TY - CONF A1 - Rades, Steffi A1 - Salge, T. A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - Automated feature analysis of nanoparticles by high-resolution transmission scanning electron microscopy and energy dispersive X-ray spectroscopy T2 - EuroNanoForum (ENF) 2015 CY - Riga, Lativa DA - 2015-06-09 PY - 2015 AN - OPUS4-33487 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Holzlechner, Gerald A1 - Wirth, Thomas A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Investigations of Hydrogen Embrittlement (HE) by Time-of-Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) T2 - 18. Tagung Festkörperanalytik CY - Vienna, Austria DA - 2015-06-07 PY - 2015 AN - OPUS4-33692 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzlechner, Gerald A1 - Sobol, Oded A1 - Straub, Franka A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - ToF-SIMS as a Metrology Tool to Support Material and Analytical Science T2 - Seminar at MTEC Bangkok CY - Bangkok, Thailand DA - 2015-06-22 PY - 2015 AN - OPUS4-34686 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Nele A1 - Dietrich, Paul A1 - Holzweber, Markus A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Kulak, N. T1 - Functionalization of Silicon Nitride T2 - PhD Retreat 2015 CY - Wandlitz, Germany DA - 2015-06-05 PY - 2015 AN - OPUS4-33486 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roth, Christina A1 - Schalley, Christoph A. A1 - Unger, Wolfgang T1 - Incorporating mechanically interlocked molecules into crystalline coordination networks on surfaces: Electro-active SURMOFs to translate molecular switching into macroscopic function and devices N2 - We aim at preparing, characterising, and applying SURMOFs incorporating electro-active and -switchable mechanically interlocked molecules such as rotaxanes as the basis of functional devices. Preparation and Positioning Synthesis, purification and analytical characterization of electro-switchable rotaxanes suitable for SURMOF-formation as well as Layer-by-Layer assembly on surfaces. Controlled deposition of electro-active SURMOFs and Layer-by-Layer self-assembled multilayers based on these switchable rotaxanes. Construction of SURMOFs on micro-patterned surfaces. Structural Characterisation and Physico-Chemical Properties Electrochemical characterization of these rotaxanes in solution with cyclic voltammetry, chronoamperometry and impedance spectroscopy. Surface characterization of SURMOFs and multilayers with XPS, NEXAFS, AFM, contact-angle measurements, transmission UV/Vis, ToF-SIMS and – in cooperation with partners from SPP – XRD. Development of ToF-SIMS (also assisted by Principle Component Analysis of the fragment-ion data) as a method for imaging and depth-profiling. Development of an appropriate electrochemical cell to perform cyclic voltammetry, chronoamperometry and impedance spectroscopy with SURMOFS and multilayers as working electrodes in a three-electrode cell. Comparison of the structural and electrochemical properties of the redox-active unit in solution, multilayers and SURMOF focusing on the advantages of SURMOFs. System Integration and Function Demonstration Examination of the usability of the electroactive SURMOFS as optoelectronic switch or data storage device with a focus on the robustness of the system. Usage of the SURMOFs as functional electrodes for electrochemical application. Selective switching of ordered nanostructures to translate molecular motion to macroscopic property changes. T2 - Colloquium of the priority programme "Coordination networks: building blocks for functional systems” SPP 1928 CY - Garching, Germany DA - 30.3.16 KW - SurfMOF KW - XPS KW - NEXAFS KW - Characterization PY - 2016 AN - OPUS4-35867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - 2-D materials standardization N2 - The implementation of new 2-D materials based technologies in production processes requires the development of quality management tools. These have to be underpinned by appropriate measurements. Consequently there is a need for the development of the metrology for measurement methods, the development of certified reference materials (CRM) and finally standardization. This chain represents the ideal way to practically useful standards. The presentation will give an overview on the main players in the field and summarize the recent status of activities. At the highest level the metrology of chemical characterization of 2D materials is in the scope of the International Meter Convention, specifically the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM). Pre-standardization is an activity field of the Versailles Project on Advanced Materials and Standards (VAMAS). Standardization is mainly addressed by addressed ISO Technical Committees. A summary on available CRMs relevant to the characterization of nano materials has been prepared by BAM. Examples from the work of BAM’s Division 6.1 “Surface Analysis and Interfacial Chemistry” showcasing the characterization of chemically modified graphene surfaces are given and specific needs for the development of metrology are addressed. In the discussion the audience is invited to define specific needs which will be streamlined to the respective bodies! T2 - Science-Industry-Workshop 2D Materials CY - EMPA Akademie, Dübendorf, Switzerland DA - 21.3.16 KW - Standardization KW - Graphene PY - 2016 AN - OPUS4-35866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roth, C. A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Incorporating mechanically interlocked molecules into crystalline coordination networks on surfaces: Electro-active SURMOFs to translate molecular switching into macroscopic function and devices N2 - We aim at preparing, characterising, and applying SURMOFs incorporating electro-active and -switchable mechanically interlocked molecules such as rotaxanes as the basis of functional devices. Preparation and Positioning Synthesis, purification and analytical characterization of electro-switchable rotaxanes suitable for SURMOF-formation as well as Layer-by-Layer assembly on surfaces. Controlled deposition of electro-active SURMOFs and Layer-by-Layer self-assembled multilayers based on these switchable rotaxanes. Construction of SURMOFs on micro-patterned surfaces. Structural Characterisation and Physico-Chemical Properties Electrochemical characterization of these rotaxanes in solution with cyclic voltammetry, chronoamperometry and impedance spectroscopy. Surface characterization of SURMOFs and multilayers with XPS, NEXAFS, AFM, contact-angle measurements, transmission UV/Vis, ToF-SIMS and – in cooperation with partners from SPP – XRD. Development of ToF-SIMS (also assisted by Principle Component Analysis of the fragment-ion data) as a method for imaging and depth-profiling. Development of an appropriate electrochemical cell to perform cyclic voltammetry, chronoamperometry and impedance spectroscopy with SURMOFS and multilayers as working electrodes in a three-electrode cell. Comparison of the structural and electrochemical properties of the redox-active unit in solution, multilayers and SURMOF focusing on the advantages of SURMOFs. System Integration and Function Demonstration Examination of the usability of the electroactive SURMOFS as optoelectronic switch or data storage device with a focus on the robustness of the system. Usage of the SURMOFs as functional electrodes for electrochemical application. Selective switching of ordered nanostructures to translate molecular motion to macroscopic property changes. T2 - Colloquium of the Priority Programme "Coordination Networks: Building Blocks for Functional Systems” SPP 1928 CY - Garching, Germany DA - 30.3.16 KW - SURMOF KW - XPS KW - NEXAFS KW - Characterization PY - 2016 AN - OPUS4-35868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Huschke, Philip A1 - Otto, Peter A1 - Pohl, Christoph T1 - The benefit of mesoscale models for concrete to understand its complex macroscopic behavior N2 - Concrete is one of the most important building materials world wide. The safety of constructions build from concrete is of utmost importance in daily life. As a consequence, accurate predictions of the structural behavior over the entire lifetime of concrete structures are required to ensure a prescribed safety level. A lack of exact models and/or stochastically varying constitutive parameters are compensated by large safety factors. The nonlinear structural performance is strongly related to the constitutive behavior of concrete. Arbitrary complex models can be used to describe the macroscopic constitutive behavior of concrete. The parameters in these models often lack any physical meaning. Consequently, the fitting can only be performed by an inverse analysis. In contrast, models on finer scales are able to simulate the physical phenomena more accurately and are thus better suited to understand the failure mechanisms. In addition, the macroscopically observed strong nonlinearities can at least partially be explained by the direct modeling of the material heterogeneities on finer scales. The presentation discusses several phenomena that are strongly related to the internal microstructure of concrete. This includes the discrepancy between the unique results of a numerical model and the stochastic scatter observed in real experiments. A short discussion on the generation of random mesoscale geometries to model aggregates and mortar matrix explicitly and random fields are given. The strong nonlinearities especially for stresses close to the peak strength are usually the result of failure in the mortar matrix or the interfacial transition zone, whereas the aggregates are inert and often can accurately be modeled by a linear elastic model. The different constitutive properties lead to eigenstresses that strongly in uence the macroscopic behavior. In addition, this effect is even more pronounced when dealing with multiphysics phenomena such as drying, creep and shrinkage, fatigue or thermal problems. It will be demonstrated for several examples that simple models on the fine scale can be superimposed and coupled to obtain a macroscopically nonlinear behavior, where the superposition principle does not hold any longer. Finally, a short discussion on upscaling techniques to couple mesoscale models with large scale structural problems is given. T2 - ECCOMAS 2016 CY - Kreta, Greece DA - 05.06.2016 KW - FEM, concrete, mesoscale PY - 2016 AN - OPUS4-36459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Holzlechner, Gerald A1 - Giovannozzi, A. A1 - Portesi, C. A1 - Pelster, A. A1 - Arlinghaus, H. F. A1 - Bunch, J. A1 - Tyler, B. A1 - Pollakowski, B. A1 - Beckhoff, B. T1 - Traceability of PDMS on TiO2 and HDPE substrates by a multi analytical approach T2 - 16th European Conference on Applications of Surface and Interface Analysis (ECASIA 15) CY - Granada, Spain DA - 2015-09-28 PY - 2015 AN - OPUS4-34808 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Passiu, C. A1 - Paul, D. A1 - Hammond, J. A1 - Venkatraman, N. V. A1 - Bernard, L. A1 - Rossi, A. A1 - Spencer, N. D. T1 - Fabrication, microscopic and spectroscopic characterization of planar, nanopatterned,multi-metallic samples C T2 - 16th European Conference on Applications of Surface and Interface Analysis (ECASIA 15) CY - Granada, Spain DA - 2015-09-28 PY - 2015 AN - OPUS4-34809 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Ortel, Erik A1 - Häusler, Ines A1 - Österle, Werner A1 - Narbey, S. A1 - Oswald, F. A1 - Andersen, I. H. A1 - Emmerling, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Comprehensive morphological and chemical characterization of thin engineered TiO2films T2 - 16th European Conference on Applications of Surface and Interface Analysis (ECASIA 15) CY - Granada, Spain DA - 2015-09-28 PY - 2015 AN - OPUS4-34814 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Schalley, C. A. T1 - Programmable ordered multiayers of nanometer-sized macrocycles and switchable rotaxanes on solid support T2 - Workshop "Koordinationsnetzwerke als Bausteine für Funktionssysteme" CY - Schloss Reisenburg, Günzburg DA - 2015-06-02 PY - 2015 AN - OPUS4-34819 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nutsch, A. A1 - Streeck, C. A1 - Weser, J. A1 - Beckhoff, B. A1 - Grötzsch, D. A1 - Malzer, W. A1 - Dietrich, Paul A1 - Fischer, Tobias A1 - Nietzold, Carolin A1 - Rurack, Knut A1 - Unger, Wolfgang T1 - Synchrotron Light Probing the Liquid Solid Interface for Immobilized Biomolecule T2 - Seventh Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 2015-12-10 PY - 2015 AN - OPUS4-35211 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. T1 - Numerical simulation of ultrasonic wave propagation using higher order methods in space and time N2 - The paper discusses the efficient simulation of ultrasonic wave propagation. It is demonstrated that a combination of higher methods in space and time leads to a significant performance boost. Higher order spectral elements are used for the spatial discretization. A comparison with standard finite elements shows the advantages when using explicit time integration schemes. For the temporal discretization, an efficient explicit fourth order Nyström method is presented. Its computational efficiency for wave propagation problems is compared to a second order Velocity Verlet integration. T2 - 1st Pan-American Congress on Computational Mechanics - PANACM 2015 CY - Buenos Aires, Argentina DA - 27.04.2015 KW - Elastic wave propagation KW - Spectral element method KW - Nyström methods PY - 2015 AN - OPUS4-38646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - A finite element tearing and interconnecting (FETI) approach for phase-field models and gradient enhanced damage models is presented. These diffusive crack models can solve fracture mechanics problems by integrating a set of partial differential equations and thus avoid the explicit treatment of discontinuities. However, they require a fine discretization in the vicinity of the crack. FETI methods distribute the computational cost among multiple processors and thus speed up the computation. T2 - COMPLAS 2017 CY - Barcelona, Spain DA - 05.09.2017 KW - FEM KW - FETI KW - DDM PY - 2017 AN - OPUS4-42603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - The use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - In the course of the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realised by austenitic stainless steels, remains problematic. That is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. Development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behaviour of hydrogen in austenitic steel contributes to an understanding of the damage processes which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was conducted after electrochemical charging. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed. Gathered data of chemical composition and topography was treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - SIMS21 CY - Krakau, Poland DA - 11.09.2017 KW - Austenitic stainless steel KW - ToF-SIMS KW - Hydrogen PY - 2017 AN - OPUS4-42315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus A1 - Nietzold, Carolin A1 - Dietrich, Paul A1 - Lippitz, Andreas A1 - Kamalakumar, A. A1 - Ivanov-Pankov, S. A1 - Blanchard, V. A1 - Weigel, W. A1 - Panne, Ulrich A1 - Unger, Wolfgang T1 - Surface chemical characterization and shelf life studies of reference glycan microarrays using ToF-SIMS, XPS and fluorescence spectroscopy N2 - Covalent modification of surfaces with carbohydrates (glycans) is a prerequisite for a variety of glycomics-based biomedical applications, including functional biomaterials, glycan-arrays, and glycan-based biosensors. The chemistry of glycan immobilization plays an essential role in the bioavailability and function of surface bound carbohydrate moieties. For biomedical applications the stability over time (shelf life) of a glycan-array is a crucial factor. Basic requirements for the production of microarrays are first of all stable signals without any loss of quality. Therefore, the investigation of the shelf life for carbohydrate microarrays is an important part in the development of glycan-arrays. Motivated by the need of reliable quality control for glycan microarrays, we developed reference arrays using fluorescent model glycans. Since the long term stability of glycan microarrays is a crucial factor for their clinical application the shelf life at different storage conditions of glycan microarrays was studied in detail using the two model glycan compounds. Herein, we present a shelf life study of model glycan microarrays on epoxy modified glass surfaces over a period of 320 days. This was carried out using different analyzing techniques such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), X-ray Photoelectron Spectroscopy (XPS) and Fluorescence Spectroscopy. To analyze and interpret the ToF-SIMS dataset the multivariate technique principal component analysis (PCA) was used. The dependence of the array´s shelf life upon storage conditions was specifically studied. T2 - SIMS Europe 2016 CY - Münster, Germany DA - 18.9.2016 KW - Glycan microarray KW - XPS KW - SIMS KW - Fluorescence spectroscopy PY - 2016 AN - OPUS4-37638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - Exploring the capabilities of near ambient pressure XPS: Characterisation of biofilms and nanoparticles in solution N2 - Seminar-talk for "Ausgewählte analytische Methoden der Physik " at TU Berlin. A introduction about near-ambient pressure XPS is given, furhter, results from measurements of biofilms and dispersed nanoparticles are presented and discussed. T2 - Seminar AG Kanngießer: Ausgewählte analytische Methoden der Physik CY - Technische Universität, Berlin, Germany DA - 04.07.2017 KW - Alginate KW - NAP-XPS KW - Nanoparticles KW - Biofilms KW - E. coli PY - 2017 AN - OPUS4-40905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Senoner, Mathias T1 - Lateral resolution delivered by imaging surface-analytical instruments as SIMS, AES and XPS: Application of the BAM-L200 Certified Reference Material and related ISO Standards N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1-xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. Fundamental approaches to determination of lateral resolution and sharpness in beam-based methods T2 - SIMS Europe 2016 CY - Münster, Germany DA - 18.09.2016 KW - ISO standards KW - XPS KW - AES KW - SIMS KW - Lateral resolution PY - 2016 AN - OPUS4-37507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Streeck, Cornelia A1 - Beckhoff, Burkhard T1 - Improved quantitative XRF analysis of industrial thin film samples by calibration using thin film RMs certified by reference-free XRF enabling traceability to the SI N2 - Reference-free XRF is a SI traceable technique for the determination of the mass deposition (mass per unit area) of elements in films on the nano- and micro scale. The method is radiometrically calibrated instrumentation (PTB@BESSY II, Germany) and based on reliable knowledge of all relevant atomic fundamental, experimental and instrumental parameters. No calibration sample or reference materials are necessary. The approach had been validated in the CCQM-P140 pilot study and the K129 key comparison by determination of mole fractions in Cu(In,Ga)Se2 thin films. T2 - Annual Meeting of ISO TC 201 SC 10 XRR/XRF CY - Seoul, Korea DA - 12.10.2016 KW - Reference-free XRF KW - CIGS thin films PY - 2016 AN - OPUS4-38265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, Nele A1 - Dietrich, Paul A1 - Gründler, A. A1 - Lippitz, Andreas A1 - Kulak, Nora A1 - Unger, Wolfgang T1 - Nuclease activity of copper(II)phenanthroline complexes immobilized on silicon nitride films N2 - Copper(II)phenanthroline complexes intercalate into DNA and induce DNA cleavage. Here, we investigate the nuclease activity of copper(II)phenanthroline complexes on Silicon nitride films. 1,10-phenanthroline-5-carboxylic acid is immobilized at Si-NHx bonds via amide coupling followed by the formation of copper(II)phenanthroline complexes. XPS and NEXAFS were carried out at the HE-SGM beamline. T2 - 8th Jouint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 7.12.2016 KW - XPS KW - NEXAFS KW - Copper(II) - phenanthroline - complexe filmss PY - 2016 AN - OPUS4-38685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Unger, Wolfgang T1 - WP3 (A 3.3.4 / 3.3.5 / 3.3.6) electron spectroscopy of core/shell nanoparticles N2 - The presentation summarizes the progress of activity 3.3.4, 3.3.5 and 3.3.6 of the Innanopart project. These activities focus on the investigation of different core@shell nanoparticles using laboratory-XPS, synchrotron-radiation-XPS and AES. T2 - Innanopart 27 Months Meeting (EMPIR) CY - Berlin, Germany DA - 14.06.2017 KW - AES KW - Core@shell nanoparticles KW - Depth-profiling KW - Synchrotron KW - XPS PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-40874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Unger, Jörg F. A1 - Oliver, J. T1 - Implicit/explicit (IMPL-EX) integration of the gradient enhanced damage model N2 - Isotropic damage models are widely used for the finite element simulation of softening materials, e.g. in mesoscale simulations of concrete. Regularization techniques must be employed to obtain a physically meaningful fracture energy upon mesh refinement. In regularized local damage models the strains localize in single elements allowing them to represent weak or strong discontinuities. In implicit integration schemes, these models can exhibit convergence Problems caused by an ill-conditioned tangent stiffness. This corresponds to the loss of ellipticity of the local rate equilibrium equations. Oliver et al. developed the implicit/explicit (IMPL-EX) integration scheme which overcomes These problems in local damage models. The internal damage driving variable is extrapolated based on previous implicitly determined values. This provides two main benefits: First, it always results in a symmetric positive semi-definite algorithmic stiffness matrix which precludes ill-posedness. Second, the system becomes incrementally linear and converges in one Newton-Raphson iteration. Even though the IMPL-EX algorithm, like explicit algorithms in general, requires smaller time steps than implicit schemes to obtain the same accuracy, it leads to a computational speedup. The gradient enhanced damage model by Peerlings is a nonlocal damage model that provides the regularization by limiting the curvature of the damage-driving strains. These models do not lose their ellipticity. However, structural instabilities often require tiny time steps and many iterations to obtain convergence. Here, the second aspect of the IMPL-EX scheme reduces the computational costs. This is shown in simulations of the complex geometry of concrete mesostructures, where only the gradient enhanced matrix material and linear elastic aggregates are considered. With regard to future mesoscale simulations, the remaining component of the mesoscopic structure, the interfacial transition zone and its degradation, has to be included. This adds a local damage model to the nonlocal problem. Thus, an IMPL-EX implementation has to be provided for both models to benefit from the increase of robustness and performance. T2 - ECCOMAS Congress 2016 CY - Crete, Greece DA - 05.06.2016 KW - Concrete KW - Mesoscale KW - IMPL-EX PY - 2016 AN - OPUS4-38671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, Markus A1 - Hodoroaba, Vasile-Dan A1 - Lippitz, Andreas A1 - Hesse, R. A1 - Denecke, R. A1 - Unger, Wolfgang T1 - Ionische Flüssigkeiten als Referenzmaterial in der Oberflächenanalytik N2 - Die Bestimmung der chemischen Zusammensetzung einer Oberfläche und deren Quantifizierung mit wichtig für die Qualitätssicherung vieler industrieller Produkte und Materialien. Die chemische Beschaffenheit von Oberflächen bzw. Grenzflächen muss genau kontrolliert werden um die Produktqualität zu garantieren. Diese Prüfung ist oft auch für individuelle Prozessschritte durchzuführen. Referenzmaterialien sind unverzichtbar, wenn es darum geht, die Richtigkeit und Zuverlässigkeit von Messergebnissen zu gewährleisten. Falsche Messwerte können zu erheblichen Mehrkosten führen. Referenzmaterialien gewährleisten die Rückführung von Messergebnissen auf anerkannte Bezugsgrößen (Standards), dienen der Ermittlung der Messunsicherheit von analytischen Verfahren und wer-den zur Kalibrierung verwendet. Für zertifizierte/akkreditierte (ISO 9000 und ISO 17025) Prüf- und Kalibrierlaboratorien ist der Einsatz von Referenzmaterialien in der Qualitätssicherung obligatorisch. Ionischen Flüssigkeiten (IL) sind vielversprechende Kandidaten für die Verwendung als Referenzmaterial in oberflächenanalytischen Verfahren wie Energie-dispersive Röntgenspektroskopie (EDX) und Röntgenphotoelektronenspektroskopie (XPS). In zwei Machbarkeitsstudien wurde eine geeignete Klasse von ILs als Referenzmaterial getestet: Für die Anwendung in EDX wurde die Eignung von ILs als Referenzmaterial zur routinemäßigen Überprüfung der Energieskala, der Energieauflösung und der Spektrometer-Effizienz untersucht. Es kann gezeigt werden, dass mit einer einzigen Messung an einem einzigen Referenzmaterial mehrere Geräteparameter überprüft werden können. Damit ist es im niederenergetischen Bereich möglich, regelmäßige Funktionsprüfungen von Spektrometern durchzuführen, aber auch die Leistungsfähigkeit verschiedener Spektrometer zu vergleichen Für Die Anwendung in XPS wurde die Eignung von ILs als Referenzmaterial zur Bestimmung der Transmissionsfunktion T(E) von Photoelektronenspektrometern getestet. Dazu wurde die Auswertesoftware UNIFIT entsprechend adaptiert und erlaubt nun T(E) anhand der bekannten Stöchiometrie der IL zu ermitteln. Es wird gezeigt, dass durch die Verwendung ausgewählter ILs als Referenzmaterial die Genauigkeit der Quantifizierung von XPS Daten unter Nutzung einer experi-mentell bestimmten T(E) wesentlich verbessert werden kann. T2 - 19. Arbeitstagung Angewandte Oberflächenanalytik CY - Soest, Germany DA - 05-09-2016 KW - Ioniosche Flüssigkeiten KW - Referenzmaterial KW - REM-EDX KW - XPS PY - 2016 AN - OPUS4-37640 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Swaraj, Sufal A1 - Müller, Anja A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Core-shell nanoparticles investigated with scanning transmission X-ray microscopy N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a sharp interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, investigated at the HERMES beamline is presented for demonstration. This STXM based methodology yields particle dimensions in good agreement with the scanning electron microscopy (SEM) results (deviation equal or less than 10%). Extension of this methodology to core-shell nanoparticles with inorganic core and organic shell will also be presented and the challenges encountered will be highlighted. T2 - 13th SOLEIL Users' Meeting CY - Saint-Aubin, France DA - 18.01.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Core-shell nanoparticles KW - Polymers PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behavior. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layer and thus gives us an idea of the interactions involved. Here, we present initial data on the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Furthermore, principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - RSC-NPL Symposium: Nanoparticle concentration – critical needs and state-of-the-art measurement CY - London, UK DA - 24.04.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 AN - OPUS4-44795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales Surface Analysis Working Group (SAWG) - Report for 16th Meeting (2017/18) N2 - Following the 2017 meeting, progress with the Key Comparison CCQM-K153 related to the BET specific surface lead by UNIIM and the Pilot Study P-190 “Thickness Measurement of nm HfO2 Films” lead by KRISS will be discussed. The 16th meeting of SAWG will focus on •survey on CMC claims submitted with reference to K-129 and K-136. •the overall and SAWG specific aspects of the CCQM Strategy process, •a consideration of comparisons on convention methods as recommended by the CCQM Plenary Meeting 2017, •the 2019 CCQM Workshop and paper(s) for Metrologia’s Special Issue, •discussion of future comparisons. T2 - 24th meeting of the CCQM 2018 CY - Paris, France DA - 19.04.2018 KW - Surface chemical analysis KW - Metrology KW - Inter-laboratory comparisons PY - 2018 AN - OPUS4-44998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - STXM KW - SEM KW - PS KW - PTFE KW - Core-shell nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2017 – Frühjahr 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Plasma Germany, Fachausschuss Normung, Frühjahrssitzung CY - Kiel, Germany DA - 17.04.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-44729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Sparnacci, K. A1 - Unger, Wolfgang A1 - Schneider, Markus A1 - Müller, Anja T1 - Chemical Analysis of Core-Shell Nanoparticles using ToF-SIMS and XPS N2 - The analysis of nanomaterials is current an important task - especially in case of risk assessment, as the properties of these material class are not well understood currently. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surfaces chemical composition has to be investigated to get a better understanding and prediction of the nanomaterials' behavior. ToF-SIMS has proven as a powerful tool to determine said chemical composition. Its superior surface sensitivity allows us to study mainly the utmost atomic layer and therefore gives us an idea of the interactions involved. Here, we show first result from the validation of the method for the analysis of polystyrene and gold nanoparticles. ToF-SIMS will be compared to other methods like XPS, T-SEM or REM. Furthermore, principle component analysis (PCA) will be used to detect the influence of different sample preparation performed by an innovative microfluidic device. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - ToF-SIMS KW - Nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Hupatz, H. A1 - Lippitz, Andreas A1 - Schalley, C. A. A1 - Unger, Wolfgang T1 - Switchable Rotaxanes operating in multilayers on solid supports N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimuli-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimuli-responsive surfaces may help integrating synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically and photochemically switchable rotaxanes on gold surfaces. Two substrates are investigated – silicon and gold. Of these materials, only gold showed to be suitable for the development of highly preferential oriented rotaxane layers. XPS indicates for both substrates that our layer-by-layer approach worked and a layer growth with every deposition step is present. NEXAFS showed that both stimuli cause an increase of the multilayer's preferential orientation and that the switching is reversible. However, these effects are only observed for the multilayers on gold surfaces. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - XPS KW - NEXAFS KW - Rotaxanes KW - Multilayers PY - 2018 AN - OPUS4-44794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Schwibbert, Karin A1 - Unger, Wolfgang A1 - Bahr, S. A1 - Meyer, M. A1 - Dietrich, P. A1 - Thissen, A. T1 - Characterization of biofilms with near ambient pressure XPS N2 - Near Ambient Pressure XPS opens up a new world of possibilities for measurements with XPS. While there are examples where NAP-XPS has been used to study electrochemical processes and heterogeneous catalysis, little attention has been paid to its potential use in biological materials. Until now, bacteria have only been characterised with conventional XPS, which requires tedious sample preparation usually involving freeze drying, a treatment that may degrade biological sample constituents. By studying biological samples in their native wet states, new insight about composition, absorption and transport of drugs through cell membranes and extracellular polymeric substance (EPS) layers can be obtained. Both artificial model-films of exopolysaccharides and biofilms of Escherichia Coli have been characterised at pressures ranging from ultra-high vacuum to 15 mbar by using SPECS’ EnviroESCA NAP-XPS instrument and conventional XPS. By applying antimicrobials to model biofilms, some of which are known to be resistant towards the antimicrobial in question, the distribution of antimicrobials in biofilms has been studied. Capabilities and limitations of the approach will be discussed. T2 - The 4th annual workshop on ambient presssure X-ray photoelectron spectroscopy CY - Shanghai, China DA - 13.12.2017 KW - NAP-XPS KW - Biofilms KW - E. coli PY - 2017 AN - OPUS4-43568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Unger, Jörg F. T1 - Variational Bayesian Inference for structural model update N2 - Appropriate monitoring of transportation infrastructures (e.g. bridges) is of utmost importance to ensure safe operation conditions. Accurate and reliable assessment of such structures can be achieved through the integration of data from non-destructive testing, advanced modeling and model updating techniques. The Bayesian framework has been widely used for updating engineering and mechanical models, due to its probabilistic description of information, in which the posterior probability distribution reflects the knowledge, over the model parameters of interest, inferred from the data. For most real-life applications, the computation of the true posterior involves integrals that are analytically intractable, therefore the implementation of Bayesian inference requires in practice some approximation methods. This paper investigates the application of Variational Bayesian Inference for structural model parameter identification and update, based on measurements from a real experimental setup. The Variational Bayesian method circumvents the issue of evaluating intractable integrals by using a factorized approximation of the true posterior (mean field approximation) and by choosing a family of conjugate distributions that facilitates the calculations. Inference in the Variational Bayesian framework is seen as solving an optimization problem with the aim of finding the parameters of the factorized posterior which would minimize its Kullback-Leibler divergence in relation to the exact posterior. The Variational Approach is an efficient alternative to sampling methods, such as Markov Chain Monte Carlo, since the latter’s accuracy depends on sampling from the posterior distribution a sufficient amount of times (and therefore requiring an equivalent number of computations of the forward problem, which can be quite expensive). T2 - ECCM - ECFD 2018 CY - Glasgow, Scotland, UK DA - 11.06.2018 KW - Variational Bayesian KW - Structural monitoring KW - Bayesian inference PY - 2018 AN - OPUS4-45603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Unger, Jörg F. A1 - Oliver, Javier T1 - Cycle-by-cycle fatigue damage model for concrete N2 - Damage caused by stress concentrations in the complex mesoscopic geometry of concrete leads to continuous stress redistribution over the material's life time. The presented fatigue damage model captures this by resolving each load cycle in a cycle-by-cycle time integration. The model extends a static damage model to failure caused by the (time dependent) strain amplitudes and, thus, allows calibrating the majority of the material's parameters in static experiments. T2 - 7th GACM Colloquium on Computational Mechanics CY - Stuttgart, Germany DA - 11.10.2017 KW - Fatigue KW - Damage model KW - Cycle-by-cycle integration PY - 2017 AN - OPUS4-43612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Dörfel, I. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Quantitative chemical depth-profiling by synchrotron-radiation-XPS: Investigation of SrF2-CaF2 core-shell nanoparticles N2 - SrF2 nanoparticles can be doped with trivalent earth metal ions such as Eu3+ and Tb3+ to generate materials exhibiting an intensive red or green fluorescence. A CaF2 shell increases intensity, fluorescence lifetie and quantum yield. The chemical composition of the nanoparticle core-shell region is investigated by XPS at different excitation energies corresponding to different information depths. T2 - Ninth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Core-shell nanoparticles KW - Synchrotron-XPS KW - Depth-profiling PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otto, Peter A1 - Unger, Jörg F. T1 - Time integration schemes for normal impact with smoothing N2 - In this work an approach for smoothing the oscillations of normal impact is presented. In addition, a higher order time discretization scheme in association with a higher order spatial discretization, like the spectral element method, is investigated regarding its convergence rates. T2 - 3rd ECCOMAS Young Investigators Conference (YIC) and 3rd AC.CES CY - Aachen, Germany DA - 20.07.2015 KW - Impact KW - Stress wave propagation KW - Split-Hopkinson-Pressure-Bar PY - 2015 AN - OPUS4-46240 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otto, Peter A1 - De Lorenzis, L. A1 - Unger, Jörg F. T1 - A nonlinear regularization model for contact conditions and higher order methods for impact simulation N2 - In impact simulations, the instantaneous change of velocity in the contact area can lead to artificial oscillations. These oscillations might significantly influence the results, especially when nonlinear and rate dependent constitutive formulations are used. In this work, a nonlinear penalty formulation similar to a soft contact formulation is presented. T2 - ECCOMAS 2016 Creta CY - Creta, Greece DA - 05.06.2016 KW - Smoothed contact-impact KW - Higher order time discretization for contact-impact KW - Stress wave propagation KW - Split-Hopkinson-Pressure-Bar PY - 2016 AN - OPUS4-46241 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Ehlert, Christopher A1 - Donskyi, Ievgen A1 - Girard-Lauriault, P.-L. A1 - Lippitz, Andreas A1 - Illgen, Rene A1 - Haag, R. A1 - Adeli, M. T1 - Chemical modification of graphene and carbon nano tubes as viewed by xps and nexafs spectroscopies with dft spectra simulation N2 - Graphene is a two-dimensional carbon network with unique properties. However, its low solubility, poor reactivity and the limited accessibility of a well-defined basal plane are major challenges for applications. An ideal method to overcome these problems is the covalent attachment of functional molecules to its surface which enable further reactive modifications for specific applications. There are several technologies for surface functionalization of graphene and related CNT materials. To get control on the functionalization process and to optimize the performance of the modified surfaces analytical tools for surface chemical characterization are required. X-ray absorption (NEXAFS) and photoelectron spectroscopy (XPS) have been identified to be rather powerful here [1-3]. Specifically, NEXAFS spectroscopy underpinned by quantum chemical spectrum simulations [4] is unique in a way to address changes of aromaticity and defect formation at the graphene surface during functionalization. For relevant surface modification technologies, we present examples on how NEXAFS and XPS can do a good job. All presented modifications aim on the production of platforms for defined functional 2D nanomaterials, as for example multifunctional hybrid architectures. In detail, we investigated: • A wet chemical method for covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. Here a reaction between 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized graphene sheets. • Graphene and carbon nanotube functionalized by Vacuum-Ultraviolet (VUV) induced photochemical or r.f. cw low pressure plasma processes to introduce amino, hydroxy or brominated functionalities. To underpin finger-print information delivered by C K-edge NEXAFS we studied the effects of selected point and line defects as well as chemical modifications for a single graphene layer model by density functional theory based spectrum simulations. References [1] P.-L. Girard-Lauriault et al., Appl. Surf. Sci., 258 2012 8448-8454, DOI: 10.1016/j.apsusc.2012.03.012 [2] A. Lippitz et al., Surf. Sci., 611 2013 L1-L7, DOI: 10.1016/j.susc.2013.01.020 [3] A. Faghani et al., Angew. Chemie (International ed.), 56 2017 2675-2679, DOI:10.1002/anie.201612422 [4] C. Ehlert, et al., Phys.Chem.Chem.Phys., 16 2014 14083-14095, DOI: 10.1039/c4cp01106f T2 - AVS 65th INTERNATIONAL SYMPOSIUM CY - Long Beach, CA, USA DA - 21.10.2018 KW - Graphene KW - Plasma KW - Nitrene [2+1] cycloaddition KW - XPS KW - NEXAFS PY - 2018 AN - OPUS4-46468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas T1 - Concrete under cyclic loading a continuum damage model and a temporal multiscale approach N2 - The durability of concrete structures and its performance over the lifetime is strongly influenced by many interacting phenomena such as e.g. mechanical degradation due to fatigue loading, loss of prestress, degradation due to chemical reactions or creep and shrinkage. Failure due to cyclic loading is generally not instantaneous, but characterized by a steady damage accumulation. Many constitutive models for concrete are currently available, which are applicable for specific loading regimes, different time scales and different resolution scales. A key limitation is that the models often do not address issues related to fatigue on a structural level. Very few models can be found in the literature that reproduce deterioration of concrete under repeated loading-unloading cycles. The objective of this paper is the presentation of numerical methods for the simulation of concrete under fatigue loading using a temporal multiscale method. First, a continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. Second, a multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different time integration schemes. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Cycle jump KW - Fatigue damage KW - Concrete PY - 2018 AN - OPUS4-45696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Schwibbert, Karin A1 - Unger, Wolfgang T1 - Investigations of biofilms in various conditions by near-ambient pressure XPS N2 - X-ray photoelectron spectroscopy (XPS) provides elemental and chemical information from the outermost ~10 nm of the sample surface. This is in the same order of magnitude as the thickness of the outer bacterial membrane of gram-negative bacteria, as well as outer membrane molecules as exopolysaccharides and lipopolysaccharides, commonly attached to the cell surface. With the development of near-ambient pressure (NAP)-XPS, bacteria can be analysed with minimal sample preparation. EnviroESCA is a laboratory based NAP-XPS instrument, equipped with a monochromated Al Kα radiation source and a differentially pumped energy analyser connected to an exchangeable sample environment. It allows for measurements in various gas-atmospheres, including water vapor, which makes it possible to characterise bacteria and other biological samples close to their natural, hydrated state. Artificial model-biofilms of exopolysaccharides, planktonic Pseudomonas Fluorescens and biofilms of Escherichia Coli have been characterised in hydrated and dried state. High-resolution XPS-spectra from carbon, oxygen, nitrogen and phosphorous can be assigned to carbohydrates, lipids and proteins in general agreement with literature. Especially the carbon 1s peak is of interest. A series of measurements of an E. coli biofilm from 11 mbar in humid environment to 1 mbar air reveal changes in the C1s peak, which suggests that the bacterial surface undergo substantial Change. T2 - BAM PhD-retreat CY - Warnemünde, Germany DA - 28.09.2018 KW - Biofilms KW - E. coli KW - NAP-XPS PY - 2018 AN - OPUS4-46132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Kjaervik, Marit T1 - New work item proposal for a technical report for ISO/TC 201 WG 4 “Surface characterization of biomaterials”: Surface chemical analysis – Surface chemical analysis of cells and biofilms N2 - The proposed ISO Technical Report provides a description of a variety of physical methods of analytical chemistry by which bacteria and biofilms can be analysed. The state of the art, sample requirements and strengths associated with each method are identified. T2 - 27th Plenary Meeting of ISO/TC 201 CY - Cancun, Mexico DA - 2018-09-20 KW - Surface chemical analysis of biofilms KW - XPS KW - Fourier-Transform Infrared Spectroscopy KW - 3D nano SIMS KW - Raman-spectroscopy PY - 2018 AN - OPUS4-46214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Coelho Lima, Isabela A1 - Unger, Jörg F. T1 - Variational bayesian inference for structural model updating N2 - Appropriate monitoring of transportation infrastructures (e.g. bridges) is of utmost importance to ensure safe operation conditions. Accurate and reliable assessment of such structures can be achieved through the integration of data from non-destructive testing, advanced modeling and model updating techniques. The Bayesian framework has been widely used for updating engineering and mechanical models, due to its probabilistic description of information, in which the posterior probability distribution reflects the knowledge, over the model parameters of interest, inferred from the data. For most real-life applications, the computation of the true posterior involves integrals that are analytically intractable, therefore the implementation of Bayesian inference requires in practice some approximation methods. This paper investigates the application of Variational Bayesian Inference for structural model parameter identification and update, based on measurements from a real experimental setup. The Variational Bayesian method circumvents the issue of evaluating intractable integrals by using a factorized approximation of the true posterior (mean field approximation) and by choosing a family of conjugate distributions that facilitates the calculations. Inference in the Variational Bayesian framework is seen as solving an optimization problem with the aim of finding the parameters of the factorized posterior which would minimize its Kullback-Leibler divergence in relation to the exact posterior. The Variational Approach is an efficient alternative to sampling methods, such as Markov Chain Monte Carlo, since the latter’s accuracy depends on sampling from the posterior distribution a sufficient amount of times (and therefore requiring an equivalent number of computations of the forward problem, which can be quite expensve). T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Structural monitoring KW - Bayesian inference KW - Variational Bayesian PY - 2018 AN - OPUS4-45693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kok, H. T. A1 - Donskyi, Ievgen A1 - Adeli, M. A1 - Unger, Wolfgang A1 - Haag, R. T1 - 2D nanomaterials with switchable pathogen binding N2 - Graphene and its derivatives have recently attracted much attention for sensing and deactivating pathogens. However, mechanism of multivalent interactions at the graphene-pathogen interface are not fully understood. Since different physicochemical parameters of graphene play a role at this interface, control over graphene’s structure is necessary to study the mechanism of these interactions. In this work, zwitterionic graphene nanomaterials (ZGNMs) were synthesized with defined isoelectric points and exposure, in terms of polymer coverage and functionality. Then, the switchable interactions of ZGNMs with E. coli were investigated to study the validity of the generally proposed “trapping” mechanism for inactivating pathogens by functionalized graphene derivatives. The ZGNMs were able to controllably trap and release E. coli by crossing their isoelectric points. T2 - 4th Erlangen Symposium on Synthetic Carbon Allortopes 2017 CY - Erlangen, Germany DA - 25.09.2017 KW - Graphene KW - XPS KW - NEXAFS KW - Zwitterionic graphene nanomaterials PY - 2017 AN - OPUS4-47084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Radnik, Jörg A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Progress Talk 3 / Non-destructive depth profiling of core-shell nanoparticles by ER-XPS N2 - This presentation deals with the progress between month twenty and twenty-nine of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.11.2018 KW - ER-XPS KW - Synchrotron KW - Core-shell nanoparticles KW - Depth-profiling PY - 2018 AN - OPUS4-46676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kjaervik, Marit A1 - Dietrich, P. A1 - Thissen, A. A1 - Defedov, A. A1 - Natzeck, C. A1 - Wöll, C. A1 - Unger, Wolfgang T1 - Investigations of HKUST-1 exposed to argon, pyridine, methanol and water vapor by near-ambient pressure XPS N2 - Metal-organic frameworks (MOFs) are suitable materials for gas storage of small molecules due to their nanoporous, crystalline structure. The extensively studied MOF HKUST-1 consist of Cu(II)-dimers in a paddlewheel structure, with 1,3,5-benzenetricarboxylic acid (BTC) as organic linker. Instability to humidity remains an issue for many types of MOFs, and for HKUST-1, it has been found that exposure to water vapor creates a surface barrier which reduces the gas uptake rate. Near-ambient pressure XPS (NAP-XPS) is a promising method for investigations of the stability and interaction of HKUST-1 with various gas molecules. The oxidation state of copper can be monitored before, during and after exposure to various gases. This does not only provide information on the stability of the MOFs, but also on the interaction with the gas molecules and the reversibility of the processes. NAP-XPS measurements of HKUST-1 exposed to methanol, pyridine and water vapor were performed with EnviroESCA, a laboratory NAP-XPS instrument developed by SPECS. Cu 2p, O 1s and C 1s core level spectra were acquired in pressure ranging from 10-5 to 8 mbar to assess the oxidation state of copper and the stability of the organic linker. HKUST-1 does not show interaction with pyridine, but there are indications of copper-reduction upon exposure to methanol and water vapor. Radiation induced damage is considered and two different approaches for determining the ratio of Cu(I) to Cu(II) will be discussed. T2 - Bunsentagung 2019 - 118th General Assembly of the German Bunsen Society for Physical Chemistry CY - Jena, Germany DA - 30.05.2019 KW - XPS KW - MOF KW - HKUST-1 KW - NAP-XPS KW - Metal organic frameworks PY - 2019 AN - OPUS4-48195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Hirthammer, Volker A1 - Unger, Jörg F. T1 - A continuum damage model for the simulation of concrete under cyclic loading N2 - A continuum damage model for concrete is developed with a focus on fatigue under compressive stresses. This includes the possibility to model stress redistributions and capture size effects. In contrast to cycle based approaches, where damage is accumulated based on the number of full stress cycles, a strain based approach is developed that can capture cyclic degradation under variable loading cycles including different amplitudes and loading frequencies. The model is designed to represent failure under static loading as a particular case of fatigue failure after a single loading cycle. As a consequence, most of the material parameters can be deduced from statictests. Only a limit set of additional constitutive parameters is required to accurately describe the evolution under fatigue loading. Another advantage of the proposed model is the possibility to directly incorporate other multi-physics effects such as creep and shrinkage or thermal loading on the constitutive level. A multiscale approach in time is presented to enable structural computations of fatigue failure with a reduced computational effort. The damage rate within the short time scale corresponding to a single cycle is computed based on a Fourier based approach. This evolution equation is then solved on the long time scale using different implicit and explicit time integration schemes. Their performance and some limitations for specific loading regimes is discussed. T2 - Computational Modelling of concrete and concrete Structures Euro-C, March 1st 2018 CY - Bad Hofgastein, Austria DA - 26.02.2018 KW - Continnum damage model KW - Simulation of concrete KW - Under cyclic loading PY - 2018 UR - https://euro-c.tuwien.ac.at/home/ AN - OPUS4-48399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, I. A1 - Unger, Wolfgang A1 - Bütefisch, S. A1 - Lenck, O. A1 - Koenders, L. A1 - Weimann, T. A1 - Weinert, M. T1 - Analytical and topographical Reference Material for the Nanoscale N2 - Reliable standards are required to support research and development as well as end-user in application. Appropriate standards have to fulfill three requirements: small uncertainty, easy to use and low overall costs of application. For calibration of microscopes at nanoscale and/or element analysis special requirements for standards are given, which are challenging in manufacture. T2 - Workshop on Reference Nanomaterials CY - Berlin, Germany DA - 14.05.2018 KW - XPS KW - Imaging KW - Reference material KW - NoStep Standards PY - 2018 AN - OPUS4-45156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinrich, Thomas A1 - Müller, Anja A1 - Schneider, Markus A1 - Sparnacci, Katja A1 - Unger, Wolfgang T1 - Chemical characterisation and classification of (Core-Shell) nanoparticles using PCA assisted ToF-SIMS N2 - The analysis of nanomaterials is currently an important task - especially in case of risk assessment – as the properties of these material class are not well understood and their growing use in everyday life. The rather high surface area of these objects renders their interactions significantly different to their corresponding bulk. Thus, the surface’s chemical composition must be investigated to get a better understanding and prediction of the nanomaterials’ behaviour. ToF-SIMS and XPS have proven to be powerful tools to determine the general chemical composition. The superior surface sensitivity of ToF-SIMS furthermore allows us to study mainly the utmost atomic layers and thus gives us an idea of possible interactions involved. Supported by multivariate data analysis such as principal component analysis (PCA), the method can also be used for sub-classification of different materials using slight differences in surface chemistry. Here, we present data of the analysis of Hyflon®-polystyrene core-shell nanoparticles which can be used as a model system due to the known preparation and a rather good chemical as well as physical separation of core and shell. Principle component analysis (PCA) will be used to detect the influence of sample preparation and for a better separation of different samples. This is achieved by measurement of a statistically relevant set of samples for every particle sample. We acquired surface spectra under static SIMS conditions with Bi32+ and analysed the resulting spectra by PCA. The carefully selected and refined peaks allow a reasonable categorization and further a reliable allocation of blank feeds. In detail, the fluorine containing, organic fragments are an indication for a heterogeneous shell that has errors. Furthermore, results on Au nanoparticles with and without an antibody shell are presented. ToF-SIMS imaging is desired to be implemented for single particle detection as well. T2 - SIMS-Europe CY - Münster, Germany DA - 16.09.2018 KW - Nanoparticles KW - ToF-SIMS KW - XPS KW - PCA KW - Titania KW - Core-Shell PY - 2018 AN - OPUS4-46249 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cant, D. A1 - Shard, A. A1 - Müller, Anja A1 - Clifford, C. A1 - Wirth, Thomas A1 - Unger, Wolfgang T1 - Surface chemical analysis – Electron spectroscopies – Measurement of the thickness and nature of nanoparticle coatings N2 - Recent years have seen increasing development of nanoparticles for applications in a wide range of fields, including but not limited to areas of great impact such as catalysis, medicine, energy, optoelectronics, cosmetics, and many others. In particular, nanoparticles bearing some form of coating layer, whether by design or due to incidental processes such as contamination or oxidation, are among the most commonly studied and utilised. In the characterisation of nanoparticles, the surface properties are of great importance, because a large proportion of the particle forms a part of the surface or interface. In the case of coated nanoparticles, the thickness of the coating is significant in determining the properties of the nanoparticle, and defines its interactions with its environment. Measurement of surface chemistry and coating thickness of nanoparticles is a challenge to which electron spectroscopies are well suited, due to high surface sensitivity, well-understood physical principles and accessibility. T2 - Annual Meeting of ISO/TC 201/SC7 CY - Cancun, Mexico DA - 21.09.2018 KW - Nanoparticle characterization KW - X-ray Photoelectron Spectroscopy (XPS) KW - Auger Electron Spectroscopy (AES) KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-46259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Bergmann, T. A1 - Osterrieder, K. A1 - Adeli, M. A1 - Abad, K. A1 - Unger, Wolfgang A1 - Haag, R. T1 - Inhibition of Herpes Virus by Specific and Non-specific Interactions With Graphene Conjugates N2 - Herpes viruses (HSV) are global, host-adapted pathogens that cause a widespread diversity of diseases. The frequency of HSV infections all over the world has amplified over the last years, making it a major concern in the area of public health. Therefore, synthesis of systems that can inhibit development of these viruses is required. Various compounds already have shown inhibition of HSV, but concentration of these inhibitors is relatively high and resistance against those drugs is challenging. Combination of biological knowledge, about structure of the active site on the surface of HSV that is responsible for inhibition of the pathogen, with the chemistry of graphene results in 2D systems with the ability of specific and nonspecific interactions with HSV. In this work, 2D nanomaterials with picomolar IC50 against HSV are synthesized by conjugation of peptides to the surface of graphene. 2D nanomaterials are characterized by various methods, including XPS, AFM and IR. Biological evaluation showed high potency of synthesized nanomaterials to inhibit HSV and therefore underlined possibility to use such materials in future biomedical applications. T2 - Jubiläumskongress 150 Jahre GDCh Wissenschaftforum Chemie CY - Berlin, Germany DA - 12.09.2017 KW - Graphene KW - Graphene 2D nanomaterial KW - XPS KW - Inhibition of HSV virus PY - 2017 AN - OPUS4-47085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Gründer, Klaus-Peter A1 - Kadoke, Daniel A1 - Unger, Jörg F. T1 - Überwachung von Stahlbetonbrücken - Ein Modellprojekt N2 - Die Brücken im Netz der Bundesverkehrswege sind überwiegend in einem ausreichenden bis guten Zustand. Allerdings steigt der Unterhalts- und Sanierungsaufwand aufgrund des inzwischen hohen Alters vieler Brücken sowie des ständig wachsenden Schwerlastverkehrs. Techniken zur Einschätzung der verbleibenden Lebensdauer von Brücken sowie zur dauerhaften Beobachtung des Tragverhaltens bzw. des Erfolges von Sanierungsmaßnahmen werden daher für den sicheren und wirtschaftlichen Betrieb dringend benötigt. Zur Evaluierung dafür geeigneter holistischer Ansätze wurde in der BAM das Projekt BLEIB - Bewertung, Lebensdauerprognose und Instandsetzung von Brückenbauwerken - ins Leben gerufen. Ein zentrales Ergebnis des Projektes ist eine extern vorgespannte Stahlbetonbrücke als Zweifeldträger mit einer Gesamtlänge von 24 m, die für den Test verschiedenster Sensorsysteme, zur Validierung numerischer Modelle und zur Erprobung von Sanierungs- und Verstärkungsmaßnahmen entwickelt wurde. Für die Simulation unterschiedlicher Schädigungsgrade kann die Vorspannung der Brücke variiert werden. Die Brücke wird mit beweglichen Gewichten belastet und über einen Shaker zum Schwingen angeregt. Das Brückenmodell wurde bewusst geschädigt, indem die Vorspannung der Struktur erstmalig schrittweise bis auf null reduziert wurde. Unter der Eigenlast verformte sich die Brücke, wodurch eine Rissbildung im Beton einsetzte. Die Zugspannung, die zuvor durch die Vorspannung aufgenommen wurde, übernahm Schritt für Schritt der Beton. Als die Zugspannungen die relativ geringe Zugfestigkeit des Betons überstiegen, begann dieser zu reißen und die schlaffe Bewehrung der Struktur nahm die Spannungen auf. Dieser Versuch wurde unter anderem von Schallemissionsmessungen begleitet. Der Rissbildungsprozess konnte damit, bei gleichzeitiger Aufzeichnung der Vorspannung, früh detektiert und die Risse geortet werden. Die Ergebnisse korrelieren gut mit den Ergebnissen der stereophotogrammetrischen Verformungsmessungen der Struktur. T2 - 22. Kolloquium Schallemission und 3. Anwenderseminar Zustandsüberwachung mit geführten Wellen CY - Karlsruhe, Germany DA - 27.03.2019 KW - Brückenmonitoring KW - Schallemissionsanalyse PY - 2019 AN - OPUS4-47774 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - Experimental Research Of A Tank For A Cryogenic Fluid With a Wall Rupture In a Fire Scenario N2 - In the course of decarbonizing the energy industry, cryogenic energy carriers as liquefied hydrogen (LH2) and liquefied natural gas (LNG) are seen as having great potential. In technical applications, the challenge is to keep these energy carriers cold for a long time. This is achieved in the road transport sector and also stationary applications by thermal super insulations (TSI) which based on double-walled tanks with vacuum and multilayer insulation (MLI) in the interspace. This study focuses on the behaviour of widely used combustible MLI in a fire scenario, at vacuum and atmospheric pressure conditions. The former corresponds to the typical design condition and the latter to the condition after an outer hull rapture of a tank. Furthermore, two fire scenarios were taken into account: a standard-oriented approach and a hydrocarbon fire-oriented approach. For the study, a test rig was applied that allows testing of TSI at industrial conditions and subsequent analysis of TSI samples. The test rig allows thermal loading and performance analysis of TSI samples at the same time. Comparing the tests, the samples degraded differently. However, no sudden failure of the entire MLI was observed in any test. These results are relevant for the evaluation of incidents with tanks for the storage of cryogenic fluids and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neapel, Italy DA - 10.06.2024 KW - Liquefied hydrogen KW - Liquefied natural gas KW - Cryogenic storage tank KW - Fire KW - Thermal insulation KW - Multi-Layer Insulation PY - 2024 AN - OPUS4-60456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar A1 - Eberwein, Robert A1 - perrone, Luca pakj A1 - Cozzani, Valerio A1 - Otremba, Frank A1 - Seidlitz, Holger T1 - Experimental and Numerical Investigation on Multi-layer Insulation Thermal Deterioration N2 - To reduce carbon dioxide emissions, energy carries such as hydrogen consider to be a solution. Consumption of hydrogen as a fuel meets several restrictions such as its low volumetric energy density in gas phase. To tackle this problem, storage as well as transportation in liquid phase is recommended. To be able to handle this component in liquid phase, an efficient thermal insulation e.g., MLI insulation is required. Some studies have been revealed vulnerability of this type of insulation against high heat flux, for instance a fire accident. Some investigations have been depicted the importance of consideration of the MLI thermal degradation in terms of its reflective layer. However, limited number of studies have been focused on the thermal degradation of spacer material and its effect on the overall heat flux. In this study, through systematic experimental measurements, the effect of thermal loads on glass fleece, glass paper as well as polyester spacers are investigated. The results are reported in various temperature and heat flux profiles. Interpreting the temperature profiles revealed as the number of spacers in the medium increases, the peak temperature detectable by the temperature sensor on the measurement plate decreases. Moreover, the contribution of each individual spacer in all cases regarding the experimental temperature range is assessed to be around 8%. This value may increase to around 50% for glass paper and polyester spacers, and to around 25% for glass fleece spacers as the number of spacer layers increases up to six layers. To utilize the outcomes of the experiment later and integrate the results into numerical and CFD simulations, a model is proposed for the mentioned experimental temperature range up to 300°C to predict a heat flux attenuation factor. The model proposes a fitting factor that can reproduce the least square fitted line to the experimental data. T2 - 15th International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions Naples (ISHPMIE) CY - Naples, Italy DA - 10.06.2024 KW - Multi-Layer Insulation KW - Cryogenic KW - Liquid Hydrogen KW - Heat Transfer KW - Hydrogen Storage PY - 2024 AN - OPUS4-60457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigel, Sandra T1 - Charakterisierung von bitumenhaltigen Bindemitteln mittels FTIR Spektroskopie N2 - Die Fourier-Transformations-Infrarotspektroskopie (FTIR-Spektroskopie) bietet eine herausragende Charakterisierungsmöglichkeit für Bitumen und bitumenhaltige Bindemittel. In Kombination mit multivariaten Analysemethoden und somit einem chemometrischen Ansatz erlaubt die FTIR-Charakterisierung Aussagen über verschiedene übergeordnete Eigenschaften, wie die Raffinerie, den Alterungszustand oder die Alterungsempfindlichkeit, eine Abschätzung verschiedener chemischer und physikalischer Kennwerte, wie z.B. den Asphaltengehalt, den Erweichungspunkt Ring und Kugel, die Nadelpenetration sowie den komplexen Schermodul und den Phasenwinkel sowie die Identifizierung verschiedener Additive wie Polymere oder Wachse. T2 - Anwenderseminar MATERIAL 2024 CY - Leipzig, Germany DA - 03.06.2024 KW - Bitumen KW - Charakterisierung KW - FA KW - LDA KW - FTIR KW - PLSR KW - Multivariate Analysemethoden PY - 2024 AN - OPUS4-60741 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Darvishi Kamachali, Reza T1 - On the origin of embrittlement in Mn containing and Zn-coated steels N2 - Grain boundary embrittlement in medium-Mn steels and liquid metal embrittlement (LME) in Zn-coated high strength steels are among key challenges on the way of safe application of sustainable steels for automotive industry. Using a novel density-based model for grain boundaries, we reveal that the affinity of a grain boundary to attract Mn and Zn atoms result in a segregation transition accompanied by interfacial structural changes. In case of the Zn, the simulations show that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy, required for triggering the segregation transition, decreases. The results are discussed in the context of CALPHAD-integrated density-based grain boundary phase diagrams. T2 - DPG 2024 CY - Berlin, Germany DA - 17.03.2024 KW - Phase-Field Simulation KW - CALPHAD KW - Steels KW - Density-based Thermodynamics PY - 2024 AN - OPUS4-60743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard T1 - On the cubic slip effect and creep anisotropy modeling of single crystal superalloys at intermediate temperatures (IT) N2 - Low-Temperature High Stress (LTHS) creep plays a crucial role in Ni-base Superalloys, particularly affecting components like blades near the root. Below 850°C, the precipitate microstructure remains stable, characterized by periodically arranged ’ cubic precipitates surrounded by the -matrix. In these conditions, macroscopic traces of cubic slip have been observed in <111> oriented tensile specimens, whereas their microscopic origin has been a topic of debate. Furthermore, in LTHS conditions, Superlattice Intrinsic, Extrinsic Stacking Faults (SISF/SESF), or micro-twins are also frequently reported in crept specimens. Usually, these mechanisms are investigated separately, so that a unified picture and a detailed understanding of these mechanisms and their activation conditions have only recently emerged in the literature, despite the intensive investigations of the last decades. The objective of this work is to develop a dislocation-based constitutive law that includes these recent developments. In particular, the pseudo-cubic slip mechanism is considered as resulting from the lack of hardening in <111> oriented tensile specimens and is represented by a novel estimate of the back-stresses based on the spectral decomposition of a tensorial representation of the back-stress. An additional novelty is that SISF- and SESF-related slip systems are accounted for as distinct slip systems with corresponding dislocation densities. The model has been implemented as a user-defined constitutive law for commercial Finite Element codes and identified as well as validated with data from the literature obtained with <001>, <011> and <111> oriented crystals tested in tension and compression creep. T2 - International Conference on Material Modelling (8) CY - London, GB DA - 15.07.2024 KW - Creep KW - Superalloy KW - Crystal plasticity KW - Single crystal PY - 2024 AN - OPUS4-60744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Heimann, Jan A1 - Duffner, Eric A1 - Hashemi, Seyedreza A1 - Prager, Jens T1 - Application of deep learning for structural health monitoring of a composite overwrapped pressure vessel undergoing cyclic loading N2 - Structural health monitoring (SHM) using ultrasonic-guided waves (UGWs) enables continuous monitoring of components with complex geometries and provides extensive information about their structural integrity and their overall condition. Composite overwrapped pressure vessels (COPVs) used for storing hydrogen gases at very high pressures are an example of a critical infrastructure that could benefit significantly from SHM. This can be used to increase the periodic inspection intervals, ensure safe operating conditions by early detection of anomalies, and ultimately estimate the remaining lifetime of COPVs. Therefore, in the digital quality infrastructure initiative (QI-Digital) in Germany, an SHM system is being developed for COPVs used in a hydrogen refueling station. In this study, the results of a lifetime fatigue test on a Type IV COPV subjected to many thousands of load cycles under different temperatures and pressures are presented to demonstrate the strengths and challenges associated with such an SHM system. During the cyclic testing up to the final material failure of the COPV, a sensor network of fifteen surface-mounted piezoelectric (PZT) wafers was used to collect the UGW data. However, the pressure variations, the aging process of the COPV, the environmental parameters, and possible damages simultaneously have an impact on the recorded signals. This issue and the lack of labeled data make signal processing and analysis even more demanding. Thus, in this study, semi-supervised, and unsupervised deep learning approaches are utilized to separate the influence of different variables on the UGW data with the final aim of detecting and localizing the damage before critical failure. T2 - 11th European Workshop on Structural Health Monitoring CY - Potsdam, Germany DA - 10.06.2024 KW - Anomaly detection KW - Damage localization KW - Deep learning KW - Structural health monitoring KW - Ultrasonic-guided waves PY - 2024 AN - OPUS4-60745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilke, Olaf T1 - PTR-MS as a tool for the determination of formaldehyde, ammonia and volatile organic sulfur compounds together with VOC N2 - The use of proton-transfer-reaction mass spectrometry (PTR-MS) for the determination of formaldehyde, ammonia and volatile sulfur organic compounds is described and suggestions are made for the application of stationary PTR-MS in a test laboratory. One advantage of PTR-MS compared to TD-GC-MS (thermal desorption gas chromatography mass spectrome-try) is the faster online measurement. Another advantage is the simultaneous determination of formaldehyde, ammonia, very volatile organic compounds (VVOC) and volatile organic com-pounds (VOC) which normally needs four different kinds of sampling. Coupling the PTR-MS with (multiple) air sample canisters or (multiple) emission test chambers would enable a quick analysis of indoor air and material emissions. T2 - Indoor Air Conference 2024 CY - Honolulu, HI, USA DA - 07.07.2024 KW - Proton-transfer-reaction mass spectrometry PY - 2024 AN - OPUS4-60746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Tavernaro, Isabella A1 - Abram, Sarah-Luise A1 - Andresen, Elina A1 - Matiushkina, Anna T1 - Quantifying the number of total and accessible functional groups on nanomaterials N2 - Inorganic and organic functional nanomaterials (NM) of different size, shape, chemical composition, and surface chemistry are relevant for many key technologies of the 21st century. Decisive for most applications of NM are their specific surface properties, which are largely controlled by the chemical nature and number of ligands and functional groups (FG on the NM surface. The surface chemistry can strongly affect the physicochemical properties of NM, their charge, hydrophilicity/hydrophobicity, reactivity, stability, and processability and thereby their impact on the environment and biological species as well as their possible risk for human health. Thus, reliable, validated, and eventually standardized analytical methods for the characterization of NM surface chemistry, i.e., the chemical identification, quantification, and accessibility of FG and surface ligands 1,2] flanked by interlaboratory comparisons, control samples, and reference materials, 2 ,3 are of considerable importance for process and quality control of NM production and function. This is also important for the safe use of NM the design of novel NM, and sustainable concepts for NM fabrication. Here, we provide an overview of analytical methods for FG analysis and quantification and highlight method and material related challenges for selected NM. Analytical techniques address ed include electrochemical titration methods, optical assays, nuclear magnetic resonance (NMR) and vibrational (IR) spectroscopy, and X ray based and thermal analysis methods. Criteria for method classification and evaluation include the need for a signal generating label, provision of either the total or derivatizable number of FG, and suitability for process and production control. T2 - AUC - Analytical Ultracentrifugation CY - Nuremberg, Germany DA - 22.07.2024 KW - Nanoparticle KW - Particle KW - Microparticle KW - Silica KW - Quantum dot KW - Polymer KW - Surface group KW - Luminescence KW - Quality assurance KW - Synthesis KW - Surface modification KW - ILC KW - Optical assay KW - Functional group KW - Ligand KW - qNMR KW - Conductometry KW - Potentiometry KW - Standardization KW - Reference product KW - Reference material PY - 2024 AN - OPUS4-60749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -