-cept includes the use of geosynthetics with integrated PF-POFs as two-dimensional sensor structures for geotech-nical applications. The robustness and the functionality of the distributed POF I-OFDR sensors were proven in the field. The field test involved embedding of two geomats, each with two polymer optical sensor loops, into the embankment of the federal road B 91 in a section near Leipzig. The measurements conducted after the sensor-based geomats had been installed confirmed both the potential of such smart geosynthetics and the functionali-ty of the digital I-OFDR prototype. T2 - POF2023 CY - Cork, Irland DA - 17.09.2023 KW - Digital I-OFDR KW - Distriubuted polymer optical fiber sensor KW - Smart geosynthetics KW - Strain detection KW - Structural health monitoring PY - 2023 AN - OPUS4-58423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -