TY - CONF A1 - Thiede, Tobias T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano-Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe T1 - X-ray back scatter techniques for additive manufacturing N2 - X-ray back scatter imaging is rarely applied compared to classical X-ray projection imaging. More than 20 years ago the company Philips developed “COMSCAN”, a first application case for aircraft industry, which allowed even a depth resolution using back scatter imaging. The company AS&E in Boston offers back scatter imaging solutions for the security market. The principle is to scan the object with a highly collimated X-ray needle beam from one side only and to detect the backscattered radiation by a large area detector side by side with the collimation wheel. A new prototype is investigated at BAM for application and optimization in non-destructive testing. As modern industrial application field in-situ inspection in additive manufacturing is targeted. The accessibility of the printed part during the production process is very limited. This prevent the application of a two sided X-ray inspection or Computed Tomography, were an rotation of the object is required to acquire projections from 360 degrees. An important advantage for the X-ray back scatter technique are also the materials used in additive manufacturing (polymers, ceramics, light metals like Aluminum or Titanium). These materials with lower density and lower Z values give better scatter signals than metals with higher densities and Z values. The back scatter intensity decreases with increasing density and Z value of the material. But the requirements on spatial resolution and contrast sensitivity are more stringent for non-destructive testing of additive manufactured parts compared to the security area. In NDT sizes of indications smaller than 1 mm have to be detected clearly. The investigation of these limits on a state-of-the-art prototype for X-ray back scattering using rotating collimated X-ray needle beams is a part of the BAM project “ProMoAM”. The contribution shows first results of the optimization for NDT and the achieved application limits for several example cases. T2 - International Symposium on Nondestructive Characterization of Materials CY - Portoroz, Slovenia DA - 17.09.2019 KW - Non-destructive testing KW - X-ray back scattering KW - Additive Manufacturing PY - 2019 AN - OPUS4-50523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray Absorption and Refraction techniques for characterization and non-destructive-testing of materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. T2 - ENSAM CY - Paris, France DA - 28.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - VOC, Fine and Ultrafine Particles Emissions from Additive Manufacturing and 3D-Printers N2 - The presentation gives an overview on Additive Manufacturing techniques and related potential risks from emission of hazardous gases and aerosols, based on emission characterizations in BAM. Voluntary mitigation strategies are presented T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - 3D Printing KW - Additive Manufacturing KW - Particulate emissions KW - Emissions of hazardous gases KW - Filament comparison PY - 2019 AN - OPUS4-47812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Osayi, J. A1 - Kmieciak, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verschleißschutz einer Schneckengeometrie durch funktional gradierte Materialien N2 - Hochbelastete Stahlbauteile lassen sich durch Auftragen von Kobalt-Chrom Legierungen vor Verschleiß schüt-zen. Die plötzliche Änderung der Materialeigenschaften führt jedoch zu Spannungen und Rissen im Anbindungs-bereich. Daraus resultierende Abplatzungen stellen eine Gefahr für die Funktionsfähigkeit der Maschine und damit für Mensch und Umwelt dar. Um die Belastbarkeit der Schutzschicht zu verbessern, kann die Anbindung durch einen gradierten Materialübergang optimiert werden. Diese funktional gradierten Materialien können mit-tels pulverbasiertem Directed Energy Deposition aufgetragen werden. Die Methodik zum Aufbau und zur Quali-tätssicherung solcher Materialien wurde in vorangegangenen Arbeiten für dickwandige Geometrien gezeigt. Für dünnwandige Geometrien ist die Anwendbarkeit bisher unzureichend untersucht worden. Diese Arbeit zeigt am Beispiel einer dünnwandigen gradierten Schneckengeometrie die Einsatzfähigkeit der Methodik. Dafür wird die Gefügestruktur der Gradierung auf Fehler untersucht und der Härteverlauf gemessen. Außerdem wird die relative Dichte anhand eines bereits trainierten neuronalen Netzes vorhergesagt und mit einer Porositätsuntersuchung verglichen. T2 - 14. Tagung Verschleiß- und Korrosionsschutz von Bauteilen durch Auftragschweißen CY - Halle (Saale), Germany DA - 12.06.2024 KW - Directed Enery Deposition KW - Funktionally Graded Material KW - Additive Manufacturing KW - DED KW - FGM KW - AM PY - 2024 AN - OPUS4-62688 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - DKG Jahrestagung 2023 CY - Jena, Germany DA - 27.03.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - Two approaches for multi measurand in-situ monitoring of the L-PBF process – bicolor- and RGB-optical tomography N2 - Since metal additive manufacturing (AM) becomes more and more established in industry, also the cost pressure for AM components increases. One big cost factor is the quality control of the manufactured components. Reliable in-process monitoring systems are a promising route to lower scrap rates and enhance trust in the component and process quality. The focus of this contribution is the presentation and comparison of two optical tomography based multi measurand in-situ monitoring approaches for the L-PBF process: the bicolor- and the RGB-optical tomography. The classical optical tomography (OT) is one of the most common commercial in-situ monitoring techniques in industrial L-PBF machines. In the OT spatial resolved layer-images of the L-PBF process are taken from an off-axis position in one near infrared wavelength window. In addition to the explanatory powers classical OT, both here presented approaches enable the determination of the maximum surface temperature. In contrast to thermography that may also yield maximum temperature information, the needed equipment is significantly cheaper and offers a higher spatial resolution. Both approaches are implemented at a new in-house developed L-PBF system (Sensor-based additive manufacturing machine - SAMMIE). SAMMIE is specifically designed for the development and characterization of in-situ monitoring systems and is introduced as well. T2 - ICAM2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring KW - Optical tomography PY - 2022 AN - OPUS4-56594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Towards the Use of Representative Specimens for the Qualification of Additively Manufactured Parts N2 - The understanding of the process-structure-property-performance relationship is the key challenge for the qualification of safety-relevant parts made of additively manufactured metallic materials. The complexity of the manufacturing process and the number of influencing parameters affect the properties of test coupons and parts even fabricated in the same batch. This poses the problem of using reliable witness specimens for part qualification. This work presents a new approach which aims at the fabrication of test coupons tailored to the specific microstructure and fatigue properties of a component. The first step consisted in the evaluation of the temperature field by means of process monitoring during the production of parts. The results were used to tailor finite element models which were then used to design witness specimens representative of the thermal history in the component. Finally, the fatigue properties of designed specimens were compared to coupons machined out of the component. T2 - TMS2024 – 153rd Annual Meeting & Exhibition CY - Orlando, FL, USA DA - 03.03.2024 KW - Additive Manufacturing KW - Process simulation KW - Thermal history KW - Structural integrity KW - Damage tolerance PY - 2024 AN - OPUS4-65072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The laser powder bed fusion of 316L leads to the formation of large residual stress. In this presentation, different stress relieve treatments were employed to assess their potential to relax the residual stress. The residual stress was determined by X-ray and neutron diffraction. The results give insights on the range of relaxation one can obtain by employing low and high temperature heat treatments and relates the relaxation to changes in the microstructure. T2 - Online-Sitzung des Fachausschusses 13 - Eigenspannungen CY - Online meeting DA - 08.12.2021 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing KW - Stainless Steel PY - 2021 AN - OPUS4-53947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The formation of high magnitude residual stresses is inherent in laser powder bed fused processed austenitic steel 316L. Post-process heat treatments to relieve these stresses are necessary. In this study, heat treatment temperatures of 450°C, 800°C and 900°C were applied in order to avoid excessive sensitization. This temperature range thereby encompassed the upper and lower bounds for stress relieving treatment of this material. The residual stresses were determined by neutron diffraction and the evolution of the microstructure was monitored using scanning electron microscopy and electron backscattered diffraction. The results show that a full relaxation of the residual stresses is achieved when applying 900°C for 1 hour, which seems to be closely related to the dissolution of the subgrain solidification cellular structure. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Residual Stress KW - Additive Manufacturing KW - Steel PY - 2021 AN - OPUS4-52709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -