TY - CONF A1 - Markötter, Henning T1 - Hard X-Ray Imaging Capabilities at BAMline (BESSY II) N2 - The BAMline at the 3rd generation synchrotron X-ray source BESSY II has been supporting researchers in a wide range of research areas for over 20 years. In addition to materials science, these fields also include biology, cultural heritage, and medicine. Being a non-destructive characterization method, synchrotron X-ray imaging, in particular tomography (SXCT), plays a particularly important role in structural characterization. A recent upgrade of key BAMline equipment expands the imaging capabilities: The upgraded dual multilayer monochromator offers flexibility by providing different energy spectra to optimize flux and energy resolution as desired. Different spectra (8 – 60 keV with ΔE/E 0.01%, 1.5%, 4% and pink beam) can be selected. The upgraded detector (in white beam configuration, equipped with an sCMOS camera) allows the higher flux to be exploited with reduced readout times. Shorter tomographic acquisition times in the range of seconds are now possible. Hence, in-situ and operando examinations are routinely available. An integrated slip ring allows continuous rotation of the sample stage for ease of wiring. The pink beam option allows tomographic observation of processes occurring in the time domain of a few seconds with a resolution down to ~ 1 µm. Different scan methods, optimized for quality and speed are available and discussed. Examples of energy related materials from fuel cell and battery research are shown. An optional end station allows refraction enhanced imaging (synchrotron X-Ray refraction radiography (SXRR) and tomography (SXRCT)). That includes an analyzer Si-crystal in Bragg alignment between sample and detector. This technique obtains sensitivity to smaller structures (cracks, pores) down to a few wavelengths, while obtaining field of view sizes in the range of several mm. Besides medicine (e.g., teeth explants), several applications are found in material science, like studies on diesel particulate filters, ceramics, additively manufactured (AM) alloys and metal matrix composites (MMC). The in-situ capabilities include mechanical load (tension and compression) and heating up to 1100°C. A case study, the microstructural evolution during heat treatment of an AM AlSi10Mg, will be shown. T2 - 15th International Conference on X-Ray Microscopy (XRM 2022) CY - Online meeting DA - 19.06.2022 KW - BAMline KW - X-ray imaging KW - Tomography PY - 2022 AN - OPUS4-55691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Synchrotron X-ray computed tomography for assessment of shock tube systems N2 - Shock tube systems are non-electric explosive fuses employed in blasting and demolition applications to trigger the detonation of explosive charges. Their working principle is based on the explosive reaction of a fine powder on the tubing´s inner surface, generating a percussive wave travelling at a velocity of 2,100 m/s along the length of the tube, without destroying it. One of the key aspects of the manufacturing process of these shock tubes is the size and morphology of the explosive powder grains and their distribution on the inner wall of the tube, in order to propagate the shockwave efficiently and reliably. For the first time, synchrotron X-ray computed tomography has been used to characterize non-destructively the explosive powder grains, typically Al/HMX between 10 and 20 μm in size, in terms of morphology and 3D distribution but also to characterise the presence and location of defects within the shock tube walls. T2 - 7th Conference on Industrial Computed Tomography CY - Leuven, Belgium DA - 07.02.2017 KW - Explosive KW - Nonel KW - Shock wave KW - Blasting KW - Energetic systems PY - 2017 AN - OPUS4-39168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böttcher, Nils T1 - Low Temperature Tomographic In-Situ and Operando Studies in Energy Research N2 - Using low temperatures empowers in-depth investigations of abuse processes in Li-ion cells. A thermal runaway (TR) can be suppressed also on material level at low temperatures.The rethermalization of a critical damaged cell not always leads to a TR. Using the snyergies at BAM enables now In-depth investigation of low temperature inertisation mechanisms in commercial Lithium-Ion-Batteries. In future the synergies will be used for in-depth investigation of other abuse processes in commercial cells e.g., plating or aeging. T2 - HZB Usermeeting CY - Berlin, Germany DA - 11.12.2024 KW - Lithiumbatteries KW - Thermal Runaway KW - Sychrotron computer tomopgrahy KW - Low temperature PY - 2024 AN - OPUS4-62300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Three-dimensional studies on compressed gas diffusion layers and the water distribution in operating fuel cells using synchrotron X-ray imaging T2 - 222nd Electro Chemical Society Meeting CY - Honolulu, HI, USA DA - 2012-10-07 PY - 2012 AN - OPUS4-27026 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - The uniaxial tensile response of ß-eucryptite with varying levels of microcracking: experiments and modeling T2 - 38th International Conference & Exposition on Advanced Ceramics & Composites CY - Daytona Beach, FL, USA DA - 2014-01-26 PY - 2014 AN - OPUS4-31315 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Pore Structure Analysis of Cordierite Diesel Particulate Filter Materials T2 - HZB User Meeting 2013 CY - Berlin, Germany DA - 2013-12-04 PY - 2013 AN - OPUS4-11399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Reduzierung der Entbinderungstemperatur von keramischen Grünfolien T2 - DKG-Jahrestagung 2013 CY - Weimar, Germany DA - 2013-03-18 PY - 2013 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-27872 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogl, Jochen T1 - Isotope ratios and delta values with minimal measurement uncertainties -measuring magnesium using MC-ICP-MS N2 - Multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) has evolved significantly since its introduction in 1992. The second and third generation instruments now allow isotope ratio measurements at unprecedented precisions, 0.001 % or better. However, precision alone is not enough for producing accurate and reliable isotope ratio measurements. Metrological considerations such as the selection of suitable calibration strategies, proper assessment of instrumental biases, and the estimation of overall measurement uncertainty remain critical to the measurement process. Properly assessed, measurement uncertainty then provides the interval within which a result can be considered both accurate and precise. All mass spectrometric measurements are affected by instrumental mass discrimination and produce isotope ratios that are biased relative to their “true” ratio. To produce accurate and traceable isotope ratio measurements, it is imperative that certified isotope reference materials (iCRMs) be used for calibration and validation purposes. iCRMs reporting absolute isotope ratios are an analyst’s first choice, particularly when its uncertainty is sufficient for the intended use. However, when smaller uncertainties are required to resolve subtle differences between samples, delta-scale measurements become important. Here, the difference between an isotope ratio measured in a sample and in an internationally accepted isotope reference material (iRM) is determined. This deviation can be positive or negative relative to the iRM, is called a delta value, and is often expressed in per mil units. This presentation will highlight the potential for MC-ICP-MS to produce isotope ratio measurements with minimal uncertainties by examining three applications involving Mg isotopes: 1) the certification of a set of iCRMs for their absolute isotope ratio using a gravimetric isotope mixture approach; 2) the comparison of these iCRMs with currently accepted Mg delta-scale reference materials through intercalibration, and 3) the determination of isotope fractionation exponents for geochemical applications. T2 - 4th International Conference on Frontiers in Mass Spectrometry CY - Kottayam, Kerala, India DA - 04.12.2019 KW - Triple isotope fractionation KW - Absolute isotope ratio KW - Delta value KW - Mangesium PY - 2019 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-50004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin T1 - Introduction of numerical methods to simulate damage accumulations of composite pressure vessel N2 - The development of hydrogen as a reliable energy sector is strongly connected to the performance and the level of safety of hydrogen storage system. Composite damage due to static, fatigue loading and ageing effect is a progressive process. The common failure modes of composite pressure vessels are majorly fibre break, then interface debonding, matrix cracking and delamination. The damages occur subsequently or even simultaneously, failure modes may interactive each other. These attributes make the composite fatigue more complex and difficult. The presentation here is to show how the numerical methods being developed to match this challenge, particularly the numerical model of composite pressure vessel developed by FibreMod research project is introduced. The potential role of numerical simulation in the certification process and the outlook for the further trend is also discussed. T2 - Abteilungskolloquium CY - BAM Berlin, Germany DA - 10.05.19 KW - Fibre Break KW - Composite Pressure KW - Vessels KW - Simulation PY - 2019 AN - OPUS4-48302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Explaining deviatoric residual stresses and load transfer in aluminum alloys and composites with complex microstructure N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - MLZ Conference 2022: Neutrons for Mobility CY - Lenggries, Germany DA - 31.05.2022 KW - Load transfer KW - Neutron Diffraction KW - micromechanical modeling KW - Computed tomography PY - 2022 AN - OPUS4-55405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Maierhofer, Christiane T1 - Neue Abenteuer an der BAM: die Projekte AGIL und ProMoAM N2 - Zwei neue Projekte wurden in der BAM gestartet: AGIL und ProMoAM, die mit der Charakterisierung additiv gefertigter Wrkstoffe und mit dem Prozessmonitoring in der AF sich befassen. Die sind in diesem Vortrag dargestellt T2 - Symposium Materialcharakterisierung CY - BAM, Berlin, Germany DA - 28.11.2017 KW - Additive Fertigung KW - Prozess Monitoring KW - Alterung KW - Metallische Werkstoffen KW - Laser Metal Deposition KW - Selective Laser Melting PY - 2017 AN - OPUS4-43273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Distance transform methodology for advanced impact damage characterisation of composite laminates by X-ray computed tomography N2 - During their life cycle, composite structures used in aircraft structures can be subjected to high- and low-velocity impact loading. High velocity impact damage is usually easy to detect as it creates visible external damage. Low-velocity impacts are more complex to assess because, although significant damage can be generated internally, there can be little indication of external damage on the impacted surface, leading to the term BVID. Impact damage, especially barely visible impact damage, is therefore of primary concern for design and maintenance of modern aircraft composite structures. As a result there is a concerted research effort to improve the damage resistance and tolerance of these materials. One of the great strengths of X-ray computed tomography over conventional inspection methods (ultrasound, thermography, radiography) is that it can image damage in 3D. or inter-ply interfaces. An X-ray computed tomography (CT) data processing methodology is developed to extract the through-thickness distribution of damage in curved or deformed composite panels. The method is applied to [(0°/90°)2]s carbon fibre reinforced polymer (CFRP) panels subjected to low velocity impact damage (5 J up to 20 J) providing 3D ply-by-ply damage visualisation and analysis. Our distance transform approach allows slices to be taken that approximately follow the composite curvature allowing the impact damage to be separated, visualised and quantified in 3D on a ply-by-ply basis. In this way the interply delaminations have been mapped, showing characteristic peanut shaped delaminations with the major axis oriented with the fibres in the ply below the interface. This registry to the profile of the panel constitutes a significant improvement in our ability to characterise impact damage in composite laminates and extract relevant measurements from X-ray CT datasets. T2 - ECNDT2018 CY - Gothenburg, Sweden DA - 11.06.2018 KW - Panels KW - Data processing KW - Correlation map KW - CT KW - Delamination PY - 2018 AN - OPUS4-45207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Determination and assessment of residual stress in laser powder bed fused stainless steel N2 - This presentation shows the effect of geometry scaling on the formation and distribution of the residual stress in laser powder bed fused 316L. T2 - BMDK - Doktorandenseminar der Otto-Von-Guericke-Universität Magdeburg CY - Online meeting DA - 26.01.2022 KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning T1 - Tomographic Imaging Capabilities with hard X-Rays at BAMline (Bessy II) N2 - The BAMline at the synchrotron X-ray source BESSY II (Berlin, Germany) is supporting researchers in a wide range of research areas since more than 20 years. These fields include biology, cultural heritage, medicine, and also materials science. As a non-destructive characterization method, synchrotron X-ray imaging, especially tomography with hard X-Rays, plays an important role in structural 3D characterization. A recent upgrade of key equipment at the BAMline expands the imaging capabilities towards shorter acquisition times. Therefore, in-situ and operando experiments can now be routinely conducted. Also, different energy resolutions can be set up to optimize flux and energy resolution as desired. This requires an adaptation of the used reconstruction methods in order to perform necessary analyses also during the experiment. In this presentation the equipment, data handling pipeline as well as various examples from material science are presented. T2 - 5th Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities (SNI 2022) CY - Berlin, Germany DA - 05.09.2022 KW - BAMline KW - X-ray imaging KW - Tomography PY - 2022 AN - OPUS4-55692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures (TPMSS) N2 - The residual stresses and load transfer in multiphase metal alloys and their composites (with both random planar-oriented short fibers and particles) will be shown, as studied by neutron diffraction, by X-ray computed tomography, and by a model based on the reformulation of classic Maxwell’s homogenization method. Contrary to common understanding and state-of-the-art models, we experimentally observe that randomly oriented phases possess non-hydrostatic residual stress. Moreover, we disclose that the unreinforced matrix alloy stays under hydrostatic compression even under external uniaxial compression. The recently developed modeling approach allows calculating the residual stress in all phases of the composites. It rationalizes the presence of deviatoric stresses accounting for the interaction of random oriented phases with fibers having preferential orientation. It also allows the explanation of the unconventional in-situ behavior of the unreinforced alloy and the prediction of the micromechanical behavior of other similar alloys. T2 - 5th International Conference on Tomography of Materials and Structures CY - Grenoble, France DA - 27.06.2022 KW - Load transfer KW - Neutron Diffraction KW - Micromechanical modeling KW - Computed tomography PY - 2022 AN - OPUS4-55406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Strategies to use neutrons as an industrial problem-solving tool N2 - For how trivial or provocative it can sound, the best neutron spectrometer in the world does not produce science and technology by itself. By definition of “Materials Science”, neutron scattering data on engineering materials must be used as a tool to understand, and even tailor, materials performance. In order for this to happen, neutron data need to be 1. Acquired under the most relevant condition possible 2. Coupled to other experimental techniques 3. Capitalized by means of proper simulations and data analysis Point 1- calls for an intense use and the development of top-notch of in-situ techniques; Point 2- means that the sole use of neutron data will not lead to any solution of a global problem; All points above hint to the fact that access to neutron sources is not routine, and therefore it is imperative to search ways to make neutron data rentable and sustainable for the material science and industrial research community. In this presentation, and based on two examples, we will show a couple of strategies to combine neutron data with other experiments, and with theoretical models to raise the validity of experiments to the level of problem-solving. As one might imagine, these are only a few among the almost infinite combinations possible to help improving material properties, performance, and safety, i.e., ripe for everyday use. T2 - MORIS Workshop CY - Garching, Germany DA - 26.04.2023 KW - Neutron Diffraction KW - Residual Stress KW - Large Scale Facilities KW - X-ray Computed Tomography PY - 2023 AN - OPUS4-57361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray refraction techniques non-destructively quantify and classify defects in am materials N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, they can detect objects with size above a few wavelengths of the radiation. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. We hereby show the application of non-destructive X-ray refraction radiography (SXRR, 2D mapping also called topography) to problems in additive manufacturing: 1) Porosity analysis in PBF-LM-Ti64. Through the use of SXRR, we could not only map the (very sparse) porosity distribution between the layers and quantify it, but also classify, and thereby separate, the filled porosity (unmolten powder) from the keyhole and gas pores (Figure 1). 2) In-situ heat treatment of laser powder bed fusion PBF-LM-AlSi10Mg to monitor microstructure and porosity evolution as a function of temperature (Figure 2). By means of SXRR we indirectly observed the initial eutectic Si network break down into larger particles as a function of increasing temperature. We also could detect the thermally induced porosity (TIP). Such changes in the Si-phase morphology upon heating is currently only possible using scanning electron microscopy, but with a much smaller field-of-view. SXRR also allows observing the growth of some individual pores, usually studied via X-ray computed tomography, but again on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the defect distribution and the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. T2 - AAMS 2023 CY - Madrid, Spain DA - 27.09.2023 KW - X-ray refraction radiography KW - Defects KW - Large scale facilities KW - Computed tomography PY - 2023 AN - OPUS4-58508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René T1 - Unterscheidung verschiedener charakteristischer Defekte in mittels selektivem Laserschmelzen hergestelltem Ti-6Al-4V durch Röntgen-Refraktionsradiographie N2 - Das selektive Laserschmelzen (SLM) ist eine pulverbasierte, additive Fertigungsmethode, welche die Herstellung von komplex und individuell geformten Bauteilen ermöglicht. Im Laufe der vergangenen Jahre haben verschiedene Branchen, unter anderem die Luft- und Raumfahrt Industrie, begonnen diese Technologie intensiv zu erforschen. Insbesondere die Titanlegierung Ti-6Al-V4, welche aufgrund ihrer Kombination von mechanischen Eigenschaften, geringer Dichte und Korrosionsbeständigkeit häufig in der Luft- und Raumfahrt eingesetzt wird, eignet sich für die Herstellung mittels SLM. Allerdings können durch nicht optimal gewählte Prozessparameter, welche für gewöhnlich in einer Energiedichte zusammengefasst werden, Defekte in den Bauteilen entstehen. In dieser Studie wurde untersucht, in wie weit Röntgen-Refraktionsradiographie geeignet ist diese Defekte zu detektieren und zu charakterisieren. Bei der Röntgen-Refraktionsradiographie wird die Röntgenstrahlung, nachdem sie die Probe transmittiert hat, über einen Analysatorkristall gemäß der Bragg-Bedingung in den 2D-Detektor reflektiert und dabei nach ihrer Ausbreitungsrichtung gefiltert. Dadurch wird neben der Schwächung auch die Ablenkung der Röntgenstrahlung durch Refraktion im inneren der Probe zur Bildgebung ausgenutzt. Aus den aufgenommen Refraktionsradiogrammen kann der Refraktionswert berechnet werden. Dieser ist ein Maß für die Menge an inneren Oberflächen in der Probe. Zum einen konnte gezeigt werden, dass die Röntgen-Refraktionsradiographie Defekte detektieren kann, die kleiner sind als die Ortsauflösung des verwendeten 2D-Detektors. Zum anderen können zwei verschiedene Typen von Defekten unterschieden werden. Bei dem ersten Typ handelt es sich um runde Poren mit geringer innerer Oberfläche. Diese, sogenannten „keyhole pores“ sind charakteristisch für eine zu hohe Energiedichte während des SLM Prozesses. Bei dem zweiten Typ handelt es sich um nicht komplett aufgeschmolzenes Pulver. Diese Defekte zeichnen sich durch eine hohe innere Oberfläche aus und sind charakteristisch für eine zu geringe Energiedichte. Vergleichende Messungen mit hochauflösender Synchrotron CT und optischer Mikroskopie bestätigen die charakteristischen Formen der verschiedenen Defekte. T2 - DGZfP-Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Röntgen-Refraktion KW - Additive Fertigung KW - Porosität PY - 2018 AN - OPUS4-44953 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Röntgenrefraktionstechnik - Charakterisierung von Keramiken und Verbundwerkstoffen N2 - Die Brechung von Röntgenstrahlen (Röntgenrefraktion) an Grenzflächen zwischen Materialien unterschiedlicher Dichte ist analog zur Ablenkung von sichtbarem Licht an z.B. Glasoberflächen. Es gibt jedoch zwei wesentliche Unterschiede: a) konvexe Grenzflächen verursachen Divergenz (d.h. der Brechungsindex n ist kleiner als 1), und b) die Ablenkungswinkel sind sehr klein, und reichen von einigen Bogensekunden bis zu einigen Bogenminuten (d.h. n ist nahe bei 1); Wie auch bei sichtbarem Licht ist die Ablenkungsrichtung der Röntgenstrahlen abhängig von der Orientierung der durchstrahlten Grenzfläche. Aufgrund dieser Eigenschaften eignen sich Röntgenrefraktionsmethoden hervorragend für: a) die Erkennung und Quantifizierung von Defekten wie Poren und Mikrorissen und b) die Bewertung von Porosität und Partikeleigenschaften wie Orientierung, Größe und räumliche Verteilung. Wir zeigen die Anwendung der Röntgenrefraktionsradiographie (2,5D Technik) und der -tomographie (3D Technik) für die Untersuchung verschiedener Probleme in der Werkstoffwissenschaft und -technologie: a) Sintern von SiC-Grünkörpern b) Porositätsanalyse in Dieselpartikelfiltersilikaten c) Faser-Matrix-Haftung in Metall- und Polymermatrixverbundwerkstoffen d) Mikrorissbildung in Glaskeramik. Wir zeigen, dass der Einsatz von Röntgenrefraktionsmethoden quantitative Ergebnisse liefert, die direkt als Parameter in Werkstoffmodellen verwendet werden können. T2 - DACH-Jahrestagung 2023 CY - Friedrichshafen, Germany DA - 15.05.2023 KW - Röntgen-Refraktion KW - Verbundwerkstoffe KW - Keramik PY - 2023 AN - OPUS4-57615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density < 1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of particle’s intrinsic porosity as well as the packing density of micrometric powder used for LBM have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti-6Al-4V produced by plasma atomization and Stainless Steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles are comparable in size according to the equivalent diameter. The packing density is lower (i.e. the powder bed contains more voids in between particles) for the Ti-6Al-4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurements techniques, proved agreement. T2 - User Meeting HZB 2018 CY - Berlin, BESSY II DA - 06.12.2018 KW - BAMline KW - Computed tomography KW - Laser beam melting KW - Powder PY - 2018 AN - OPUS4-46933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dayani, Shahabeddin T1 - Quantification of Deep Discharge Mechanism in a Li-Ion Battery by operando X-ray Computed Tomography N2 - Lithium-ion batteries connected in series are prone to an electrical abuse called over discharge. We present a comprehensive investigation of the over discharge abuse mechanism in lithium-ion batteries using operando non-destructive imaging. The study focuses on understanding the behavior of copper dissolution and deposition during over discharge, which can lead to irreversible capacity loss and internal short circuits. By utilizing synchrotron X-ray computed tomography (SXCT), the concentration of dissolved and deposited copper per surface area is quantified as a function of depth of discharge (DoD). T2 - HZB user meeting CY - Berlin, Germany DA - 22.06.2023 KW - Non-destructive testing PY - 2023 AN - OPUS4-57793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Markötter, Henning T1 - Synchrotron X-Ray Tomography Techniques at BAMline N2 - A recent upgrade of key equipment of the BAMline widens its imaging capabilities: shorter scan acquisition times are now possible, in situ and operando studies can now be routinely performed, and different energy spectra can easily be set up. In fact, the upgraded double-multilayer monochromator brings full flexibility by yielding different energy spectra to optimize flux and energy resolution as desired. T2 - HZB User Meeting CY - Online meeting DA - 08.12.2022 KW - BAMline KW - X-ray imaging KW - Tomography PY - 2022 AN - OPUS4-56568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Schwindungsmessung an keramischen Folien N2 - Zur Messung der Sinterschwindung keramischer Folien und daraus aufgebauter Bauteile wurden an der BAM zwei Verfahren entwickelt. Beide Verfahren erlauben die Messung von Prüfkörpern mit praxisrelevanten Abmessung (200 mm x 200 mm) bzw. Realbauteilen bis 1000 °C. Die Hochtemperatur-Laserprofilometrie ist ein berührungsloses Verfahren und eignet sich besonders zur Bewertung der Schwindungsanisotropie und zur in-situ Charakterisierung von Verwölbung. Die Sinterpresse mit in-situ Dickenmessung ist sehr gut geeignet, um Schwindungsverhalten im Drucksinterprozess unter verschiedenen Atmosphären zu untersuchen. Der Aufbau beider Messsysteme wird erläutert und Anwendungsbeispiele mit wissenschaftlichem Hintergrund und direktem Industriebezug werden vorgestellt. T2 - 3. Sitzung des DKG- Fachausschuss 6 "Material- und Prozessdiagnostik" CY - Berlin, Germany DA - 23.11.2017 KW - Dilatometrie KW - Multilayer PY - 2017 AN - OPUS4-43187 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arlt, Tobias T1 - Tomografische Methoden für die Brennstoffzellenforschung T2 - DGZfP-Jahrestagung 2011 CY - Bremen, Germany DA - 2011-05-30 PY - 2011 AN - OPUS4-24118 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Analysis of damage processes in concrete - What can CT do? N2 - In this talk the basics of X-ray computed tomography (XCT) are presented, together with a description of complementary techniques such as Laminography and Stereoradiography. A overview of the common reconstruction approach and of the artifacts that can occur during reconstruction or acquisition of XCT images is also given. Finally, application examples in the field of construction materials are given, whereby several experimental techniques (Region of Interest Approach) and data analysis methods (e.g. Digital volume correlation) are explained. Such techniques and algorithms are used to extract quantitative information from ex- and in-situ experiments. T2 - Seminar DFG GRK 2250/1 Summer School CY - Online meeting DA - 21.06.2021 KW - Asphalt, porosity KW - Concrete KW - 3D rendering KW - Crack segmentation KW - Water uptake PY - 2021 AN - OPUS4-52837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and refraction tomography: Characterization and Non-destructive Testing of Micro-structured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Seminare der EMPA CY - EMPA, Dubenddorf, Switzerland DA - 10.10.2017 KW - Computed Tomography KW - X-ray Refraction KW - Neutron Diffraction KW - Additive Manufacturing KW - Image Analysis PY - 2017 AN - OPUS4-42699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arlt, Tobias T1 - Tomographic methods for investigation of fuel cell materials T2 - HZB User Meeting 2011 CY - Berlin, Germany DA - 2011-11-30 PY - 2011 AN - OPUS4-25077 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Ageing in additively manufactured metallic components: from powder to mechanical failure” an overview of the project agil N2 - An overview of the BAM funed Focus Area Materials Project "AGIL" will be presented. AGIL focussed on the stdiy of the ageing characteristics of additively manufactured austenitic stainless steel with a "powder to mechanical failure" Approach. Recent Highlights are presented and a perspective for future studies. T2 - Workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Residual stress KW - Additive Manufacturing KW - Non-destructive testing KW - Microstructure characterisation KW - Tensile testing KW - Fatigue KW - Crystal Plasticity Modelling KW - Crack propagation PY - 2019 AN - OPUS4-49823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra T1 - Residual stress fields in AM Ni-718 in as built and after release from baseplate N2 - The residual stress distribution of IN718 parts produced by Selective Laser Melting (SLM) technique was studied by means of neutron diffraction. Two deposition hatching lengths were considered in the fabrication. Both lateral (building direction) and top (finishing) near-surface regions were characterized. Measurements on samples in as-built condition and after release from the plate proved the presence of stress gradients both in-plane and along the building direction. As-built samples presented in top region a longitudinal stress relief for large hatching, whereas small one showed tensile stresses around (200MPa) in the middle, evolving towards compression at the tip of the sample (down to -300MPa). Towards the lateral edge, longitudinal stresses shifted also to compression. The transverse stresses for large hatching were relief in the middle, whereas for small hatching shifted to compression at the edge. As for the normal component, this was more homogenous: stress-relief was proved for large hatching and, in contrast, was in compression (-200MPa) for small hatching. In the building direction (lateral region from base plate to top) of the sample with large hatching all stress components showed tensile values near the base plate (particularly high for normal component around 300MPa), decreasing towards compression to the top, where they were almost released. After release, in the top region, the longitudinal stress component for small hatching showed high compressive stresses in the central part (down to -250MPa). In contrast, for large hatching a stress relief was found. In the transversal direction, this behavior was inverted: a small hatching released stresses more effectively, while a large hatching presented high tensile stresses (around 200MPa). As for the normal component (i.e., building direction), the sample with small hatching was found in compression, while that with large hatching was stress-released or slightly in tension (around 100MPa). In the lateral surface region, all components showed similar behavior: a small hatching promoted high compressive stresses along the building direction, whereas a large hatching showed small tensile values at the bottom, which balance towards the top region. There is an overall shift of stresses in 3 directions towards tension when compared with as-built condition for top region. In contrast, the lateral region is stress-relief or shifted towards compression after cutting from baseplate. In conclusion, hatching length parameter strongly influenced the 3D distribution of residual stress in SLM produced parts. T2 - MECA SENS 2017 CY - Skukuza, South Africa DA - 19.09.2017 KW - Residual stress KW - Additive manufacturing KW - Selective laser melting KW - Neutron diffraction PY - 2017 AN - OPUS4-42033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of fibre breaks in racetrack specimens and type IV pressure vessels N2 - The reduced volume method has been studied using the fibre break model from Mines ParisTech. This method allows less 3D finite elements to be used for predicting the failure of real scale composite structures. A favourable comparison results with racetrack specimens has been achieved. However, the comparison study with a type IV pressure vessels still requires more Evaluation. T2 - Consortium Meeting FiBreMoD CY - Toyota Motor Europe, Belgium DA - 27.03.2019 KW - Reduced volume method KW - Integral range KW - Multiscale model KW - Fibre break KW - Composite pressure vessels KW - Racetrack specimens PY - 2019 AN - OPUS4-48571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - The combined use of X-ray refraction and trans-mission radiography and computed tomography N2 - Alternative to conventional transmission-based radiography and computed tomography, X-ray refraction techniques are being increasingly used to detect damage in light materials. In fact, their range of application has been recently extended even to metals. The big advantage of X-ray refraction techniques is that they are able to detect nanometric defects, whose size would lie below the resolution of even state-of-the-art synchrotron-based X-ray computed tomography (SXCT). The superiority of synchrotron X-ray refraction radiography and tomography (SXRR and SXRCT) has been shown in the case of light materials, in particular composites. X-ray refraction techniques also yield a quantitifaction of the amount of damage (the so-called relative internal specific surface) and can well be compared with damage models. At the same time, it is impossible for SXRR and SXRCT to image single defects. We show that the combination of refraction- and transmission-based imaging techniques yields an impressive amount of additional information about the type and amount of defects in microstructured materials such as additively manufactured metals or metal matrix composites. We also show that the use of data fusion techniques allows the classification of defects in statistically significant representative volume elements. T2 - 11th Conference on Industrial Computed Tomography CY - Online meeting DA - 08.02.2022 KW - X-ray refraction radiography KW - Computed Tomography KW - Synchrotron radiation KW - Additive manufacturing KW - Damage evolution PY - 2022 AN - OPUS4-54327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Surface Characteristics of LTCC-.Substrates Fabricated by Pressure-Assisted Sintering T2 - IMAPS/ACerS 9th Int. Conf. and Exhib. on Ceramic Interconnect and Ceramic Microsystems Technolgies (CICMT 2013) CY - Orlando, FL, USA DA - 2013-04-23 PY - 2013 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-28292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Röntgen-Refraktions-Technik für eine schnelle, hochauflösende Mikrostrukturcharakterisierung von Leichtbaukompositen T2 - Verbundwerkstoffe und Werkstoffverbunde 2015 CY - Wien, Austria DA - 2015-07-01 PY - 2015 AN - OPUS4-33684 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Diffraction based residual stress analysis: challenges and opportunities in additive manufacturing N2 - This presentation overviews the challanges and opportunities of diffraction based residual stress analysis for additively manufactured metals. Through examples, the challanges and respective solutions are presented and the opportunities that the presented methods allow are described. T2 - Workshop on Advanced Manufacturing (WAM) 2025 CY - Grenoble, France DA - 03.06.2025 KW - Residual stress KW - Diffraction KW - AGIL KW - Laser powder bed fusion KW - MANUFACT PY - 2025 AN - OPUS4-64137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 3D imaging and residual stress analysis of AM Materials N2 - In this seminar, the capabilities for materials characterization at Division 8.5, BAM will be shon. Particular focus will be given to residual stress analysis and defect imaging in additively manufactured materials and components T2 - Skoltech - The 3rd International Workshop of Advanced Manufacturing Technologies CY - Online meeting DA - 18.04.2023 KW - Neutron Diffraction KW - X-ray diffraction KW - X-ray Computed Tomography KW - X-ray refraction radiography KW - Residual stress KW - Additive manufacturing PY - 2023 AN - OPUS4-57360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yuri T1 - Optimizing the performance of phase gratings for better visibility in Talbot- Lau interferometry N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation. Our study included simulations for monochromatic sources with the sampling procedure. T2 - PhD Day 2015 CY - Berlin, Germany DA - 14.7.2015 KW - Talbot-Lau interferometry PY - 2015 AN - OPUS4-38325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Heat treatment induced residual stress relaxation in additively manufactured L-PBF 316L stainless steel N2 - Residual stress relaxation as a function of heat treatment strategies in laser based powder bed fused 316l samples. T2 - Eleventh Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Concept and Manufacturing of a Pressure Sensor Based on al LTCC Thin Film Strain Gauge T2 - IMAPS/ACerS 10th Int. Conf. and Exhib. on Ceramic Interconnect and Ceramic Microsystems Technolgies (CICMT 2014) CY - Osaka, Japan DA - 2014-04-14 PY - 2014 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-31324 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Microstructure characterization of materials using X-ray refraction techniques N2 - X-ray imaging techniques have an enormous potential to understand the microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this lecture we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining the internal specific surface of materials (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. We demonstrate showcases of ceramics and composite materials, where microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. We present in situ analysis of the damage evolution during tensile load and the identification of void formation in parts produced by selective laser melting. T2 - MIMENIMA Summerschool CY - TU-Bremen, Germany DA - 22.8.2018 KW - X-ray refraction KW - Cracks KW - Pores PY - 2018 AN - OPUS4-45790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - On nominal-actual comparisons for additive manufacturing applications N2 - Nominal-actual comparisons are routinely performed to compare a manufactured specimen to a reference specimen. X-ray Computed Tomography (CT) has brought a profound change in the way that tolerance verifications are performed in industry, by allowing the inner and outer geometries of an object to be measured, without the need for external access or destructive testing. As a results, CT is increasingly used in additive manufacturing applications, where a nominal-actual comparison performed between the digital model (CAD file), used as an input for the 3D printer, and the CT volume from the printed part, can provide invaluable information as to the accuracy of the printing process. However, the nominal-actual comparison process is somewhat different when applied to additively manufactured specimens by comparison to conventionally manufactured specimens. T2 - 9th Conference on Industrial Computed Tomography CY - Padova, Italy DA - 14.02.2019 KW - Computed tomography KW - X-ray computed tomography PY - 2019 AN - OPUS4-47833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - Der Einfluss der Probenabtrennung von der Bauplatte auf den Eigenspannungszustand in SLM IN718 N2 - Die Schicht-für-Schicht additive Fertigung (AM) in Form des selektiven Laserschmelzens (SLM) bietet einerseits Vorteile bezüglich des Probendesigns, andererseits sind thermische Eigenspannungen (ES) aufgrund des hohen Temperaturgradienten unvermeidbar. Diese Eigenspannungen wurden in zwei SLM-gefertigten Proben aus IN718 zerstörungsfrei mit Neutronenstreuung hinsichtlich der folgenden zwei Einflüsse analysiert: der Einfluss der Hatch-Länge und das Abtrennen des Werkstücks von der Bauplatte. Begleitet wurden die Messungen der Eigenspannungen durch optische Mikroskopie und die taktile Vermessung der Oberfläche. Eine Korrelation zwischen den Eigenspannungen und der Hatch-Länge konnte beobachtet und erklärt werden. T2 - 2. Tagung des DVM-Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 09.11.2017 KW - Additive Fertigung KW - Selektives Laserschmelzen KW - Eigenspannungen KW - Neutronenstreuung KW - IN718 PY - 2017 AN - OPUS4-42947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René T1 - Distinguishing characteristic defect in additively manufactured Ti-Al6-V4 with synchrotron X-ray refraction radiography N2 - Synchrotron X-ray refraction radiography (SXRR) is proven to identify different kinds of defects in Ti-Al6-V4 samples produces by selective laser melting. Namely, these defect types are empty pores and unprocessed powder, which are characteristic to the regions above and below the optimal laser energy density, respectively. Furthermore, SXRR detects small defects below the spatial resolution. T2 - BESSY User Meeting CY - Berlin, Germany DA - 13.12.2017 KW - Additive manufacturing KW - X-ray refraction KW - Porosity PY - 2017 AN - OPUS4-43446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert T1 - Characterization of Residual Stress State on Intert Gas Welded Joints by Neutron Diffraction at E3 line T2 - 7th joint BER II and BESSY II User Meeting CY - Berlin DA - 2015-12-11 PY - 2015 AN - OPUS4-35070 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Non destructive characterization in Additive manufacturing N2 - An overview of non destructive characterisation in additively manufactured materials using computed tomography, refraction and diffraction based stress analysis T2 - BAM-IFW workshop CY - IFW Dresden, Germany DA - 28.03.2019 KW - Residual stress analysis KW - Additive manufacturing KW - Computed tomography KW - Diffraction KW - X-ray refraction PY - 2019 AN - OPUS4-49842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - An assessment of bulk residual stress in selective laser melted in 718 N2 - Having been introduced almost two decades ago, Additive Manufacturing (AM) of metals has become industrially viable for a large variety of applications, including aerospace, automotive and medicine. Powder bed techniques such as Selective Laser Melting (SLM) based on layer-by-layer deposition and laser melt enable numerous degrees of freedom for the geometrical design. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The residual stress distribution in IN718 elongated prisms produced by SLM was studied non-destructively by means of neutron (bulk) and laboratory X-ray (surface) diffraction. The samples with different scanning strategies, i.e. hatching length, were measured in as-built condition (on a build plate) and after removal from the build plate. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. Together with surface scan utilizing a coordinate-measuring machine (CMM), it is possible to link the stress release to the sample distortion. We finally propose an explanation of those stress profiles based on the deposition strategy. T2 - ECRS10 CY - Leuven, Belgium DA - 09.09.2018 KW - Residual stress KW - Influence of rheology modifying admixtures on hydration of cementitious suspensions PY - 2018 AN - OPUS4-45997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Cabeza, Sandra T1 - Neutron diffraction: the forgotten non-destructive technique for residual stress analysis … and more N2 - 3-D Stress Analysis (Bulk) Stress mapping Thick (and thin) films & Interfaces Bulk high temperature Real time In-situ testing: Large sample environment (Stress rigs, Furnaces, …) Neutrons and Synchrotron Radiation allow all this because they are FASTER , DEEPER and MORE PRECISE than lab equipment (Flux)(Energy)(Parallel Beam) T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - Neutron diffraction KW - Stress analysis PY - 2016 AN - OPUS4-38396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718 N2 - Since additive manufacturing processes typically introduce heterogeneous microstructures and residual stresses, the applicability of parts produced in an as-built state is limited. Therefore, often different post-processing treatments are necessary to obtain the desired stress state and properties. For additively manufactured Inconel 718, the recently developed standard ASTM F3301 provides guidance for the heat treatment of powder bed fusion specimens. Although this standard is based on standards developed for wrought Inconel 718, it does not include the direct aging variant. In this study, we characterized the microstructure and tensile behavior of Inconel 718 specimens produced by a laser powder bed fusion process. The specimens were heat-treated according to two different routines after stress relieving: a full heat treatment cycle versus a one-step aging process. Differences in the resulting texture and grain morphology were observed. Although these differences prevail, the ex-situ tensile behavior was broadly similar. Minor differences were observed in yield strength and work hardening rate for the direct aged specimen. In order to understand this behavior, investigations with in-situ tensile testing during synchrotron energy-dispersive X-ray diffraction measurements revealed differences in the load partitioning among different crystal directions. This was attributed to microstructural differences between the heat treatment variants. Further analysis emphasized that the various strengthening mechanisms are present to a different extent depending on the heat-treatment cycle applied. In addition, the elastic anisotropy expressed by the differences in the diffraction elastic constants displayed a dependence on the microstructure. Importantly, a precise knowledge of such constants is indispensable to reliably determine residual stresses in parts. T2 - EUROMAT 2021 - European Congress and Exhibition on Advanced Materials and Processes CY - Online meeting DA - 13.09.2021 KW - Electron microscopy KW - X-ray analysis KW - Inconel 718 KW - Additive manufacturing (AM) KW - Mechanical behavior KW - Diffraction elastic constants (DECs) PY - 2021 AN - OPUS4-53301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert T1 - Evaluation magneto-mechanischer Effekte in hochauflösenden Magnetfeldmessungen durch Neutronendiffraktion N2 - Die mechanische Spannung ist ein maßgeblicher Parameter ferromagnetischer Materialien. Wird ein solches Material unter die Curie Temperatur abgekühlt, zerfällt es spontan in nahezu selbstgesättigte magnetische Domänen. Diese Magnetisierung führt gleichzeitig zu einer Verformung der mit ihr gekoppelten Kristallgitter. Ein Effekt der auch reziprok gilt: wird die Gitterverformung durch eine Spannung behindert ändert sich zwangsweise der magnetische Zustand. Man kann annehmen, dass zwischen unterschiedlichen, für sich aber homogen verspannten Werkstoffbereichen, lokale magnetische Streufelder auftreten, weil magneto-mechanische Effekte eine Inkompatibilität der Domänenstruktur induzieren. Bekanntlich bilden sich Spannungsgradienten nach Schweißprozessen durch ungleichmäßigen Wärmeeintrag, thermischer Dehnung, und unterschiedlichen Abkühlraten aus. Unter dieser Prämisse untersuchen wir Wolfram-Inertgas geschweißte Blindnahtproben (250x100x4,8 mm^3) aus einem hypereutektoiden Baustahl. Der Spannungszustand der Proben wurde anhand von Neutronendiffraktometrie (ND) am Instrument E3 am Reaktor BERII (Helmholzzentrum Berlin, HZB) charakterisiert. ND ist ein Referenzverfahren für die quantitative Bestimmung von elastischen Dehnungen in kristallinen Materialien, deren Gitter selbst der Messmaßstab ist. Die Auswertung zeigt hohe Längsspannungen mit lokalen Maxima in Größenordnung von 600 MPa, die von umgebenen Druckspannungszonen kompensiert werden. Zur Detektion der magnetischen Kleinststreufelder verwenden wir speziell designte GMR-Sensorik (GMR - Giant Magneto Resistance), die aufgrund der geringen Größe ihrer aktiven Sensorelemente hohe Ortsauflösung mit Sensitivität vereint. Die Visualisierung der Messergebnisse lässt eine klare magnetische Mikrostruktur der Schweißnähte erkennen, in der die Streufelder lateral in Größenordnung des Erdmagnetfeldes variieren (~50 µT). Wir zeigen durch einen Vergleich beider Messverfahren, dass lokale magnetische Streufeldmaxima in hohem Maße mit den Spannungsgradienten übereinstimmen. T2 - DGZfP-Jahrestagung CY - Koblenz, Germany DA - 22.05.2017 KW - GMR-Sensorik KW - Neutronendiffratkion KW - Eigenspannungen KW - Baustahl PY - 2017 AN - OPUS4-40386 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hejazi, Bardia A1 - Fritsch, Tobias A1 - Benz, Christopher A1 - Radtke, Lars A1 - Sander, Manuela A1 - Bruno, Giovanni T1 - In-situ very high cycle fatigue experiments of additively manufactured Ti-6Al-4V using X-ray computed tomography N2 - X-ray computed tomography (XCT) is an invaluable method for evaluating the properties and performance of components both during service and after failure in a non-destructive manner. XCT is particularly useful for the investigation of additively manufactured (AM) components, which often have production defects that are inherent to the manufacturing process, such as lack of fusion defects. Understanding the mechanisms of fatigue crack growth throughout the life cycle of such components is crucial and so to address this need, we designed and performed experiments to investigate the fatigue life and fatigue crack growth behavior of Ti-6Al-4V components under very high cycle fatigue (VHCF) testing. The titanium samples were additively manufactured with intentional internal defects to control crack initiation location. XCT of the component was carried out to identify crack initiation sites and characterize the dynamics of crack growth. The findings from this work will benefit industries that rely on the AM of titanium alloys, aiding in the improvement of component design and manufacturing processes. T2 - Alloys for additive manufacturing 2025 (AAMS 2025) CY - Neuchâtel, Switzerland DA - 02.09.2025 KW - X-ray computed tomography KW - Deep learning KW - Titanium alloy KW - Very high-cycle fatigue PY - 2025 DO - https://doi.org/10.5281/zenodo.15261296 AN - OPUS4-64096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - In-Situ Compression CT on Additively Manufactured in 625 Lattice Structures N2 - The porosity and the surface roughness are recently discussed problems for SLM parts. The influence of SLM process parameters on porosity is well studied for different materials. Nevertheless, the build angle (i.e. the angle between part orientation and build plate) needs to be understood as an additional SLM process parameter, as it has been shown, that the microstructure and hence the mechanical performance of various materials depend on the build angle. The inherent build angle of each strut as a part of a lattice structure is the motivation to investigate the influence of the build angle on the porosity and roughness on round-shaped (1 mm diameter) struts by means of CT. Conventional Coordinate Measuring Machine (CMM) has the limitation towards small and round shaped samples. The need for Computed Tomography (CT) regarding investigations of SLM parts will increase because no other non-destructive technique allows the assessment of complex geometries with inner laying surfaces. We used CT to assess the pores and the strut surface. Seven struts out of the nickel alloy Inconel 625 with build angles from 30° to 90° were studied. It was found that the number of pores is smaller, and the size of pores is larger for the 90° strut. In case of 30° strut, the number of pores is increased towards down-skin side, additionally, this strut orientation showed to have the largest number of attached powder particles. The elongated pores exist exclusively near the strut surface. While the roughness at the down-skin surface is highly depending of the biud angle, the roughness at the up-skin surface is the same for all struts. The mechanisms of pore and surface roughness formation is not mainly driven by gravity. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Optimizing visibility of phase gratings for Talbot-Lau X-ray imaging N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation. Our study included simulations for monochromatic sources with the sampling procedure for rectangular and triangular phase gratings. T2 - User-Meeting CY - Berlin, Germany DA - 8.12.2016 KW - Talbot-Lau interferomerty KW - Phase grating KW - Synchrotron radiation PY - 2016 AN - OPUS4-39096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens T1 - Acoustic Ion Manipulation: Electric-field-free Approach to Gate, Focus, and Separate Ions at Atmospheric Pressure N2 - Approaches to control the motion and direction of ionized particles and mole-cules are an essential aspect of ion-based spectrometries, such as mass spec-trometry (MS) and ion mobility spectrometry (IMS). A wide variety of ion optics exist to reflect, focus, separate, gate, and filter ions based on physical proper-ties. Notably all rely on electric and magnetic fields to alter the trajectory of ionized atoms and molecules. While these optics are quite efficient at low pressures due to the large mean free path, diffusion and electrostatic repulsion between ions dominate at higher pressures. Conventional ion optics, that use electric or magnetic fields, can guide ions at atmospheric pressure (AP), but require high field strengths to overcome the dominating aerodynamic effects. Here, we describe a remarkable phenomenon whereby low-power acoustic fields are used to move, shape, gate, and separate beams of gaseous ions at atmospheric pressure. We refer to this approach as Acoustic Ion Manipulation (AIM). Gaseous ions at AP are directed towards and separated by the presence of the acoustic field. To better understand the phenomenon, an ion-detector array provided a measure of bulk ion movement, while mass spectrometry (MS) offered chemical-specific information. As one example of an AIM setup, a standing acoustic wave was formed with two ultrasonic speakers and placed between an ionization source and ion detector. Ion beams preferentially travel through regions of stable pressure gradients (i.e. nodes) and deflect from un-stable regions (i.e. antinodes). Shadowgraphy revealed that the ions are sepa-rated from a neutral gas stream. Specific examples of ion focusing, gating, and separation (based on ion size) will be shown. In addition, experimental findings will be used to postulate a theory to develop a better understand of the behav-ior of gas-phase ions in acoustic fields. This discovery could have profound im-pacts in IMS/MS instrumentation as well as materials processing and charac-terization. T2 - 56. Jahrestagung der DGMS CY - Göttingen, Germany DA - 04.03.2025 KW - Acoustic Ion Manipulation KW - Mass spectrometry KW - Ultrasound PY - 2025 AN - OPUS4-64208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Sintering and interconnecting thermoelectric oxides for energy applications N2 - Today, more than 12% of the primary energy is lost in the form of waste heat. Thermoelectric generators (TEGs) can convert waste heat directly into electrical power by utilizing the Seebeck effect. The performance of such a generator is defined by a dimensionless figure of merit ZT of the thermoelectric pairs and the resistance R of the metallic contacts between these pairs. The figure of merit of thermoelectric oxides is considerably smaller compared to semiconductors. Still, thermoelectric oxides like calcium cobaltite (Ca3Co4O9) are attractive for applications at elevated temperatures in air. In contrast to the established π-type architecture of common TEGs, tape casting and multilayer technology may be applied for cost-effective manufacturing of oxide TEGs. Promising demonstrations of multilayer TEGs have been published in the last years. Still, the development of reliable and scalable manufacturing processes and proper material combinations is necessary. The aim of our project is to evaluate the feasibility of low temperature co-fired ceramics (LTCC) technology for a practical manufacturing of oxide multilayer TEGs of Ca3Co4O9 (p-type) and calcium manganate (CaMnO3, n-type). Ca3Co4O9 exhibits an undesired phase decomposition at 926 °C. Because of that, the application of sintering strategies and interconnect concepts well known from LTCC technology is a promising approach. We present results of pressure-assisted sintering of Ca3Co4O9 multilayer at 900 °C and axial pressures of up to 7.5 MPa. Ca3Co4O9 was produced by solid state reaction of CaCO3 and cobalt(II,III)oxide at 900 °C. Green tapes were prepared by a doctor-blade process, manually stacked and laminated by uniaxial thermocompression. Sintering was conducted in a LTCC sintering press between SiC setter plates. The thickness shrinkage was recorded by an in-situ technique. After sintering under 7.5 MPa, the microstructure of the single phase material shows a high density of 95 % and an advantageous alignment of the platelet grains. This results in good electrical conductivity and a comparatively high ZT of 0.018 at room temperature. However, the lowering of CaMnO3 sintering temperature from above 1200 °C to below 920 °C remains a challenge. To select a proper metal paste for interconnections of an oxide TEG, several pastes have been investigated regarding contact resistance of internal and external (soldered) connections in a preliminary study. Commercial pastes containing Ag, Au, Au/Pt, Ag/Pd, and Ag/Pd/Bi were manually applied and post-fired on sintered test bars of Ca3Co4O9 and CaMnO3 at 900 °C for 2 h. All tested pastes formed mechanically stable metallization after firing. For resistance measurement, 4-wire method and a custom-made probe head were used. The contacts on Ca3Co4O9 exhibit significantly (2-sample t-test, α = 5%) higher resistance compared to contacts on CaMnO3. Pure silver paste exhibits the lowest resistance for internal contacts on both materials, lower than 5 mΩ on CaMnO3. Ag/Pd/Bi paste resulted in conspicuously high variance of resistance. EDX analyses clarified an enrichment of Bi in the thermoelectric material near the interface and thereby the formation of an oxide layer with probably high electrical resistance. The thickness of that layer varies with the thickness of metallization. In conclusion, the use of Bi containing pastes is not advisable. Pure Ag paste shows the best results regarding resistance and solderability. T2 - CICMT 2018 CY - Aveiro, Portugal DA - 18.04.2018 KW - Thermoelectric oxide KW - Thermoelectric generator KW - Multilayer technology KW - Pressure-assisted sintering PY - 2018 AN - OPUS4-44740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröter, Felix T1 - Fluorescence? Not on my Shift! Excitation- Shifted UV Raman Microspectroscopy N2 - Spectroscopic analysis of samples provides elemental information, which is useful when the sample is homogenous. But many samples are not and consequently the creation of maps detailing the spatial composition of materials is needed. Raman microscopy can be used for this exact purpose but suffers a big drawback. The inherently weak Raman scattering results in long measurement times, especially when maps with many data points are created. This is due to the long exposure times needed when visible light lasers are used. A shift to UV-Lasers significantly increases the Raman intensity, as it scales with the fourth power of the inverse of the laser wavelength. But UV excitation often leads to fluorescence which can obscure the relatively weak Raman signal. Consequently, UV-Raman can only be used with specially prepared samples, for example through photo-bleaching, or with samples producing no fluorescence background in the measurement region. A solution is proposed that uses shifted-excitation Raman difference spectroscopy (SERDS) in a confocal microscope to obtain fluorescence-free Raman spectra. This is possible due to the collection of two Raman spectra at different excitation wavelengths. SERDS then allows for the calculation of just the Raman signal from the difference spectrum, which eliminates any fluorescence backgrounds, as they are not excitation wavelength dependent. The presented approach employs a polarized beamsplitter to irradiate the same spot with two lasers of different wavelengths which share the same beam path in the microscope. Consequently, a SERDS UV Raman Microscope is created, which utilizes the speed of UV-Raman without the drawbacks of possible broad fluorescence backgrounds. Here we present the instruments methodology and some first results. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - UV Raman Spectroscopy KW - UV Raman Microspectroscopy KW - Confocal Microscopy KW - Excitation-Shifted Raman Spectroscopy PY - 2025 AN - OPUS4-62734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blume, Simon T1 - Exploiting Lithium Self-Absorption in a Laser-Induced Breakdown Plasma for Isotopic Analysis via Spatial Heterodyne Spectroscopy N2 - Lithium-ion batteries are ubiquitous in modern life. From powering consumer electronics to enabling electric mobility and energy storage, they are a key building block of a sustainable future. Determination of the ratio of the two naturally abundant stable isotopes, 7Li and 6Li, provides access to a wide variety of information, such as studying the aging processes of lithium-ion batteries or elucidating the isotopic fingerprinting of natural or recycled sources of lithium. However, accurately measuring the lithium isotope ratio in complex samples remains challenging, often requiring either extensive sample pretreatment or specialized equipment, thus impeding in-situ and high-throughput demands of global industries. Recognition and determination of the individual lithium isotopes with conventional laser-induced breakdown spectroscopy (LIBS) setups is nearly impossible. While LIBS offers several advantages, such as obviating time- and resource-intensive sample preparation and enabling rapid measurements, the high temperature (~20,000 K) of the plasma, as well as the Stark-broadening caused by the nascent free electrons spectrally broaden the atomic emission lines to such an extent that the isotopic shift of the lithium doublet at 670 nm cannot be resolved. Since, the excited state energy for this transition amounts to only 14,900 cm-1, lithium exhibits a pronounced self-absorption dip in the emission signal. This self-absorption dip is significantly less affected by the broadening effects, therefore, allowing for the resolution of the isotopic shift from its line shape. Spatial heterodyne spectroscopy (SHS) offers the superior resolution capabilities necessary to differentiate the individual isotopic contributions. To address the generally limited sensitivity of SHS, a high-repetition-rate (>10 kHz) laser allows the accumulation of more than 10,000 lasing events per spectral recording for a sufficient signal-to-noise ratio and gain statistical validity. Optical lithium fluoride serves as a model sample to showcase the analytical performance. Additionally, the impact of the laser parameters on the self-absorption will also be discussed. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Isotopic Analysis KW - Spatial Heterodyne Spectroscopy PY - 2025 AN - OPUS4-63559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sander, Luise T1 - Multi-Scale Analysis of Commercially Available Sodium-Ion Cells N2 - As the first commercial sodium-ion-batteries (SIBs) are available for purchase, it is possible to investigate material composition. Gaining an insight into the material composition of these SIBs is of interest not only for the classification of possible safety risks and hazards, but also in regards to recycling. Herein we report the preliminary investigations of the chemical and structural composition of first commercial SIB-cells. Two different SIB-cells with different specification were compared regarding electrode size, thickness and further parameters. Furthermore, the composition of the active materials and electrolyte was investigated and compared. T2 - Solid State Ionics (SSI) CY - London, United Kingdom DA - 15.07.2024 KW - Sodium Ion-Cells KW - Multi-Scale PY - 2024 AN - OPUS4-60764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Lowering the sintering temperature of calcium manganate CaMnO3 for thermoelectric applications N2 - Thermoelectric materials can convert waste heat directly into electrical power by utilizing the Seebeck effect. Calcium cobaltite (p-type) and calcium manganate (n-type) are two of the most promising oxide thermoelectric materials. The development of cost-effective multilayer thermoelectric generators requires the co-firing of these materials and therefore the adjustment of sintering temperatures. Calcium manganate is conventionally sintered between 1200 °C and 1350 °C. Calcium cobaltite exhibits an undesired phase transition at 926 °C but can be sintered to high relative density of 95 % at 900 °C under axial pressure of 7.5 MPa. Hence, co-firing at 900 °C would be favourable. Therefore, strategies for lowering the sintering temperature of calcium manganate have been investigated. Basically, two approaches are common: i) addition of low melting additives like Bi2O3-ZnO-B2O3-SiO2 (BBSZ) glass or Bi2O3, and ii) addition of additives that form low-melting eutectics with the base material, for example CuO. In this study, several low melting additives including BBSZ glass and Bi2O3, as well as CuO were tested regarding their effect on calcium manganate densification. Bi2O3 did not improve the densification, whereas BBSZ glass led to 10 % higher relative density at 1200 °C. An addition of 4 wt% CuO decreases the temperature of maximum sinter rate from above 1200 °C to 1040 °C. By reducing the particle size of the raw materials from 2 μm to 0.7 μm the maximum sinter rate could be further shifted 20 K towards lower temperatures and the sinter begin decreased from 920 °C to 740 °C. It is shown that eutectic phase formation is more effective in lowering sintering temperature and accelerating densification than low-melting additives. T2 - 93. DKG-Jahrestagung und Symposium Hochleistungskeramik 2018 CY - Munich, Germany DA - 10.04.2018 KW - Thermoelectrics KW - Sinter additive PY - 2018 AN - OPUS4-44818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - You, Yi T1 - Advanced Repetition-Rate Modulation and Computational Strategies for Background-Free LIBS Using Non-Gated Spectrometers N2 - Laser-induced breakdown spectroscopy (LIBS) is recognized for its rapid, direct elemental analysis capabilities. However, its general adoption is constrained by the reliance on expensive, high-power consumption, gated cameras such as intensified charge-coupled devices (CCDs). These devices, while sensitive, are expensive and possess low frame rates, limiting their efficacy in dynamic or challenging environments. Our study proposes an innovative approach that leverages non-gated spectrometers in conjunction with the framework of correlation spectroscopy to isolate analyte signals responsive to a specific repetition-rate modulation pattern, thereby yielding spectra with zero background. We utilized a diode-pumped solid-state laser, with repetition rates ranging from 10 Hz to 30 kHz, to induce plasma in aqueous solutions containing various alkaline and earth-alkaline metals. With a non-gated single-grating linear CCD spectrometer, we found that the continuum signal plateaued at approximately 7 kHz. In contrast, atomic emissions from the dissolved analytes showed continued increases. Notably, atomic emissions from the solvent (water) were observable only above 8.5 kHz, at a significant high rate of increase. Through computational synthesis of a modulation pattern, we determined an optimized scheme that effectively discriminates continuum and analyte signals; this pattern was optimized with a genetic algorithm. The spectral matrix correlating signal intensity with laser repetition rate and wavelength was used as the input of the model. Meanwhile, the fitness function that extracts the background-free spectra was built in-house and inspired by the Gardner transform, which exploits the power of Fourier transform, allowing for flagging and splitting analyte signal from other undesired features. This approach bypasses the limitations associated with gated cameras, while providing a cost-effective alternative for robust LIBS applications. This advancement is particularly relevant in field, portable and remote applications, aligning with the ongoing demand for accessible, high-performance analytical tools in diverse scientific fields. T2 - SCIX 2024 Conference CY - Raleigh, NC, USA DA - 20.10.2024 KW - LIBS KW - Data Processing KW - High Repetition Rate KW - Repetition Rate Modulation KW - Data-Oriented Experimental Design PY - 2024 AN - OPUS4-62137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Applications of X-ray refraction to non-destructive characterization of and composites T2 - 14th International Conference of the European Ceramic Society CY - Toledo, Spain DA - 2015-06-21 PY - 2015 AN - OPUS4-33974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Tieftemperaturfügen mit Nano- und Submikronsilberpasten T2 - DKG-Symposium "Fügen von Keramik: Grundlagen - Verfahren - Anwendungen" CY - Erlangen, Germany DA - 2012-12-04 PY - 2012 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-27285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arlt, Tobias T1 - Tomographic methods for investigation for fuel cell materials T2 - Ulm Electro Chemical Talks CY - Ulm, Germany DA - 2010-06-15 PY - 2010 AN - OPUS4-21518 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Anita T1 - Eine sichere Zukunft für Lithium-Ionen Batterien N2 - Eine sichere Zukunft hat eine Technologie dann, wenn sie die Gesellschaft auch von ihrer Sicherheit überzeugen kann. Dies ist insbesondere für Lithiumbatterien von hoher Bedeutung. Die BAM trägt auf den verschiedene Ebenen auf vielfältige Art und Weise dazu bei, diese Sicherheit zu untersuchen und zu verbessern. T2 - 4. Batterieforum Berlin Brandenburg CY - Potsdam, Germany DA - 22.11.2024 KW - LIthiumbatterien KW - Sicherheit PY - 2024 AN - OPUS4-62328 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of Fibre Breaks under Time Dependent Loads in CFRP Materials of Pressure Vessels N2 - BAM has discovered that the reliability of tested composite pressure vessel will be altered when the loading speed is varied. The ageing of composite materials in general gives negative effect to the structure, however there might be positive effect occurs due to the load redistribution between the fibres. The study on the negative effect of ageing has been compared favourably with the fibre break model from Mines ParisTech. To improve the model's capability, this positive effect should also be implemented. The problem however to evaluate real scale model that might take extensive computation time. The reduced volume method then was proposed to improve the calculation time. The next study is then to check the approach on different loading condition and compare the result with experimental data provided by BAM. T2 - PhD Day 2018 CY - Evry, France DA - 20.06.2018 KW - Fibre Break Accumulation KW - Carbon Fibre Pressure Vessels KW - Time Effect KW - Integral Range PY - 2018 AN - OPUS4-45567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - A few Aspects of the Current Understanding of DPF Materials Thermal and Mechanical Properties N2 - Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, whereby porosity and solid matter are intermingled. Moreover, they very often display a microcrack network, resulting from the strong anisotropy of the microscopic coefficient of thermal expansion (CTE). Mechanical, thermal, and filtration properties, they all strongly depend on the morphology of both solid matter and porosity, and on the degree of microcracking (also, the microcrack density), which is in its turn tightened to the grain size. Recent industrial and academic research has enormously progressed in understanding the microstructure-property-performance relationships existing in these complicated materials: - Using 3D computed tomography (CT) at different resolutions, and several X-ray refraction-based techniques, porosity and pore orientation could be quantitatively evaluated (in the example of cordierite). - Neutron and X-ray Diffraction has been instrumental to disclose a) the non-linear character of the stress-strain response, and b) the negative CTE of these materials, and its consequences on the materials properties; - Analytical and numerical models have been elaborated to rationalize these behaviours in terms of microcracking and microstructural features. Here these results will be reviewed, and a outlook at (some of the) outstanding problems will be given. T2 - HELSMAC CY - Cambridge UK DA - 7.04.2016 KW - Thermal KW - Materials PY - 2016 AN - OPUS4-35752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blume, Simon T1 - Femtosecond Laser-induced XUV Spectroscopy (LIXS) for Elemental Analysis N2 - In a typical laser-induced breakdown spectroscopy (LIBS) setup, emissions from collisional excitation of the atoms in the later stages of the plasma are detected and provide information about the elemental fingerprint of the sample. However, precise measurements, in particular quantification efforts, suffer from fluctuations of the intensity of the detected emission lines due to matrix effects and plasma-flicker noise, as well as significant background noise. In contrast, the early stages of the plasma are dominated by electron-ion recombination and Bremsstrahlung, which lead to sharp and intense x-ray emissions with consistent intensity profiles between laser pulses and suppressed background noise, therefore improving the limit of detection, especially for lighter elements. These emissions are detected in laser-induced XUV spectroscopy (LIXS).[1] Introduction of a femtosecond laser (pulse length ~100 fs) to the LIXS setup fundamentally changes the laser energy absorption and ablation process. The laser pulse energy is absorbed and redistributed by multiphoton absorption and inverse Bremsstrahlung and operates on a time frame faster than the plasma formation. Additionally, the plasma formation itself is accelerated leading to signal generation in the XUV-range before generation of the undesired background emissions. Thus, utilization of a femtosecond laser allows for further suppression of broadband emissions from the plasma allowing for sharper separation of the emission lines and improved limit of detection. This work presents the results of the combination of a LIXS setup with a femtosecond laser and assess the capabilities of this system with a model sample of cathode material from a spent lithium-ion battery. T2 - AMACEE 2025 CY - Brno, Czech Republic DA - 26.8.2025 KW - LIXS KW - Femtosecond laser KW - Instrumentation PY - 2025 AN - OPUS4-64118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palásti, Dávid jenö T1 - Interferometric sensing in the UV range – Investigation and comparison of the all-reflective spatial heterodyne spectrometer designs N2 - Spatial heterodyne spectrometers (SHS) are optical interferometric devices, working in the UV and visible spectral ranges [1]. The most common SHS setup is similar to the Michelson interferometer, both utilizes a beam splitter in the incoming beam path. In case of the SHS the split beams are not aimed towards orthogonal mirrors, but reflective optical gratings, set under a selected angle. These optical gratings diffract the beams, the direction of every wavelength will depend on the grating constant and the angle of the gratings. The wavefronts belonging to different wavelengths are going to cross each other under a unique angle, resulting in a spatial interference, which is recorded by a digital camera. This relatively compact setup provides high resolution and light throughput, which properties were harnessed for tasks requiring good line separation and/or high sensitivity [2]. However, SHS are only applicable on wavelengths for which an adequate transmissive beam splitter is available like the visible range, but not the far UV. To overcome this limitation, different all-reflective designs were introduced [3]. These instruments utilize symmetric optical gratings for the splitting and recombination of the beams. Although these SHS devices solve the main limitations of the traditional ones, they come with their fair share of drawbacks as well, such as more complex arrangement and the requirement for more delicate tuning. The behaviour of the traditional SHS is well documented [4,5], but in regards of the all-reflective ones we have much less available information. In this current study we utilized computational modelling to predict the behaviour of the all-reflective SH spectrometers, with special attention to the effects of the different alignment errors. Later we utilize this knowledge to fine tune an SHS for sensing (LIBS, Raman) in the UV region. Furthermore, we are introducing two new all-reflective SHS setups and compering them to their older counterparts. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - SHS KW - Spectroscopy PY - 2025 AN - OPUS4-63556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Anwendung der Master-Sinter-Kurve bei druckunterstützter Sinterung von Low Temperature Co-Fired Ceramics T2 - DKG-Jahrestagung 2014 CY - Clausthal-Zellerfeld, Germany DA - 2014-03-24 PY - 2014 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-30472 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Evaluating Porosity in Cordierite DPF Materials: Advanced X-ray Techniques and New Statistical Anlaysis Methods T2 - CIMTEC 2014 CY - Montecatine Terme, Italy DA - 2014-06-08 PY - 2014 AN - OPUS4-30875 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Analyse von Schädigungsprozessen in Beton - Was leistet die CT? Teil1: Einblick in die Computertomographie N2 - Ein Nachteil der klassischen Durchstrahlungstechnik mit Röntgenstrahlen ist die, in der Abbildung des Untersuchungsobjektes, fehlende Tiefeninformation. Die Anwendung von radiografischen Verfahren, die das Objekt unter zwei oder mehreren Winkelpositionen durchstrahlen, erlauben die Rekonstruktion räumlicher Abbildungen. Dazu zählen Stereoradiografie, Translations- und Rotationslaminographie. Bei der Computertomographie erfolgt die Durchstrahlung unter einem Winkelbereich von 180° oder 360°. Die dabei aufgenommenen Projektionen werden anschließend durch Anwendung der Fourier Transformation und der gefilterten Rückprojektion zu einem 3D-Bilddatensatz rekonstruiert. Verschiedene systembedingte Artefakte, die das Ergebnis negativ beeinflussen können, lassen sich durch geeignete Meß- und Rekonstruktionsparameter, sowie einer nachfolgende Bildverarbeitung eliminieren oder reduzieren. T2 - Summer School im Rahmen des DFG Schwerpunktprogramms 2020 "Zyklische Schädigungsprozesse in Hochleistungsbetonen im Experimental-Virtual-Lab" CY - Hotel Park Soltau, Soltau, Germany DA - 25.06.2018 KW - Computertomographie KW - Durchstrahlungsverfahren KW - Bildverarbeitung KW - Rekonstruktionsverfahren KW - Bildartefakte PY - 2018 AN - OPUS4-45432 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra T1 - Characterization of multiphase metal matrix composites by means of CT and neutron diffraction N2 - The present study examines the relationship between the microstructure of multiphase MMC and their damage mechanisms. The matrix AlSi12CuMgNi was combined with 15% vol. Al2O3 (short fibres) and with 7% vol. Al2O3 + 15% vol. SiC (short fibres and whiskers, respectively). The experimental approach encompasses 3D microstructure characterization by means of computed tomography of samples (a) as-received, (b) after heat treatment, and (c) after compression tests at room temperature. The volume fraction of different phases, their distribution, their orientation and the presence of defects and damage are studied. Influence of addition of SiC whiskers on mechanical properties of composite was investigated. Phase-specific load partition analysis for samples with fibre plane parallel to load was perform by using neutron diffraction measurements during in-situ compression. It shows damage in the Si phase, while Al2O3 short fibres carry load without damage until failure. The computed tomography observations confirm the load partition analysis. T2 - World Non Destructive Testing CY - München, Germany DA - 11.06.2016 KW - CT KW - Neutron diffraction KW - Aluminium KW - Composite PY - 2016 AN - OPUS4-38395 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas T1 - 3D Charakterisierung wasserstoffunterstüzter Risse in Stahl mittels Synchrotron-Refraktions-CT N2 - Die Fehlertoleranz moderner hochfester Stähle gegenüber Prozessfehlern beim Fügen nimmt stetig ab und erfordert eine immer kritischere Beurteilung der Ergebnisse aus den vorhandenen Prüfverfahren. Deren Aussagekraft ist häufig zu gering und daher muss zum einen das wissenschaftliche Verständnis der Mikrokaltriss-Entstehung in diesen Stählen vertieft werden und zum anderen müssen die Prüfmethoden und Bewertungskriterien angepasst werden. Dies erfordert ein besseres Verständnis insbesondere der Kopplung von Eigenspannungen, Wasserstoffgehalten und der Wirkung äußerer Kräfte auf die Rissentstehung und das Risswachstum. Erstmals soll mittels 3D-Synchrotron-Refraktions-Topographie an der BAMline am BESSY die Rissentstehung in mit Wasserstoff beladenen Zugproben charakterisiert werden. Diese Kenntnisse sollen in weiteren Untersuchungen auf Schweißnähte übertragen werden. T2 - MDDK – Master-, Diplomanden- und Doktorandenkolloquium CY - Universität Magdeburg, Germany DA - 23.06.2016 KW - Duplexstahl KW - Wasserstoffunterstützte Rissbildung KW - Computertomographie KW - Synchrotron-Refraktion PY - 2016 AN - OPUS4-36733 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei T1 - Stress-induced damage evolution in aluminum matrix composites N2 - Two metal matrix composites, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles were studied. Distribution, orientation, and volume fraction of the different phases was determined by means of synchrotron computed tomography. The load partitioning between phases was investigated by in-situ neutron diffraction compression tests. The internal damage of the eutectic Si phase and Al2O3 fibers after ex-situ compression tests was directly observed in CT reconstructed volumes. Significant debonding between Al-matrix and SiC particles was found. Those observations allowed rationalizing the load transfer among the constituent phases of two different composites. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the composite with one and two ceramic reinforcements. The model rationalizes the experimental data, and predicts the evolution of principal stresses in each phase. T2 - The 4th International Congress on 3D Material Science 2018 CY - Elsinore, Denmark DA - 10.06.2018 KW - Computed Tomography KW - Aluminium KW - Metal Matrix Composite KW - Load Partition PY - 2018 AN - OPUS4-45397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Characterization of Additive Manufacturing Materials at BAM N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. Finally, I will show that BAM is very active in standardization and certification, including production of Reference Materials and Methods. T2 - Skoltech Determination of the microscopic residual stress CY - Moscow, Russia DA - 20.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Heißprägen im Grünzustand und Sinterprägen - Zwei Verfahren zur Strukturierung keramischer Folien und Laminate N2 - Prägeverfahren bieten eine interessante Alternative zur Strukturierung keramischer Folien und Laminate. Im Gegensatz zur etablierten Stanz- oder Laserbearbeitung von Einzelfolien sind damit einerseits Strukturtiefen realisierbar, die nicht einem Vielfachen der Einzelfoliendicke entsprechen, andererseits können Strukturierungsgrade erzielt werden, bei denen perforierte Einzelfolien nicht mehr handhabbar sind. Heißprägen grüner Folien und Laminate erfolgt bei Temperaturen um 130 °C mit Metallstempeln. Die plastische Verformung erfolgt zeitabhängig. Dabei sind die Fließeigenschaften des polymeren Binders der Grünfolie maßgeblich für die Konturtreue der Prägung. Randeinzug und Gründichtegradienten um den Eindruck können zu Defekten im Sintergefüge führen. Je nach Sinterverfahren muss die Schwindung der geprägten Struktur berücksichtigt werden, eine Kombination dieses Verfahrens mit zero-shrinkage Techniken ist aber möglich. Sinterprägen stellt eine Erweiterung der Drucksintertechnologie für glaskeramische Komposite dar. Dabei wird ein Pressstempel aus glasartigem Kohlenstoff während des Brandes in die erweichte Glasphase des Komposits gedrückt. Die Abformung erfolgt durch viskosen Fluss der Glasphase. Mit Kenntnis des Dichte- und Viskositätsverlaufs des Werkstoffs kann das Verfahren so gestaltet werden, dass die Pressform konturtreu abgeformt wird. Mittels Sinterprägen lassen sich auch erhabene Strukturen realisieren, wobei diese häufig eine erhöhte Porosität aufweisen. T2 - Herbstsymposium 2016 | Keramische Mehrlagentechnik - Herstellverfahren und Anwendungen CY - Erlangen, Germany DA - 30.11.2016 KW - Folientechnik KW - Keramische Substrate KW - Low temperature co-fired ceramics (LTCC) PY - 2016 AN - OPUS4-38582 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang T1 - Ultrasound-Assisted Underwater Laser-induced Breakdown Spectroscopy with HighRepetition-Rate μJ-DPSS laser N2 - The elemental analysis of seawater is often critical to the understanding of marinechemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdownspectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a greatpotential for in-situ elemental analysis of seawater. In practice, it is crucial to create acompact, low cost and power saving instrument for the long-term deep-sea observation. Arecently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidateas it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHzcan provide a considerable throughput for LIBS analysis. However, the DPSS lasers operateat moderate pulse energies, usually less than one mJ, which cannot sustain stablebreakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such aμJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. Thephase interface and mass flow generated by the near-field ultrasound can greatly reduce thebreakdown threshold and enhance element-specific emissions. Meanwhile, the highrepetition-rate pulses can also improve the breakdown probability and generate uniqueemission lines originated from the water molecule. We further demonstrate that the highrepetition-rate DPSS laser combined with the Echelle spectrometer can provide effectivequantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Underwater LIBS PY - 2019 AN - OPUS4-49769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blume, Simon T1 - Isotopic analysis of lithium via acousto-optically gated high-repetition laser-induced breakdown spectroscopy and spatial heterodyne spectroscopy N2 - Acousto-optically gating the emission signal from a laser-induced breakdown spectroscopy (LIBS) plasma negates some of the line-broadening effects, therefore, improving the signal line shape. However, the remaining influences disallow the differentiation of the contributions of the individual lithium isotopes, even when utilizing a high-resolution spatial heterodyne spectrometer (SHS). Nevertheless, isotopic analysis of lithium with LIBS is still feasible, because lithium exhibits a strong self-absorption dip in the emission signal, which is likewise characterized by the isotopic shift and even benefits from the broad emission lines typically observed in LIBS. The isotopic ration can be resolved from the absorption dip via high-resolution SHS. T2 - SciX 2024 CY - Raleigh, NC, USA DA - 20.10.2024 KW - LIBS KW - SHS KW - Isotopic analysis KW - Lithium PY - 2024 AN - OPUS4-62012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - 3D Analysis of transport structures in realistically compressed gas diffusion layer T2 - 6th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 2014-12-03 PY - 2014 AN - OPUS4-32212 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Talbot-Lau interferometry for non-destructive testing T2 - 23. Sitzung des DGZfP-Fachausschusses Zerstörunfreie Materialcharakterisierung CY - Berlin, Germany DA - 2015-11-12 PY - 2015 AN - OPUS4-34823 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Druckunterstütztes Sintern von Low Temperature Co-Fired Ceramics: Einfluss der Brennhilfsmittel auf die Oberflächenqualität T2 - DKG-Jahrestagung 2014 CY - Clausthal-Zellerfeld, Germany DA - 2014-03-24 PY - 2014 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-30471 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Co-Sinterung von Multilayer-Werkstoffverbunden - Möglichkeiten und Grenzen T2 - DKG-Jahrestagung 2014 CY - Clausthal-Zellerfeld, Germany DA - 2014-03-24 PY - 2014 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-30441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Evaluating Porosity and Properties in Diesel Particulate Filter Ceramics: a Problem to solve with Neutrons and Synchrotron Radiation T2 - Industrie Workshop HZB CY - Berlin, Germany DA - 2013-12-03 PY - 2013 AN - OPUS4-31320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - X-ray dark field imaging T2 - 11th European Conference on Non-Destructive Testing CY - Prag, CZ DA - 2014-10-06 PY - 2014 AN - OPUS4-31918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten T1 - Prozessbegleitende Prüfung beim Sintern keramischer Schichtverbunde N2 - Die zuverlässige Herstellung von Bauteilen aus Hochleistungskeramik erfordert den Einsatz von prozessbegleitenden Prüfverfahren in allen Fertigungsstufen. Prozessbegleitende Prüfung umfasst sowohl die Bewertung von Ausgangs- und Zwischenprodukten (Pulver, Suspensionen, Grünkörper) als auch die in-situ Überwachung kritischer Fertigungsstufen (Aufbereitung, Formgebung, Entbinderung, Sinterung). Der Arbeitskreis „Prozessbegleitende Prüfverfahren“ im DKG/DGM-Gemeinschaftsausschuss „Hochleistungskeramik“ bietet eine Plattform zum Informationsaustausch über neue Messverfahren und zur Initiierung von Ringversuchen und Referenzmaterialentwicklung. Als aktuelle Beispiele werden zwei applikationsnahe Verfahren zur in-situ Charakterisierung von Geometrieveränderungen (Schwindung, Verformung) an großformatigen keramischen Schichtverbunden vorgestellt. Die Hochtemperatur-3D-Laserprofilometrie ermöglicht die Visualisierung und Quantifizierung der lokalen Verformung keramischer Multilayer während der drucklosen Sinterung. Beobachtet wurden an LTCC-Multilayern starke Verformungen bereits während der Entbinderung und in der Abkühlphase. Das Wissen um zwischenzeitliche Verformungen erweitert das Verständnis über die Ursachen von Defekten in Multilayer-Bauteilen. Die in-situ Messung der Dickenschwindung an realen, großformatigen LTCC-Bauteilen während der druckunterstützten Sinterung wurde erstmals durch die Entwicklung eines LTCC-kompatiblen Drucksinteraggregat mit integriertem Dilatometer ermöglicht. Zusätzlich wurde das Drucksinteraggregat mit einer prozessbegleitende Mess- und Regelungseinrichtung für den Sauerstoffpartialdruck ausgestattet. Durch ein optimiertes Sauerstoffpartialdruckregime konnte an LTCC-Modulen eine qualitätsgefährdende Silberdiffusion aus den Leiterbahnen in das umgebende keramische Dielektrikum drastisch reduziert werden. Das mit einem industriellen Partner entwickelte Drucksinteraggregat eröffnet unikale Möglichkeiten zur Optimierung von Aufheizgeschwindigkeit, Druck und Sinteratmosphäre in allen Phasen des Sinterprozesses. T2 - Werkstoffwoche CY - Dresden, Germany DA - 27.09.2017 KW - In situ Prüfung KW - Keramische Multilayer KW - Laserprofilometrie KW - Drucksintern PY - 2017 AN - OPUS4-42297 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palásti, Dávid jenö T1 - The effects of the laser pulse profile on the plasma emission properties N2 - Intense laser pulses create plasmas upon radiation on targets, and the properties of such plasmas are generally determined by both the properties of the target and the laser pulse. In terms of laser intensity, the irradiance and even more importantly the fluence are the critical parameters [1]. Since most lasers emit pulses of a constant pulse duration dictated by the design of the resonator and Q-switch, these two parameters are usually used interchangeably in studies. However, with the emergence of fiber laser based light sources [2], which are capable not just to freely tune the pulse duration, but to generate variable and high pulse repetition rates, up to the MHz range, a new and interesting optimization aspect is given to the laser spectroscopy community. In our study a low alloy steel standard sample (BAS 403/1) was investigated using a variable pulse duration and pulse repetition rate MOPA laser with 80W power of  = 1064 nm emission (JPT M7, VONJAN Technology GmbH, Wessling, Germany). In our experiments the laser was set to pulses with low individual energy (0.4 mJ) at 200 kHz pulse repetition rate, while the pulse duration was varied between 50 and 500 ns. The plasma emission was recorded by an LTB Demon spectrometer in several spectral regions, which included iron, chromium and manganese lines. Utilizing the variable pulse duration of this laser source, it was possible to assess the effects of changing the fluence, while the irradiance was kept at the same value. Among the investigated parameters are the emission intensity, peak width and self-absorption characteristics of major and minor components, as well as the plasma temperature. While the effects for the peak intensity are quite well correlated with the fluence, its interplay with other peak parameters appear to be more complicated. T2 - AMACEE 2025 CY - Brno, Czech Republic DA - 26.08.2025 KW - LIBS KW - Fiberlaser KW - Plasma properties PY - 2025 AN - OPUS4-64218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riesemeier, Heinrich T1 - Combined synchrotron X-ray and neutron imaging for the characterization of fuel cells T2 - Third Joint BER II and BESSY II Users´ Meeting CY - Berlin, Germany DA - 2011-11-30 PY - 2011 AN - OPUS4-25125 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tötzke, C. T1 - Synchrotron tomographic study on the inhomogeneous compression of gas diffusion layers in fuel cells T2 - 10th Symposium on Fuel Cell and Battery Modelling and Experimental Validation - ModVal 10 CY - Bad Boll, Germany DA - 2013-03-19 PY - 2013 AN - OPUS4-28078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tötzke, Chr. T1 - 3D Analysis of transport structures in realistically compressed gas diffusion layers T2 - HZB User Meeting 2013 CY - Berlin, Germany DA - 2013-12-04 PY - 2013 AN - OPUS4-17666 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Druckgesinterte LTCC-Substrate für die Dünnfilmbeschichtung T2 - DKG-Jahrestagung 2011 CY - Saarbrücken, Germany DA - 2011-03-28 PY - 2011 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-23490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Direct X-Ray Refraction of Microstructures T2 - HZB User Meeting CY - Berlin, Germany DA - 2013-12-04 PY - 2013 AN - OPUS4-26611 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Bewertung von Porositätsparametern in Cordierit-Diesel-Partikelfilter-Materialien mit fortgeschrittenen Röntgenverfahren und statistischer Analyse T2 - DGZfP-Jahrestagung 2014 CY - Potsdam, Germany DA - 2014-05-26 PY - 2014 AN - OPUS4-30843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Evaluating Porosity in Cordierite Diesel Particulate Filter Materials: Advanced X-ray and new Statistical Analysis Methods T2 - 11th European Conference on Non-Destructive Testing CY - Prag, CZ DA - 2014-10-06 PY - 2014 AN - OPUS4-31916 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -