TY - CONF A1 - Völker, Tobias T1 - Application of two calibration-free LIBS techniques for synthetic spectra of cement samples N2 - Two calibration-free LIBS techniques are used for the quantitative analysis of synthetic cement samples: the CF-LIBS based on the Boltzmann plot method and the Monte Carlo (MC) LIBS based on the iterative spectrum fitting. In CF-LIBS, the inverse problem is solved, i.e. the elemental concentrations are determined by the reconstruction of plasma parameters from spectra. The MC-LIBS technique solves the direct problem by finding the highest correlation between the model-generated and experimental spectrum. The accuracy of both calibration-free LIBS methods suffers from factors such as inaccurately determined instrumental function, the deviation of experimental plasma from the mathematical model used, not taking into account the collection geometry and from the uncertainty of spectroscopic data. Therefore, the both calibration-free LIBS approaches are applied to synthetic spectra which perfectly suit the mathematical model of the method. This test yields the accuracy of both the approaches for the ideal case. In addition, the accuracy of both methods is investigated for non-isothermal plasma, because real laser-induced plasma often has high gradients in temperature. Both methods assume an isothermal plasma. T2 - Xth international conference on Laser-Induced Breakdown Spectroscopy CY - Atlanta, GA, USA DA - 21.10.2018 KW - Cement KW - MC-LIBS KW - LIBS KW - CF-LIBS PY - 2018 AN - OPUS4-46774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias T1 - Application of two calibration-free LIBS techniques N2 - Two calibration-free (CF) LIBS approaches are used for the quantitative analysis of cement samples: the CF-LIBS based on the Boltzmann plot method and the Monte Carlo (MC) LIBS based on the iterative spectrum fitting. In CF-LIBS, the inverse problem is solved, i.e. the elemental concentrations are determined by the reconstruction of plasma parameters from spectra. The MC-LIBS technique solves the direct problem by finding the highest correlation between the model-generated and experimental spectrum. The accuracy of both calibration-free LIBS methods suffers from factors such as inaccurately determined instrumental function, the deviation of experimental plasma from the mathematical model used, not taking into account the collection geometry, and from the uncertainty of spectroscopic data. The both calibration-free LIBS approaches are first applied to synthetic spectra which perfectly suit the mathematical model of the method, i.e. the model of the uniform, isothermal, and stationary plasma. This test yields the accuracy of both the approaches for the ideal case. In addition, the accuracy of both the methods is investigated for non-uniform and non-isothermal plasma, because real laser-induced plasma often has high gradients in temperature and particle number densities. Finally, both calibration-free LIBS approaches are applied to experimental spectra obtained from cement samples. The figures of merits of two approaches are compared when working with both synthetic and experimental spectra. T2 - LIBS 2018 at SciX 2018 CY - Atlanta, GA DA - 21.10.2018 KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 AN - OPUS4-46931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg T1 - Application of Time Domain THz Spectroscopy for Non Destructive Contactless Inspection of Non-Metallic Materials and Substances T2 - Far East Forum On Nondestructive Evaluation/Testing: New Technology & Application CY - Kunshan, China DA - 2010-05-26 PY - 2010 AN - OPUS4-21517 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichler, Thorsten T1 - Application of Thermal Sprayed Zinc Anode for CP of a Multi-Storey-Car-Park T2 - EUROCORR 2009 CY - Nice, France DA - 2009-09-06 PY - 2009 AN - OPUS4-19549 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yagdjian, H. T1 - Application of the Thermal Shock Response Spectrum (TSRS) methodology to various forms of heat sources by impulse thermography N2 - In this paper, we investigate the influence of different heat source pulse shapes by Infrared impulse thermography (IRT) on the results of the thermal shock response spectrum (TSRS) methodology. TSRS is a new alternative approach for evaluating impulse thermography (IRT) data based on an analogy to Shock Response Spectrum (SRS) analysis (ISO 18431) for mechanical systems. It allows processing the entire recorded signal without truncating the saturated thermogram, as in pulse-phase thermography (PPT) or thermal signal reconstruction (TSR). For this purpose, we use a widespread halogen lamp as heat source as well as laser spot. The laser source enables not only to generate a precise shape of the pulse, but also to heat a specific area of the sample uniformly. This makes it possible to suppress influences of lateral fluxes due to uneven distribution of the excitation source on the surface of the specimen and leads to improved results. In order to quantitatively compare the results and to investigate the possible influence of the source shape on the TSRS, the Tanimoto criterion and the signal-to-noise ratio (SNR) were applied to the region of interest (ROI) of the carbon fiber reinforced polymer (CFRP) laminate with artificial defects as defect detectability criterion. T2 - Jahrestaung der Deutschen Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - Thermal shock response KW - Laser KW - ZfP KW - Post-processing KW - Thermografie PY - 2024 AN - OPUS4-60158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neugum, Tim T1 - Application of the substructure method to assess the fire resistance of thermally restrained columns N2 - Usually, the fire resistance of load-bearing structural elements is determined by single members testing. A mechanical load is applied to the member in a force-controlled manner and is maintained constant throughout the fire test. After applying the mechanical load, the thermal exposure starts according to the ISO 834 fire curve. In this conventional test method, no interaction between the tested member and the entire building structure is considered. In buildings, the surrounding structure can restrain the thermal expansion of a member in case of fire. This may have both positive and negative effects on the fire resistance of this structural element. Several years ago, the Institute for Sustainability and Innovation in Structural Engineering (ISISE) at the University of Coimbra in Portugal and the Bundesanstalt für Materialforschung und prüfung (BAM) in Germany carried out fire tests on circular and square steel-reinforced concrete columns with restrained thermal expansion. BAM´s column test furnace allows the specimen to be subjected to thermal exposure and mechanical loading simultaneously. In addition, this device has a substructure test module, which can also provide restrained test conditions. In an ongoing research project at BAM and Technische Universität Braunschweig, the effect of restrained test conditions on the behaviour of steel-reinforced columns under fire exposure is further investigated. T2 - 8th International RILEM Workshop on Concrete Behaviour due to Fire Exposure CY - Krakow, Poland DA - 18.09.2025 KW - Substructure method KW - Surrounding structure KW - Fire resistance KW - Column KW - Concrete PY - 2025 AN - OPUS4-64584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neugum, Tim T1 - Application of the substructure method to assess the fire resistance of thermally restrained columns N2 - Usually, the fire resistance of load-bearing structural elements is determined by single members testing. A mechanical load is applied to the member in a force-controlled manner and is maintained constant throughout the fire test. After applying the mechanical load, the thermal exposure starts according to the ISO 834 fire curve. In this conventional test method, no interaction between the tested member and the entire building structure is considered. In buildings, the surrounding structure can restrain the thermal expansion of a member in case of fire. This may have both positive and negative effects on the fire resistance of this structural element. Several years ago, the Institute for Sustainability and Innovation in Structural Engineering (ISISE) at the University of Coimbra in Portugal and the Bundesanstalt für Materialforschung und -prüfung (BAM) in Germany carried out fire tests on circular and square steel-reinforced concrete columns with restrained thermal expansion. BAM´s column test furnace allows the specimen to be subjected to thermal exposure and mechanical loading simultaneously. In addition, this device has a substructure test module, which can also provide restrained test conditions. In an ongoing research project at BAM and Technische Universität Braunschweig, the effect of restrained test conditions on the behaviour of steel-reinforced columns under fire exposure is further investigated. The comprehensive test programme of the project includes 14 steel-reinforced concrete columns. Several parameters are varied, i.e., the stiffness representing the surrounding structure of the column, the load level, the eccentricity of the applied load, and the fire exposure to be used. The selection of parameters is based on a real building case study. Furthermore, material tests are carried out to characterize the mechanical properties of the concrete at elevated temperatures, to be included in a numerical simulation. T2 - Vortrag an der Helmut-Schmidt-Universität der Bundeswehr in Hamburg CY - Hamburg, Germany DA - 27.01.2026 KW - Fire tests KW - Steel-reinforced concrete columns KW - Thermal constraint KW - Substructure method KW - Numerical simulation PY - 2026 AN - OPUS4-65431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis T1 - Application of the scaled boundary finite element method (SBFEM) for numerical simulation of ultrasonic guided waves N2 - The application of waveguides for acoustic measuring technologies and the development of non-destructive evaluation techniques with guided ultrasonic waves for plate like materials like carbon fiber reinforced plastic shells and layered structures require a good understanding of acoustic wave propagation inside the material. The well-known Finite Element Method can be used for simulations, however at least for higher frequencies, the ratio of wavelength and geometrical dimension demands a time-consuming fine grid. Using commercial simulation tools the computational costs increase considerably for ultrasonic frequencies. In the recent years, the Federal Institute for Materials Research and Testing has developed a very efficient alternative for simulating acoustic wave propagation particularly in wave guides by extending the Scaled Boundary Finite Element Method (SBFEM). The SBFEM as a semi-analytical method has one main advantage over the classical Finite Element Method: It only demands a discretization of the boundary instead of the whole domain. This is pictured in the figures below. The method is still related to the Finite Element Method and uses their well-known solving strategies. SBFEM is shown to be highly efficient, especially in the frequency domain. Additionally, the efficiency can be increased by using higher-order spectral elements. In plates and cylinders, the SBFEM can be used to animate propagating modes and computes their wavenumber. In this contribution, we present a short introduction into the basics of SBFEM formulation of the dynamic elastic wave equation. The applicability and efficiency of the approach is demonstrated by applying the method to layered structures and different wave guide geometries. As one example we present the wave propagation in a typical adhesive joint of different metal sheets as common in new designs in automotive industry. The analysis comprises the computation of dispersion curves as starting point of every development of non-destructive testing techniques for inspecting such structures as well as the analysis of the propagating modes. Additional examples presented handle special cases for axis-symmetric geometries, such as pipes and cylindrical rods which are common in various acoustic measurement applications. T2 - Sensor + Test CY - Nürnberg, Germany DA - 30.05.2017 KW - Ultrasound KW - Guided waves KW - Numerical simulation KW - Scaled boundary finite element method PY - 2017 AN - OPUS4-41879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico T1 - Application of the inertial navigation system 3D-self-calibration-method for the minimization of the measurement uncertainty T2 - LBS 2014 - 11th International Symposium on Location Based Services CY - Vienna, Austria DA - 2014-11-26 PY - 2014 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. AN - OPUS4-32415 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wiggenhauser, Herbert T1 - Application of the Hilbert-Huang Transform for the impact-echo data analysis T2 - TRB 85th Annual Meeting, AFF40(1) Sub-Committee Meeting CY - Washington, D.C., USA DA - 2006-01-22 PY - 2006 AN - OPUS4-14355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Golze, Manfred T1 - Application of the EU Drinking Water Directive in PT T2 - 5th Workshop Proficiency Testing in Analytical Chemistry, Microbiology and Laboratory Medicine - Current Practice and Future Directions CY - Portorož, Slovenia DA - 2005-09-26 PY - 2005 AN - OPUS4-11359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul T1 - Application of the electrochemical potentiodynamic reactivation method on martensitic stainless steels N2 - The double loop electrochemical potentiodynamic reactivation (EPR) method is a standardised procedure for detecting and quantifying sensitisation on austenitic, ferritic and ferritic-austenitic stainless-steel grades. This sensitisation is caused by microstructural alternations, as the formation of chromium carbides, nitrides or sigma-phases, which generate local chromium depleted zones nearby. The latter strongly influence the corrosion resistance and the electrochemical response of a stainless steel during electrochemical potentiodynamic reactivation, providing important information on the degree of chromium depletion. In case of martensitic stainless steels, which are used for cutlery and surgical instruments, the heat treatment has a strong impact on the microstructure, the material properties and especially on the corrosion resistance. To study this interaction, the EPR method was modified for the application on martensitic stainless steels with about 13 wt.-% chromium. Different H2SO4 concentrations and EPR-parameters were tested and compared on two standard martensitic stainless-steel grades (AISI 420 A / X20Cr13 and AISI 420 C / X46Cr13) to define applicable parameters. Afterwards, these parameters were used to study the effect of austenitisation time and cooling rate on the corrosion resistance of both martensitic stainless steels. The response of both alloys was different due to the different carbon levels, which will be explained by microstructural investigations in detail. All results allow postulating a process window, in which chromium depletion is suppressed and an optimised corrosion resistance is guaranteed. Based on this research, the modified EPR-test is now used to control the heat treatment and its impact on the corrosion resistance of martensitic stainless steels in the cutlery industry. The EPR-test is thus an interesting alternative for manufacturers, processors, users and researchers to the time-consuming exposition test normally used to characterise the corrosion resistance of martensitic stainless steels. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - EPR KW - Corrosion resistance KW - Heat treatment KW - Stainless steels KW - Corrosion KW - Corrosion testing KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Application of the DIRECTT Algorithm to Sub-Nanometer Electron Tomography T2 - International Symposium on Digital Industrial Radiology and Computed Tomography (DIR 2011) CY - Berlin, Germany DA - 2011-06-20 PY - 2011 AN - OPUS4-24117 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duarte, Larissa T1 - Application of the cyclic R-curve analysis to determine the Kitagawa-Takahashi Diagram N2 - The fatigue limit of metallic materials corresponds to the maximum stress below which all microcracks that were originally able to grow still arrest. In technical alloys, microcracks are normally initiated at material defects. As a result, the fatigue limit of these materials is a function of the defect size. The Kitagawa-Takahashi Diagram (KT-diagram) provides a useful description of this dependency. However, the established methods for its determination are associated with great uncertainties, especially in the technically interesting region corresponding to the short crack regime. In addition, the effect of crack closure and the influence of local stresses are not considered. For this reason, short crack models offer a better alternative for estimating KT-diagrams. In this work, a methodology is presented that incorporates the determination of the fatigue limit based on crack arrest (cyclic R-curve analysis). The crack driving force is determined by FE simulations, while the increase in material resistance with cyclic crack propagation in the region of physically short cracks is described experimentally by the cyclic R-curve. To validate the procedure, fatigue limit tests based on the staircase method are carried out on smooth and notched specimens with 3 different notch sizes. Furthermore, tests are carried out on a low-alloyed steel with two different heat treatments for considering different strengths. The experimental results are compared with the simulations and the possible differences are discussed. T2 - 5th International Symposium on Fatigue Design and Material Defects CY - Trento, Italy DA - 14.05.2025 KW - Fatigue limit KW - Material defects KW - Kitagawa-Takahashi Diagram KW - Cyclic R-curve analysis PY - 2025 AN - OPUS4-63144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya T1 - Application of Temperature Compensation Strategies for Ultrasonic Guided Waves to Distributed Sensor Networks N2 - The application of temperature compensation strategies is crucial in structural health monitoring approaches based on guided waves. Actually, the varying temperature influences the performance of the inspection system inducing false alarms or missed detection, with a consequent reduction of reliability and impact on probability of detection (POD). This paper quantitatively describes two different methods to compensate the temperature effect, namely the optimal baseline selection (OBS) and the baseline signal stretch (BSS) extending their application to the case of a distributed sensor networks (DSN). This latter introduces a number of possible data to explore compensation strategies which do not necessarily returns univocal results. Hence, a decision framework is needed, which takes into consideration multiple ultrasonic time traces with different arrival times and amplitude. In detail, the effect of temperature separation between baseline time-traces in OBS are investigated considering multiple couples of sensors employed in the DSN. A combined strategy that uses both OBS and a frequent value warning is introduced to find the more probable temperature with increasing reliability of the assessment. The same procedure is applied using the BSS algorithm. Finally, the use of both approaches is introduced, comparing the capability of the mixed algorithm to correctly sort temperature information from OBS and then apply the BSS combining the frequent value warning to have a unique correction all over the DSN. Theoretical results are compared, using data from two several experiments, which use different frequency analysis with either predominantly A0 mode or S0 mode data or both. The focus is given on the fact that different paths are available in a sensor network and several possible combinations of results are available. Nonetheless, introducing a frequent value warning it is possible to increase the efficiency of the OBS and BSS approaches making use of fewer signal processing algorithms. These confirm that the performance of OBS quantitatively agrees with predictions. In addition, the possibility to combine BSS approached also demonstrates that the use of compensation strategies improves detectability and localization of damage even in a DSN. This result can be used to improve the SHM system reliability, with promising perspectives in increasing POD. T2 - ASME 2022 49th Annual Review of Progress in Quantitative Nondestructive Evaluation (QNDE2022) CY - San Diego, CA, USA DA - 25.07.2022 KW - Performance assessment KW - Elastic waves KW - Structural Health Monitoring PY - 2022 AN - OPUS4-55427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Application of synthetic calibration samples for the analysis of pure copper using femtosecond LA-ICP-MS T2 - 9th European Workshop on laser ablation in elemental and isotopic analysis CY - Prague, Czech Republic DA - 2008-07-07 PY - 2008 AN - OPUS4-17541 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz T1 - Application of Steel Fibres in Alkali-Activated Mortars N2 - Alkali-activated materials are ideal for the repair of concrete structures in harsh environmental conditions due to their high durability in chemically aggressive environments. However, slag-based mortars, in particular, are prone to shrinkage and associated cracks. In this respect, the application of steel fibres is one solution to reduce the formation of shrinkage induced cracks and to improve post cracking behaviour of these mortars. This study investigated the influence of two different types of steel fibres on the tensile properties of two alkali-activated mortars. Direct tensile tests and single fibre pull-outs were performed to analyse the determining failure modes both on macro and micro scale. Mechanical testing was accompanied by non-destructive testing methods such as digital image correlation and acoustic emission for a detailed analysis of the fracture process. T2 - 14th International Conference on Local Mechanical Properties CY - Prague, Czech Republic DA - 06.11.2019 KW - Steel fibres KW - Alkali-activated materials KW - Tensile strength KW - Fibre pull-out PY - 2019 AN - OPUS4-49578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian T1 - Application of spatial heterodyne spectroscopy for chemical analysis based on Raman and laser-induced breakdown spectroscopy N2 - Spatial Heterodyne Spectroscopy (SHS) is a spectrometric technique that combines both dispersive and interferometric features into a customizable instrument. The Basis of SHS is a Michelson interferometer with its mirrors replaced by diffraction gratings and with no moving parts. The output signal from SHS is the interferogram, which is recorded with a 1D or 2D pixel array detector. The spatial periodicity of the fringes on the interferogram is a function of the wavelength of the diffracted light. Using the Fast Fourier Transform, the original optical spectrum that enters SHS is retrieved. The light that is analyzed by SHS can come from a variety of sources. In our work, we used Raman scattering and Laser-Induced Plasma to perform quantitative and qualitative analyses. Figure 1 compares the performance of the SHS with that of high Resolution echelle and portable low-resolution asymmetrically crossed Czerny-Turner spectrometers (OO in Fig.1). The analyzed light came from the plasma induced on a stainless-steel reference material. The SHS exhibits the resolution comparable to that of the echelle spectrometer used, about 8000. Due to a high throughput of the SHS (theoretically, ~200 times higher than that of grating instruments), the number of spectra needed to be accumulated for comparable signal-to-noise ratios is much smaller than in the case of the echelle and comparable to OO spectrometers. Examples of Raman SHS applied to several pure liquids are given in Fig. 2. Raman SHS was used in three different settings: (i) for classification of six types of oils, (ii) for univariate/multivariate analysis of binary mixture cyclohexane-isopropanol, and (iii) for multivariate analysis of glycerol solution in water. For the last two settings, chemometric analysis of the spectra yielded linear calibration plots over the range 1-90% of concentrations of isopropanol in cyclohexane, and 0.5-10% of glycerol in water. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Spatial heterodyne spectroscopy KW - Raman spectroscopy KW - Laser-Induced Background Spectroscopy PY - 2019 AN - OPUS4-49176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Application of Solvent-free Sample Preparation for LC/MALDI-MS Coupling T2 - 52nd ASMS Conference CY - Nashville, TN, USA DA - 2004-05-23 PY - 2004 AN - OPUS4-4344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike T1 - Application of solution doped powder pellets for the analysis of pure copper using Plasma Profiling TOFMS T2 - 16. Anwendertreffen "Analytische Glimmentladungsspektrometrie" 2013 CY - Duisburg, Germany DA - 2013-04-24 PY - 2013 AN - OPUS4-28779 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -