TY - CONF A1 - Schilling, Markus T1 - Crafting High-Quality, Reliable, and FAIR Data: From Metadata, Schema and Ontologies to Data Management and Knowledge Transfer N2 - Following the new paradigm of materials development, design and optimization, digitalization is the main goal in materials sciences (MS) which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. For storage, processing, and querying of data in contextualized form, Semantic Web Technologies (SWT) are used since they allow for machine-actionable and human-readable knowledge representations needed for data management, retrieval, and (re)use. In this respect, the motivation for digital transformation in materials sciences stemming from the need to handle the ever-increasing volume and complexity of data will be elaborated on. By embracing digital tools and methodologies, researchers can enhance the efficiency, accuracy, and reproducibility of their work. The benefits of digital transformation in materials sciences are manifold, including improved data management, enhanced collaboration, and accelerated innovation. Being a core component of this transformation, ensuring data reliability and reproducibility is critical for the advancement of the field, enabling researchers to build on each other's work with confidence. Implementing FAIR data principles facilitates this by making data more accessible and usable across different platforms and studies. Furthermore, Semantic Web technologies (SWT) and ontologies play a crucial role in achieving these goals. Ontologies, typically consisting of the T-Box (terminological component) and A-Box (assertional component), provide a structured framework for representing knowledge. This presentation will outline the path of ontology creation and the formal transformation procedure, highlighting the various ontology levels that organize data into meaningful hierarchies. Real-world use cases presented, such as the Tensile Test Ontology (TTO) and the Orowan Demonstrator, illustrate the practical applications of these technologies. These examples will demonstrate how ontologies can be leveraged to standardize data and facilitate interoperability between different systems and research groups. Finally, in this presentation, Ontopanel is introduced, a tool designed to aid in the creation and management of ontologies. Ontopanel simplifies the process of developing and maintaining ontologies, making it accessible to researchers and practitioners in the field. By integrating these technologies and principles, the materials science community can move towards a more digital, interconnected, and efficient future making the knowledge and education on these topics very valuable. T2 - MaRDA MaRCN FAIR Train Workshop CY - Washington, DC, USA DA - 29.07.2024 KW - FAIR KW - Metadata KW - Digitalization KW - Data Interoperability KW - Ontology KW - Education KW - Workshop PY - 2024 AN - OPUS4-60720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. T1 - Coupling of structural and material design N2 - The presentations discusses a use case for the optimization of concrete structures where structural and material design are integrated in a computational workflow. The workflow is based on both physics-based and data-based models and experimental data is used to calibrate/train these models with a specific focus on the integration of ucertainties. T2 - 2nd Technical Meeting of TG.SAG.2 CY - Hannover, Germany DA - 16.04.2024 KW - Coupling of structural and material design KW - Cement Hydration Model PY - 2024 AN - OPUS4-59999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Coupling of chromatographic and spectrometric techniques for polymer characterization N2 - Coupling of chromatographic and spectrometric techniques for polymer characterization; focus topics: LCxMALDI-TOF-MS and UPLC x ESI-TOF-MS T2 - 16. Tagung des Arbeitskreises Polymeranalytik CY - Online meeting DA - 22.03.2022 KW - Liquid chromatography KW - Mass spectrometry KW - Polymers KW - Two-dimensional chromatography (2D-LC) PY - 2022 AN - OPUS4-54567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Comparison and capabilities of different Methods N2 - X-ray and Neutron diffraction as well as the contour method were used to determine residual stresses in a additively manufactured sample. The results are compared. Capabilites and limitations are shown. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction KW - Neutron diffraction KW - Contour method PY - 2024 AN - OPUS4-60286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maaß, Robert T1 - Cluster dynamics and anomalous transport in metallic glasses N2 - Quenching a metallic liquid sufficiently fast can give rise to an amorphous solid, typically referred to as a metallic glass. This out-of-equilibrium material has a long suite of remarkable mechanical and physical properties but suffers from property deterioration via structural relaxation. As a function of time, relaxation may indeed constitute significant threads to safe applications. Consequently, relaxation of glasses has a long history across different amorphous materials and typical characterization methods promote a picture of gradually evolving and smooth relaxation, as for example obtained from mechanical spectroscopy. However, the true structural dynamics and underlying mechanisms remain far from understood and have hampered a physically informed atomic-scale picture of transport and physical aging of glasses. Here we exploit the ability to track atomic-scale dynamics with x-ray photon correlation spectroscopy (XPCS) and resolve an unprecedented spectrum of short- and long-term relaxation time scales in metallic glasses. Conducted across temperatures and under the application of stress, the results reveal anything else than smooth aging and gradual energy minimization. In fact, temporal fluctuations persist throughout isothermal conditions over several hundred thousand of seconds, demonstrating heterogeneous dynamics at the atomic scale. In concert with microsecond molecular dynamic simulations, we identify possible mechanisms of correlated atomic-scale dynamics that can underly the temporal fluctuations and structural decorrelations. Despite temporally heterogeneous, the Kohlrausch-Williams-Watts functions is well suited to capture the average intermediate relaxation time regime, but at very long time scales an asymptotic power-law emerges. This indicates anomalous diffusion and gives overall strong evidence for temporal fractional diffusion in metallic glasses. We discuss these results in terms of the structural fast and slow relaxation modes as well as a true microstructure in metallic glasses. T2 - Department Seminar OSU 2023 CY - Columbus, OH, USA DA - 22.09.2023 KW - Metallic glass KW - Transport KW - Structure KW - Dynamics PY - 2023 AN - OPUS4-60699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar T1 - Circular Economy in der EU - ein neues Verständnis für Produkteffizienz, die EN4555x-Reihe und weitere Beipiele N2 - Übersicht über die Umsetzung des EU Green New Deal, des Circular Economy Action Plan sowie der Sustainable Product Initiative. Ebenfalls erfolgt eine Zusammenfassung der Auswirkungen der Änderungen im EU-Produktrecht auf die Revision des geltenden Rechts und das Zusammenspiel zwischen Rechtssetzung und Normung. T2 - Besuch des Bachelorstudiengangs im Fachbereich Material Knowledge der Fachhochschule Potsdam CY - Berlin, Germany DA - 28.05.2024 KW - Circular Economy KW - ESPR KW - Material efficiency KW - Normung KW - Policy making KW - Labelling PY - 2024 AN - OPUS4-60407 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar T1 - Circular Economy bei der BAM - neu und etabliert zugleich N2 - Übersicht über BAM-Aktivitäten, die ebenfalls der BAM zugeordnet werden können, der Gründung des Aktivitätsfeldes Circular Economy innerhalb der BAM sowie die zukünftige Ausrichtung und Aktivitäten der BAM zu Themen der Circular Economy. T2 - Besuch des Bachelorstudiengangs im Fachbereich Material Knowledge der Fachhochschule Potsdam CY - Berlin, Germany DA - 28.05.2024 KW - Circular Economy PY - 2024 AN - OPUS4-60410 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann-Böllinghaus, Anja T1 - Challenges in fire safety of facades N2 - To ensure fire safety of facades will keep being a challenge as facade systems change much quicker than building regulations. Fire spread in one key issue of fire safety in facades. But falling parts, smouldering, smoke and secondary openings are issues as well. T2 - The 4th International Symposium on Fire Safety of Facades FSF 2024 CY - Lund, Sweden DA - 10.06.2024 KW - Facade systems KW - Fire testing KW - Assessement method PY - 2024 AN - OPUS4-60250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Case Studies 2 – RS in DED-arc AM Components N2 - The presentation shows examples of resdiual stresses to be found typically in DED-arc additively manufactured high strength steel components. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - DED-arc KW - High strength steel PY - 2024 AN - OPUS4-60285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Biobased and biogegradable polymers: Analytical challenges N2 - The variability and heterogeneity in their structural composition is significant for nearly all synthetic and natural polymers. Beside molar mass also functionality type distribution, copolymer composition distribution and architectural features are responsible for changing the material properties. A wide range of analytical techniques are available to get insight into these parameters. However, in most cases it is essential to combine different sophisticated techniques to get closer to actual structures and to avoid statistical averages. Different liquid chromatographic separation modes and their coupling in a two-dimensional way (SEC, LCCC, HILIC, 2D-LC) in combination with suitable detection techniques (e.g. UV, RI, LS, IR, MALDI/ESI-MS) as well as techniques like BET, DCS, SEM/TEM were applied to make structural features visible. A few aspects are discussed for structural different polylactides from various synthesis routes and their behavior in LC-MS. Moreover, some analytical results for technical lignins valorized by mechanochemical treatment or modified by functional polymers are presented. T2 - 10th Intern. Symp. on the Separation and Characterisation of Natural and Synthetic Macromolecules (SCM-10) CY - Amsterdam, Netherlands DA - 01.02.2023 KW - Poly(lactides) KW - Technical lignin PY - 2023 AN - OPUS4-57002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Binder Jetting of Advanced Ceramics N2 - The Binder Jetting BJ process is one of the most versatile additive manufacturing technologies in use. In this process a binder is locally jetted into a powder bed for the consolidation of a 3D structure, layer by layer. Basically, all materials which can be provided as a flowable powder and, thus, spreadable to a thin layer, can be processed. Metals, ceramics and polymers are processable, but also materials from nature, such as sand, wood sawdust and insect frass. Moreover, the BJ technology is adapted to large building volumes of some cubic meters easily. Besides these striking advantages, the manufacture of ceramic parts by BJ is still challenging, as the packing density of the powder bed is generally too low and the particle size of a flowable powder too large for a successful densification of printed parts in a subsequent sintering step to an advanced ceramic product. After an introduction of binder jetting in general and highlighting some examples, strategies for obtaining dense ceramic parts by BJ will be introduced. T2 - yCAM 2022 CY - Barcelona, Spain DA - 08.11.2022 KW - Additive Manufacturing KW - Ceramics PY - 2022 AN - OPUS4-59887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Best practice: How to work with a mobile diffractometer N2 - Beginning with a general overview about resdiual stress determination by X-ray diffraction, the presentation is focussing on some does and dont's when working with a portable diffractometer. T2 - European Conference on Residual Stresses 11 - Tutorial 1: Residual stresses in additive manufacturing CY - Prague, Czech Republic DA - 03.06.2024 KW - Residual stress KW - X-ray diffraction PY - 2024 AN - OPUS4-60287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel T1 - Bedarfserhebung für BOS am Beispiel des Projekts InnoBOSK N2 - Im Rahmen des Vortrags wurden die Ergebnisse und die Methodik zur Erhebung von Forschungsbedarfen und Fähigkeitslücken bei den Behörden und Organisationen mit Sicherheitsaufgaben, welche im Rahmen des Projektes InnoBOSK durchgeführt wurden, vorgestellt. Den Schwerpunkt bildete dabei die Umsetzung der Workshops gemeinsam mit den Einsatzkräften und die Umsetzung der problemorientierten Erhebungsmethodik. T2 - Vorstellung im Rahmen eines SiFo-Workshops der Polizei Berlin CY - Berlin, Germany DA - 29.04.2024 KW - Bedarfserhebung KW - SiFo KW - Sicherheitsforschung KW - BOS PY - 2024 AN - OPUS4-59983 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien T1 - Automatisierte aktive thermografische Prüfung N2 - Aktive thermografische Prüfung ist ein vielseitiges Instrument in der Familie der zerstörungsfreien Prüfverfahren. Der Einzug moderner Lasertechnologie hat hier bedeutende neue Anwendungsfelder eröffnet. In Kombination mit Industrierobotik können nun beispielsweise beliebig komplex geformte Bauteile großflächig vollautomatisiert auf Oberflächenrisse überprüft werden. Der hier vorliegende Vortrag gibt einen Überblick über die Grundlagen der Laserthermografie, zeigt unsere Anstrengungen am Fachbereich im Bereich der automatisierten thermografischen Detektion von Oberflächenrissen und gibt ein Ausblick über neue moderne Thermografieverfahren aus der Forschung. T2 - VATH Frühjahrssymposium CY - Lingen, Germany DA - 26.04.2024 KW - Thermografie KW - Laser KW - ZfP PY - 2024 AN - OPUS4-59965 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Applications of atomic absorption spectrometry for lithium isotope analysis N2 - An alternative method for lithium isotope analysis by using high-resolution atomic absorption spectrometry (HR-CS-AAS) is proposed herein. This method is based on monitoring the isotope shift of approximately 15 pm for the electronic transition 22P←22S at around the wavelength of 670.8 nm, which can be measured by state-of-the-art HR-CS-AAS. Isotope analysis can be used for (i) the traceable determination of Li concentration and (ii) isotope amount ratio analysis based on a combination of HR-CS-AAS and spectral data analysis by machine learning (ML). In the first case, the Li spectra are described as the linear superposition of the contributions of the respective isotopes, each consisting of a spin-orbit doublet, which can be expressed as Gaussian components with constant spectral position and width and different relative intensity, reflecting the isotope ratio in the sample. Precision was further improved by using lanthanum as internal spectral standard. The procedure has been validated using human serum-certified reference materials. The results are metrologically comparable and compatible with the certified values. In the second case, for isotope amount ratio analysis, a scalable tree boosting ML algorithm (XGBoost) was employed and calibrated using a set of samples with 6Li isotope amount fractions ranging from 0.06 to 0.99 mol mol−1. The training ML model was validated with certified reference materials. The procedure was applied to the isotope amount ratio determination of a set of stock chemicals and a BAM candidate reference material NMC111 (LiNi1/3Mn1/3Co1/3O2), a Li-battery cathode material. These determinations were compared with those obtained by MC-ICP-MS and found to be metrologically comparable and compatible. The residual bias was −1.8‰, and the precision obtained ranged from 1.9‰ to 6.2‰. This precision was sufficient to resolve naturally occurring variations. The NMC111 cathode candidate reference material was analyzed using high-resolution continuum source atomic absorption spectrometry with and without matrix purification to assess its suitability for technical applications. The results obtained were metrologically compatible with each other. T2 - Colloquium Spectroscopicum Internationale XLII (CSI XLII) CY - Gijón, Spain DA - 30.05.2022 KW - Lithium KW - HR-CS-AAS KW - Chemometrics KW - Atomic spectrometry PY - 2022 AN - OPUS4-56498 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - An overview of ceramic AM with focus on bioceramics and powder bed technologies N2 - The presentation will start with an overview of ceramic additive manufacturing (AM) technologies and will discuss the potential of AM in the field of bioceramics. The presentation will then focus on two possible use cases of binder jetting technologies. In the first example, standard powder-based binder jetting is used to manufacture a porous implant design for large scale bone defects. The related challenges in the process chain will be discussed, from powder synthesis to sintering and characterization of the printed part. In the second example, the LSD-print slurry-based binder jetting technology is presented as a possibility to adapt powder-bed AM to produce dense ceramic parts. The use case will focus on an application in the field of dental ceramics, specifically for the manufacturing of patient individualized single tooth restorations (veneers, crowns) with a high throughput process chain. T2 - BioCAM - Additive Manufacturing Applied to Bioceramics CY - Mons, Belgium DA - 06.12.2023 KW - Additive Manufacturing KW - Bioceramic KW - Binder Jetting PY - 2023 AN - OPUS4-60053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Advanced lightweight applications – recycling versus reliability and fossil energy footprint N2 - Advanced light weight applications like aircrafts and wind turbine blades are made of fibre reinforced plastics (FRP) with continuous fibre reinforcement and must withstand a high thermo-mechanical cyclic loading. The quality of the fibre matrix interface has a high impact on the fatigue life and was continuously improved over the years since the 50th. The fatigue life of glass fibre reinforced plastics (GFRP) used in aircraft industry is 10 to 100 times higher compared to glass fibre non crimp fabrics used for wind turbine blades. To assure a constant and reliable high quality and strength of reinforcement fibres, synthetic fibre production is state of the art (CF, GF). There is a need for recycling GFRP and CFRP waste due to the upcoming use. Pyrolysis and solvolysis are more expensive than the mechanical route however enable a more sustainable recycling. Natural fibres and recycled synthetic fibres have a high scatter in quality and strength. Hence it is a challenge to optimize the production / recycling processes to get a reliable quality for any demanding (second life) application. Chemical routes for using renewables resources and recycling, is going to be a good approach especially for polymer-matrix systems to get 100% quality (back) compared to the state of the art. Finally, a proper design, life-time extension and repair is preferable to recycling to keep the carbon footprint as low as possible. T2 - 27. INTERNATIONALES DRESDNER LEICHTBAUSYMPOSIUM CY - Dresden, Germany DA - 13.06.2024 KW - Polymer Matrix Composites KW - Carbon Fibre KW - Recycling KW - Circular Economy PY - 2024 UR - https://leichtbausymposium.de/deu/ AN - OPUS4-60683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hertwig, Andreas T1 - Accuracy on all scales: Hybrid metrology for micro- and nanomanufacturing N2 - In this presentation, we discuss hybrid metrology and correlative imaging. These techniques are used to improve the design and quality monitoring of nanomaterials used in energy technology and for referencing the properties of nanoparticles. T2 - EMN for Advanced Manufacturing workshop CY - Berlin, Germany DA - 22.05.2024 KW - Nanotechnology KW - Nanoanalytics KW - Correlative Spectroscopy KW - Correlative Imaging PY - 2024 AN - OPUS4-60240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - About Interlaboratory Comparisons (ILCs) and VAMAS N2 - Advanced materials, such as nanomaterials, 2D materials, or thin films, play a crucial role in driving economic development and addressing major challenges in the coming years. These challenges include mitigating the impact of climate change, advancing lightweight engineering, enhancing catalysis, and improving medical applications. To comprehend the performance of these materials and ensure their acceptance across various sectors as safe and sustainable for both humans and the environment, the availability of reference procedures, materials, and data is essential. One versatile tool for establishing such references and evaluating the proficiency of individual laboratories and their competencies is through (international) interlaboratory comparisons (ILC). Notably, initiatives like the Versailles Project on Advanced Materials and Standards (VAMAS) provide a platform for conducting ILCs. This webinar will showcase various examples of interlaboratory comparisons, illustrating their impact on the development of reference products. T2 - Webinar Building the Foundation: Interlaboratory Comparisons and Reference Products for Advanced Materials CY - Berlin, Germany DA - 16.05.2024 KW - Interlaboratory comparison KW - Reference products KW - VAMAS KW - Standardisation PY - 2024 AN - OPUS4-60096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva T1 - Ablauf des Zustimmungsverfahrens zu alternativen Methoden zum Wasserbad in der BAM N2 - Dieser Vortrag gibt einen Überblick über den Ablauf zur Zustimmung alternativer Methoden der Dichtheitsprüfung für gefüllte Druckgaspackungen nach ADR 6.2.6.3.2. T2 - IGA-Herbstforum CY - Frankfurt am Main, Germany DA - 24.11.2023 KW - Druckgaspackungen KW - Zustimmung KW - Alternative Dichtheitsprüfverfahren PY - 2023 AN - OPUS4-59032 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -