TY - CONF A1 - Nehrig, Marko A1 - Erenberg, Marina A1 - Feldkamp, Martin A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Large Scale IAEA Thermal Test with Wood filled Impact Limiters N2 - Packages for the transport of radioactive material are often equipped with impact limiters consisting of wood. Mostly this wood is encapsulated by steel sheets. The impact limiters are needed to ensure that the transport casks meet the IAEA safety requirements. According to the IAEA safety requirements a package has to withstand consecutively severe mechanical tests followed by a thermal test. The mechanical tests have to produce maximum damage concerning the thermal test. Following this, the impact limiters may have serious pre-damage when the thermal tests begins. The IAEA safety requirements state that during and following the fire test, the specimen shall not be artificially cooled and any combustion of materials of the package shall be permitted to proceed naturally. Small scale fire tests with wood filled metal drums by BAM and works of the French Institute for Radiological Protection and Nuclear Safety (IRSN) showed that pre-damaged steel encapsulated wooden structures could start smoldering initiated by the thermal test. These processes supply additional energy to the cask which should be considered within the safety assessment of the package. As not much is known about smoldering processes in encapsulated wooden structures with a reduced oxygen supply the need for a test was identified. To investigate the influence of a smoldering impact limiter concerning the amount of energy supplied to the cask in dependence of the time BAM conducted a large scale impact limiter thermal test. For that, a pre-damaged impact limiter with a diameter of 2,3 m was mounted on a water tank simulating a cask. A complex system of a regulated pump, a heater, a cooler, a slide valve, a flow meter and numerous thermocouples were installed and connected to a control unit to ensure all needed operating conditions. After a pre-heating compared to typical SNF decay-heat, the 30 min lasting fire phase of the thermal test was started. After that, the expected and initiated smoldering began. The results of the large scale test are presented in this poster. Systematic small scale tests will follow to identify the influence of different parameters, e.g. moisture content and scale effects. The tests took place at BAM Test Site for Technical Safety (TTS) with its various possibilities for mechanical and thermal tests. The results of these tests will have direct influence in the safety assessment of transport cask for the transport of radioactive material. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Type-B Package KW - Accident Conditions of Transport KW - Thermal Test PY - 2018 AN - OPUS4-45310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Horn, Jutta A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Langzeitverhalten von sicherheitsrelevanten Komponenten von Transport- und Lagerbehältern für radioaktive Stoffe N2 - der Vortrag stellt den aktuellen Bearbeitungsstand und Ergebnisse des laufenden Drittmittelvorhabens LaMEP vor. Hierbei geht es um Alterungsprozesse an sicherheitsrelevanten Behälterkomponenten während der langfristigen trockenen Zwischenlagerung bestrahlter Brennlemente und hochradioaktiver Abfälle. Die Untersuchungen umfassen Metall- und Elstomerdichtungen sowie Polymerkomponenten zur Neutronenabschirmung. T2 - 13. BMWi Projektstatusgespräch Entsorgung radioaktiver Abfälle CY - Karlsruhe, Germany DA - 20.06.2018 KW - Radioaktive Abfälle KW - Zwischenlagerung KW - Behälter KW - Alterung KW - Dichtungen PY - 2018 AN - OPUS4-45330 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit T1 - Langzeitschäden an Heizöllagerbehältern N2 - Heizöllagerbehälter aus Polyethylenformstoffen werden seit Beginn der 70-iger Jahre in Deutschland hergestellt. Die Hersteller empfehlen zur Gewährleistung der Sicherheit nach Ablauf von 30 Jahren den Ersatz dieser Behälter. Polyethylenformstoffe unterliegen im Laufe ihrer Nutzungsdauer der Alterung durch die Veränderung ihrer Eigenschaften. Das Ausmaß der Alterung und die Art des Abbauvorganges hängen im Wesentlichen vom chemischen Abbau des Polyethylens, der Wanddicke des Behälters und den Umgebungsbedingungen ab. Bisher lagen keine Untersuchungen zum Langzeitverhalten der Polyethylenformstoffe vor, insbesondere nach einer Nutzungsdauer der Tanks über 30 Jahre. Ziel der Untersu-chungen war, den tatsächlichen Schädigungsgrad der Polyethylenformstoffe im Vergleich zu den unbelasteten Formstoffen zu ermitteln. Da die BAM bis Mitte der 90-iger Jahre für die Prüfungen und Gutachten zur Zulassung dieser Behälter zuständig war, sind die Werkstoffdaten noch vorhanden. Als Untersuchungsmethoden wurden die Bestimmung der Schmelze-Masse-Fließrate (MFR) und die Fourier-Transformation-IR-Spektroskopie (FTIR) von Tankausschnitten aus dem Bereich des Bodens, des Mantels und des Daches von 10 ausgesonderten Behältern aus den Polyethylenformstoffen A und B herangezogen. Die Messungen der MFR der Tankaus-schnitte aus diesen Bereichen zeigten Unterschiede in den Werten in Abhängigkeit vom Ge-wicht (5 kg oder 21,6 kg), welches eingesetzt wurde. Eine Abnahme der MFR-Werte wurde für die größere Anzahl der Tankwandungsausschnitte aus dem Formstoff B nach einer Lebensdauer der Tanks > 30 Jahre gemessen. Dieser Formstoff wurde hauptsächlich durch innere Alterung infolge Vernetzungen, Verzweigungen und Weichmacherverlust und weniger durch oxidativen Abbau geschädigt. Die FTIR-Messungen der Proben aus dem Bereich des Bodens und des Mantels der Tanks zeigten, dass die Intensität der asymmetrischen/symmetrischen CH2 -Streckschwingungen im Bereich: 2800 - 2900 cm-1 und der CH2 -Biegeverformungsschwingung bei 1400 cm-1 aufgrund von Kettenspaltungen zugenommen haben. Die Intensität der Carbonylstreckschwingung C=O bei 1740 cm-1 ist niedrig. Sie ist ein Maß für die Oxidation des Polymerwerkstoffes. T2 - 14. Hildesheimer Forum zum anlagenbezogenen Gewässerschutz CY - Hildesheim, Germany DA - 04.12.2018 KW - Polyethylenformstoffe KW - Heizöllagerbehälter KW - Schädigungsgrad PY - 2018 AN - OPUS4-46886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruchno, Martin T1 - Konzipierung eines Versuchsaufbaus und Prüfverfahrens zur quantitativen Erfassung der luftübertragenen Partikelfreisetzung aus Gefahrgutsäcken nach stoßartiger Belastung N2 - Täglich werden mehrere tausend Tonnen in Säcken verpackter Gefahrgüter über die Straßen transportiert. Laut den internationalen Gefahrgutvorschriften für den innerstaatlichen und grenzüberschreitenden Verkehr ADR müssen Gefahrgutsäcke aus Papier „staubdicht“ sein. Die Autobahnpolizei Münster wies bei einem Vortrag in der BAM darauf hin, dass im Rahmen polizeilicher LKW-Kontrollen Ladeflächen voller Staub vorgefunden wurden, ohne dass ein Defekt an einem Gefahrgutsack festgestellt werden konnte. Ziel der Arbeit war es, eine Prüfkammer zu entwickeln, welche in der Lage ist, nach Fallversuchen mit Gefahrgutsäcken aus Papier den freigesetzten luftgetragenen Staub zu bestimmen. Eine anschließende Bewertung soll die gesundheitlichen Gefahren des entstandenen Aerosols aufzeigen. Durch die Auswertung erster Fallversuche wurde exemplarisch die „Dichtheit“ vorhandener Gefahrgutsäcke bestimmt und die Fraktionen der entstandenen Aerosole wurden mit den Arbeitsplatzgrenzwerten verglichen. T2 - Abteilungskolloquium der Abteilung 3, BAM CY - Berlin, Germany DA - 05.12.2019 KW - Gefahrgutverpackungen KW - Gefahrgutsäcke KW - Dichtheit PY - 2019 AN - OPUS4-49951 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Perez, Teresa A1 - Holtappels, Kai A1 - Sobol, Oded A1 - Maiwald, Michael T1 - Kompetenzzentrum H2SAFETY@BAM - Das Spektrum H2-Aktivitäten der BAM N2 - Der Vortrag stellt das Kompetenzzentrum H2Safety der BAM vor und zeigt Aspekte besonderer Kompetenz des Zentrums mit Blick auf das Kompetenzfeld TestCert. Beginnend mit dem H2-Unfall auf dem Tempelhofer Feld in 1894 wird dargestellt welche Bedeutung Sicherheitsfragen zu Wasserstoff für das Kompetenzzentrum H2Safety haben. Danach wird die Struktur und die Arbeitsschwerpunkte erläutert und die verantwortlichen Personen kurz vorgestellt. Das Kompetenzfeld TestCert wird vertieft erläutert und hier auf das Spektrum der wissenschaftlichen und technischen Dienstleistungen hingewiesen. Darauf aufbauend werden die statistischen Aspekte eines Markthochlaufes wie auch die der Streuung einer Population und deren Alterung dargelegt. Zuletzt kommt der Hinweis auf das Potential der Bewertung von Baumusterprüfkriterien mithilfe der Monte-Carlo-Simulation. T2 - BAM-DIN-IGV-DVFG -Jahresgespräch 2021 CY - Online meeting DA - 24.02.2021 KW - Wasserstoffspeicher KW - H2Safety@BAM KW - Lebensdauervorhersage KW - Monte-Carlo-Experiment KW - Sicherheit PY - 2021 AN - OPUS4-54615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Duffner, Eric T1 - Kolloquium der Abt. 3 - Schallemissionsprüfung an Faserverbund-Druckbehältern N2 - Übersicht über die Aktivitäten auf dem Gebiet der Schallemissionsprüfung an Faserverbunddruckbehältern in der Abteilung 3. T2 - Abteilungskolloquium der Abteilung 3 CY - BAM, Berlin, Germany DA - 13.11.2019 KW - Schallemission KW - Schallemissionsprüfung KW - Faserverbundbehälter KW - Druckbehälter PY - 2019 AN - OPUS4-49625 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Kinematic KW - Analysis PY - 2018 AN - OPUS4-44874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten T1 - Kerntechnische Entsorgung Herausforderungen im Transport und bei der Lagerung N2 - Nach der Reaktorkatastrophe in Fukushima 2011 hat die Bundesregierung beschlossen die Nutzung der Kernenergie bis zum Jahr 2022 zu beenden. Seitdem erfolgt der Rückbau und die Stilllegung der kerntechnischen Anlagen in Deutschland. Dieser Vortrag erörtert die Herausforderungen, die sich mit dem Transport und der Lagerung von Kernbrennstoffen ergeben und leitet daraus Anforderungen ab, die an Transportbehälter gestellt werden. T2 - Ausgewählte Kapitel der Werkstofftechnik - Brand- und Explosionsverhalten von Werkstoffen CY - Wuppertal, Germany DA - 24.01.2020 KW - Kerntechnische Entsorgung KW - Rückbau KW - Transport- und Lagerbehälter PY - 2020 AN - OPUS4-50428 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Moutarde, M. A1 - Desnoyers, B. A1 - Ballheimer, Viktor A1 - Kuschke, Christian A1 - Apel, Andreas A1 - Kalinina, E. A1 - Ammerman, D. T1 - ISO-Standart and IAEA guidance material for package load attachment points N2 - For transport package design and operation according to the IAEA regulations, the package shall be securely stowed and its retention system shall be capable to withstand load conditions of routine transport. The supporting IAEA Advisory Material SSG-26 provides information how to do that. Up to now package designers in different countries use other load factors for the design of attachment points than those specified in the IAEA guidance material. In particular the acceleration values vary between different countries and lead to difficulties during the validation of foreign approval certificates. Therefore the IAEA started a discussion process to review the existing guidance text. An international working group was constituted in 2013. Representatives came from different stakeholders, e.g. transport operators, competent authorities and modal organizations. The discussions concluded especially on the transport conditions which has to be considered for stowage design, including on the one hand the relevance of the load factors used for strength and fatigue analysis and on the other hand the criteria which have to be considered for the attachment points. The proposed acceleration values will be compared to those measured during recent multi-modal testing by Sandia National Laboratories that measured the acceleration levels experienced by a spent fuel flask during heavy-haul truck, sea, and rail transport. The ISO standard 10276 is dealing with the load attachment systems of packages as well. This standard considers the trunnion design, manufacturing and operational aspects. The regular standard revision phase started in 2017. An expert group discussed new state-of-the-art technology, different analysis approaches for strength and fatigue analysis and proposed revised text for the ISO standard for international discussion. The finite-element analysis approach incl. appropriate acceptance criteria are described and referenced. The paper describes relevant tie-down aspects, gives background argumentation relevant to analysis approaches, and tries to support harmonized application of the revised IAEA guidance material and the future revised ISO standard. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Load attachment KW - Stowage KW - Trunnion KW - Bolt design KW - Retention KW - Acceleration KW - Transport KW - Load cycles PY - 2019 AN - OPUS4-49096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meurer, Maren A1 - Wiesner, Yosri A1 - Geburtig, Anja A1 - Waniek, Tassilo A1 - Altmann, Korinna T1 - Is olypropylene relevant for microplastic analytics? N2 - Nowadays, in every terrestrial and aquatic ecosystem, even in the remotest areas, small residues of plastics, the so called microplastic (MP) can be found. MPs are particles with a size of 1-1000 µm (ISO/TR 21960:2020), mainly containing synthetic polymers like polyethylene (PE), polypropylene (PP), polystyrene (PS) or polyethylene terephthalate (PET). Even styrene-butadiene rubber (SBR) as an indication for tire wear is included due to similar particle formation. To understand the MPs consequences to the environment, it is of high priority to capture its extent of contamination. It is surprising that in the analysis of polymer masses in environmental samples, PE, PS and SBR are often detected, but only small amounts of PP, although this is the second most commonly produced standard plastic and many MP particles originate from carelessly disposed packaging materials. This presentation provides hypotheses about the reasons of rare PP identification and mass quantification in environmental samples. Different investigations of pristine PP and representative environmental samples, including the pre-treatment by Accelerated Solvent Extraction (ASE) or with density separation followed by the thermal extraction / desorption gas chromatography-mass spectrometry (TED-GC/MS) are presented. The results are discussed according to the material properties and a possible degradation mechanism under different weathering conditions which indicate less stability under relevant storage conditions. T2 - Society of Environmental Toxicology and Chemistry CY - Dublin, Ireland DA - 30.04.2023 KW - Sample preparation KW - Polypropylene KW - Microplastic KW - Degradation PY - 2023 AN - OPUS4-57474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mehmood, Asad A1 - Fellinger, Tim-Patrick T1 - Ionothermal Template Transformation as a Sustainable Route Towards Carbon Electrodes in Energy Storage and Conversion N2 - Porous carbons with tuneable functionalities and morphologies have extensively been employed as electrode materials in a variety of electrochemical energy conversion and storage systems for instance in fuel cells and electrolysers as active catalysts and catalyst supports, and in secondary batteries as anode materials. Amorphous carbons with well-developed pore structures are of particular interest due to their superior mass-transport characteristics and remarkable charge storage capacities. T2 - Nano-Pak 2023, 2nd International Conference on Emerging Trends & Innovations in Nanotechnology CY - Lahore, Pakistan DA - 17.06.2023 KW - Ionothermal Template Transformation KW - Sustainable Route KW - Carbon Electrodes PY - 2023 AN - OPUS4-58897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigations on the Long-term Behavior of Metal Seals for Dual Purpose Casks N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 AN - OPUS4-49018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Hoffmann, Gabi A1 - Rehfeldt, Rainer A1 - Kohl, Anka T1 - Investigations on the degree of damage of polyethylene grades as materials of heating oil storage tanks after a service life of more than 30 years N2 - Tanks for heating oil made of polyethylene grades have been on the market since the early 1970s in Germany. Tank manufacturers recommend the replacement of the tanks after a period of 30 years due to guarantee safety. Polyethylene grades are subject to ageing by alteration of the properties during their life cycle. The degree of ageing and the nature of the degradation process mainly depend on the chemical degradation of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no results available on the long-term behavior of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was the determination of the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. The determination of the Melt Flow Rate (MFR) and the Fourier Transmission IR Spectroscopy (FTIR) of tank sections from the bottom, the shell and the roof of 10 segregated heating oil storage tanks produced of polyethylene grades A and B were used as tests methods. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). A reduction of the MFR values was measured for most of the sections of tanks made of polyethylene grade B after a service life of the tanks of more than 30 years. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer, and to a lesser extent by oxidative degradation. The FTIR analysis, especially of tank sections of the bottom and the shell showed that the intensity of the CH2 asymmetric and symmetric stretching vibrations in the range: 2800 - 2900 cm-1 and the CH2 bending deformation vibration at 1400 cm-1 increased due chain scissions. The intensity of the carbonyl stretching vibration C=O at 1740 cm-1 is low. The carbonyl index characterizes the degree of oxidation. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Heating oil storage tanks KW - Polyethylene KW - Degree of damage KW - Melt Flow Rate (MFR) KW - FTIR PY - 2018 AN - OPUS4-45939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Investigations of the burning behavior of transport package impact limiters and thermal effects onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. A first computational simulation of transport package temperatures taking into account the results of the conducted fire test was performed. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Impact limiter KW - Shock absorber KW - Smoldering KW - Smouldering KW - Burning KW - Thermal testing KW - BAM TTS KW - Combustion KW - Fire KW - Energy release KW - Thermal simulation KW - Heat emission KW - Radioactive KW - Transport KW - IAEA KW - Wood KW - Spruce wood KW - Lid temperature PY - 2018 AN - OPUS4-46882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. The specification of conservative package design leakage rates is one of the most important aspects in assessment. Metal seals of the Helicoflex® Type are usually used to ensure the required package tightness for both, storage, and transport of the cask before and after storage. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. After this ageing procedure the flanges were opened completely, the seals were moved a little to vary the contact area, and the flanges were compressed again. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. Details about test conditions and first results will be presented in the poster. T2 - RAMTrans 2024, 12th Internatiopnal Conference on the Transport , Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2024 KW - Seals KW - Ageing KW - Radioaktiv PY - 2024 AN - OPUS4-60112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Neumeyer, Tino A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Investigations of Aged Metal Seals for Transport Package Safety Assessment N2 - Acceptable limits for activity release from transport casks for high-level radioactive material specified in the IAEA regulations must be kept by the integrity of cask body and the cask sealing system. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. One of the fundamental aspects in assessment is the specification of conservative package design leakage rates. To ensure the required package tightness for both, storage, and transport of the cask before and after storage usually metal seals of the Helicoflex® Type are used. Due to the long-term use the seal behavior is influenced by temperature and time. The mechanical and thermal loadings associated with the routine, normal and accident conditions of transport specified in the regulations can have a significant effect on the leak tightness of the sealing system. Whereas the safety for application of new, non- aged Helicoflex® seals is verified sufficiently, there are still technical data gaps concerning the efficiency of aged Helicoflex® seals. BAM performed experiments to learn more about the sealing efficiency of aged Helicoflex® seals with Aluminum and Silver outer jackets. The seals were compressed in test-flanges and for artificial ageing the complete flange systems were stored in an oven for several month at a high temperature. During the compression and decompression tests after the aging, load-deformation characteristics of the seals, and leakage rates were measured. With these tests a load situation was simulated, which can occur in the regulatory drop test of the cask: Under high impact loads the bolted lid can lift a little for a short moment, allowing a little movement of the seal, so that the contact area can change before compressing again. The poster presentation will show details about test conditions and first results. T2 - Interdisciplinary research symposium on the safety of nuclear disposal practices safeND2023 CY - Berlin, Germany DA - 13.09.2023 KW - Radioactive material KW - Sealing KW - Ageing KW - Leaktightnes PY - 2023 AN - OPUS4-58436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Goral, Milan A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Investigations of Aged Metal Seals for Interim Storage N2 - The storage of spent fuel and high level radioactive waste in Germany is performed in interim storage containers with double lid systems. The lids are bolted and equipped with metal seals (e.g. Helicoflex®) to ensure the safe enclosure of the inventory. The used metal seals have a layered structure consisting of three components as can be seen schematically in the cross-sectional view in Fig. 1. In the center a helical spring is positioned that is surrounded by two C-shaped jackets and is mainly responsible for generation of the required restoring force. The inner jacket is made of stainless steel and homogenizes the restoring force of the helical spring. The outer jacket is made of silver or aluminium which both are soft metals in comparison to the contact partners (lid and container body). During bolting of the lid to the container body the seal is compressed. The generated restoring force of the helical spring causes a plastic deformation of the outer jacket and adapts to the surfaces of the lid and the container body. Hence, leakage paths are closed and the sealing function is generated. Typical durations for existing interim storage licenses in Germany are 40 years, but it can be expected that they have to be extended to longer periods as a final repository will not be available before the end of the running licence periods. This extension of license periods requires a solid understanding of the long-term behaviour of the seals under storage conditions. To meet this challenge long-term investigations have been started at Bundesanstalt für Materialforschung und –prüfung (BAM) in 2009. These tests focus on seals assembled in test flanges which are stored at temperatures ranging from room temperature to 150 °C for accelerated ageing. The aged seals are tested repeatedly after certain ageing steps and the leakage rate as indicator for sealing performance, the remaining seal force, and the useable resilience upon decompression are determined. In the poster an update on the performed investigations in respect to earlier publications (Grelle et al. 2019, Goral et al. 2023) will be given and the implications of the results for resilient long term safety will be presented. Additionally, a focus will be laid on the currently planned further investigations and the question “What is additionally needed for evaluation of an interim storage period extension in regard to the used metal seals?” will be addressed. T2 - safeND2023: Forschungssymposium des BASE CY - Berlin, Germany DA - 13.09.2023 KW - Metal seal KW - Interim storage KW - Ageing PY - 2023 AN - OPUS4-58568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Wolff, Dietmar T1 - Investigations at BAM on Fuel Cladding Integrity and DPC Seal Performance N2 - The presentation provides an update on preliminary results from research projects in the area of long term performance of metal seals and fuel rod integrity as safety relevant components of spent fuel transport and storage casks for spent nuclear fuel. T2 - Extended Storage Collaboration Program (ESCP) winter meeting 2022 CY - Charlotte, NC, USA DA - 07.11.2022 KW - Metal seal KW - Fuel cladding KW - Ring compression test KW - Brittle failure PY - 2022 AN - OPUS4-56400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers N2 - The Bundesanstalt für Materialforschung und –prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high level leak tightness. In Germany, those casks are licensed for interim storage periods of up to 40 years or more if extended interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 AN - OPUS4-45848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Investigation of the low-temperature performance of rubber seals N2 - For many sealing applications rubbers are applied due to their special material properties and easy use. In many applications as e.g. in aviation, traffic or process technology the material can be exposed to low temperatures during operation. Therefore, it is important to know the material behaviour at those low temperatures to determine the temperature range that allows a safe operation of the seal. In this work, we focus on the behaviour of elastomer seals at low temperatures with regard to potential decrease of leak-tightness or catastrophic seal failure of O-ring rubber seals. This is required as material properties of rubbers are strongly temperature dependent but their temperature application range is not always clearly defined. Based on previous investigations which considered the physical material properties and the seal behaviour under purely static conditions we widen the focus on the sealing performance after a fast partial relief of compressed seals and additional materials. For the investigations, different typical rubber seal materials were used as e.g. fluorocarbon (FKM), ethylene propylene diene (EPDM) and hydrogenated acrylonitrile-butadiene (HNBR) rubber. The correlation of the physical material properties with seal performance is studied. This includes as well purely static sealing applications as the performance during/after fast partial relief of seals at low temperatures. T2 - Polymertec 2018 CY - Merseburg, Germany DA - 13.06.2018 KW - Seal KW - Low temperature KW - Leakage PY - 2018 AN - OPUS4-45214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Scheidemann, Robert A1 - Wille, Frank A1 - Ballheimer, Viktor T1 - Investigation of the internal impact during a 9 m drop test of an accident-safe waste package N2 - The safety assessment of packages for the transport of radioactive material follows the IAEA regulations and guidance. The specified regulatory tests cover severe accidents and demonstrate the package containment system integrity. Special attention must be drawn to the behaviour of the content which could move inside the package due to unpreventable gaps caused by the loading procedure and the structure of the content. A possible internal impact of the content which occurs during the drop tests onto the lid system is investigated. The IAEA regulations SSR-6 and the Guidance SSG-26, revised recently, consider input from Germany and France related to the significance of internal gaps. In the context of a waste package design assessment, a model was equipped with a representative content to conduct a drop test with an internal impact. The weight and kinetic impact of this content covered all possible real contents. The objective of the test was to maximize the load onto the lid system and to prove the mechanical integrity by complying with the required leak tightness. The test was conducted conservatively at a package temperature lower than -40 °C at the BAM Test Site Technical Safety. This paper gives an overview of efforts to address internal gaps and their consequences, and the BAM efforts with the implementation of this topic into IAEA regulations and guidance material. The paper then focuses on the conduction of a drop test and investigation of internal component impact. T2 - ASME 2021 Pressure Vessels & Piping Conference (PVP2021) CY - Online meeting DA - 13.07.2021 KW - Drop test KW - Internal gaps KW - IAEA PY - 2021 AN - OPUS4-54744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hajhariri, Aliasghar A1 - Otremba, Frank A1 - Seidlitz, H. A1 - Eberwein, Robert T1 - Investigation of Super Insulation degradation of a tank for cryogenic goods. Effect of fire on the storage of Cryogenic fluids N2 - Cryogenic liquefied gases, such as liquid hydrogen (LH2) and liquefied natural gas (LNG), are becoming more popular as eco-friendly energy sources. However, using these gases more often increases the risk of accidents, making it important to conduct thorough risk assessments. The storage systems for these gases rely on thermal superinsulation (TSI), which can fail under extreme heat, especially during fires. Therefore, it is essential to study how and why TSI fails. This research (part of PhD topic) aims to examine insulation performance, thereby improving the overall safety of cryogenic storage systems. T2 - Colloquium of Departement 3 CY - Berlin, Germany DA - 27.05.2024 KW - Investigation KW - Insulation degradation KW - Tank for cryogenic goods PY - 2024 AN - OPUS4-60462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - An, Q. A1 - Bäßler, Ralph A1 - Hertwig, Andreas A1 - Rehfeldt, Rainer A1 - Hidde, Gundula T1 - Investigation of mechanical stress and B10 exposure on FKM polymer N2 - Biofuels, particularly biodiesel, have gained significant attention as an alternative to traditional fossil fuels in recent years. Unlike diesel, which contains hundreds of compounds, biodiesel only contains a few compounds in the C16-C18 carbon chain. However, the use of biodiesel in automobile and transportation applications can result in problems of degradation or even damage in materials. Among the commonly used polymer materials, fluorocarbon (FKM) shows excellent performance and high stability and compatibility towards oil, diesel, ethanol, and other chemicals. FKM is a family of fluorocarbon-based fluoroelastomer materials, which provide excellent high-temperature and chemical stability compared to other elastomers. As a result, FKM is widely used in chemical processes such as petroleum refining, where it is used for sealings, pumps, and other components. T2 - TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings CY - Orlando, Florida, USA DA - 03.03.2024 KW - B10 exposure KW - FKM polymer PY - 2024 AN - OPUS4-59636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, V. A1 - Morcillo, Dalia A1 - Agudo Jacome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by glow-discharge optical emission spectroscopy N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs.[1] Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - European Winter Conference on Plasma Spectrochemistry (EWCPS 2023) CY - Ljubljana, Slovenia DA - 29.01.2023 KW - Lithium-ion batteries KW - Aging mechanisms KW - Depth-profiling PY - 2023 AN - OPUS4-56992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winckelmann, Alexander A1 - Hoffmann, Volker A1 - Morcillo, Dalia A1 - Agudo Jácome, Leonardo A1 - Leonhardt, Robert A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Abad Andrade, Carlos Enrique A1 - You, Zengchao T1 - Investigation of degradation of the aluminum current collector in lithium-ion batteries by GD-OES N2 - Lithium-ion batteries (LIBs) are one technology to overcome the challenges of climate and energy crisis. They are widely used in electric vehicles, consumer electronics, or as storage for renewable energy sources. However, despite innovations in batteries' components like cathode and anode materials, separators, and electrolytes, the aging mechanism related to metallic aluminum current collector degradation causes a significant drop in their performance and prevents the durable use of LIBs. Glow-discharge optical emission spectroscopy (GD-OES) is a powerful method for depth-profiling of batteries' electrode materials. This work investigates aging-induced aluminum deposition on commercial lithium cobalt oxide (LCO) batteries' cathodes. The results illustrate the depth-resolved elemental distribution from the cathode surface to the current collector. An accumulation of aluminum is found on the cathode surface by GD-OES, consistent with results from energy-dispersive X-ray spectroscopy (EDX) combined with focused ion beam (FIB) cutting. In comparison to FIB-EDX, GD-OES allows a fast and manageable depth-profiling. Results from different positions on an aged cathode indicate an inhomogeneous aluminum film growth on the surface. The conclusions from these experiments can lead to a better understanding of the degradation of the aluminum current collector, thus leading to higher lifetimes of LIBs. T2 - Empa Group Meeting CY - Dübendorf, Switzerland DA - 22.11.2022 KW - Lithium Ion Batteries KW - GD-OES KW - FIB KW - SEM KW - EDX PY - 2022 AN - OPUS4-56584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas A1 - Böttcher, Nils A1 - Yusfi, Nawar A1 - Schmidt, Anita T1 - Investigating thermal runaway effects and propagation behaviour of various types of commercial lithium-ion cells N2 - Lithium-ion battery (LIB) powered devices, such as laptops, mobile phones and power tools are ubiquitous in our daily lives. Moreover, LIBs are essential for the electrification of vehicles, and play an important role for stationary storage units needed for grid-balancing. The improvement of LIBs, in terms of increasing energy density as well as cycle-life and decreasing costs, is tackled by numerous research groups all over the world. In the last years, research regarding safety aspects has steadily gained more interest. The safety of LIBs can be implemented at different levels, such as material, cell, battery and system level. The abuse/misuse of an LIB can lead to an internal increase in heat which can trigger a chain of exothermic reactions on cell level. Thus, the cell temperature increases dramatically causing the so-called thermal runaway (TR). This process can lead to flames and/or explosion of the cell. Furthermore, the TR of one cell can initiate the TR of adjacent cells causing the so-called propagation, possibly, leading to the TR of the whole battery. Herein, we will show the latest result of our safety tests on cell level employing an external heater as TR-trigger. Regarding single cell tests, we will compare different hazardous features during the TR, e.g., cell temperature, occurrence of flames, peak pressure, and toxic gases, depending on the cell format, cell energy and the cathode type. The same cell parameters will be used to discuss the results of the propagation tests. Moreover, the influence of the state of charge (SOC) and the present atmosphere (air vs. N2) as well as the repeatability will be discussed. Overall, the study comprises over 180 tests on cell level. The findings regarding the TR behaviour can be used to create a hazard-classification scheme of LIBs, e.g., allowing the definition of (cell type specific) conditions for a safe transport. Furthermore, the results can increase the general understanding of the TR mechanism promoting the development of advanced measures to enhance the safety on cell level in the future. T2 - Advanced Battery Power 2023 CY - Aachen, Germany DA - 27.04.2023 KW - Thermal Runaway KW - Lithium Ion Batteries KW - Safety PY - 2023 AN - OPUS4-59267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pampel, Jonas A1 - Fellinger, Tim-Patrick A1 - el Dsoki, Chalid A1 - Schmidt, Anita T1 - Investigating the thermal runaway behaviour of commercial lithium ion batteries: Influence of initiation mode and state of charge N2 - Lithium ion batteries (LIBs) are omnipresent in our daily lives. LIBs power our laptops and mobile phones, are the energy storage of choice for the electrification of vehicles, and play a vital role in the layout of the storage devices needed for the balancing of the grid. Research groups all over the world work on the improvement of LIBs, e.g., an increase in energy density and cycle-life as well as a decrease in costs. In recent years, investigations concerning the LIB’s safety continuously gain importance, especially, pushed by incidents with electric vehicles. They are multiple levels at which safety measures can be implemented, i.e., material, cell, battery and system level. Accordingly, the behaviour of LIBs under abuse/misuse conditions are often investigated on those levels. Here, we focus on the safety on cell level. Generally, the abuse/misuse leads to an increase in heat in the cell at worst triggering a chain of exothermic reactions. Hence, the cell’s temperature rapidly increases leading to the so-called thermal runaway (TR) possibly accompanied by flames and/or explosion of the cell. Herein, different hazardous features during the TR of different commercial cells are analysed such as temperature, flames, projectiles and toxic gases. In order to gain further insights on the parameters influencing the TR, different type of initiation modes, e.g., external heating, overcharging, nail penetration and external short circuiting are utilized. Moreover, the state of charges (SOCs) are varied to differ the amount of electrical energy present in the cells. Next to the characteristic of the TR of a single cell, the investigation of the propagation of the TR from one cell to another is an important parameter, as a battery is usually composed of multiple cells. Due to the close packaging of the single cells, the TR of one cell is often able to initiate the TR of the surrounding cells, finally, causing the TR of the whole battery. Herein, the propagation ability is studied depending on the cell type and SOC. Finally, the results will be used to formulate (cell specific) conditions for a safe transport of LIBs. Moreover, the gained knowledge can support the development of advanced measures to increase the safety on cell level in the future. T2 - Advanced Battery Power Conference CY - Online meeting DA - 28.01.2021 KW - Abuse Tests KW - Lithium-Batteries KW - Thermal Runaway PY - 2021 AN - OPUS4-54060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schubert, Sven A1 - Reichardt, Adrian A1 - Müller, Lars A1 - Komann, Steffen A1 - Neumann, Martin A1 - Wille, Frank T1 - Introduction of the German Ageing Management Guide for Packages for Transport of Radioactive Materials – BAM-GGR 023 N2 - BAM-GGR 023 was published in June 2022 BAM-GGR 023 gives guidance to applicants regarding ageing management for competent authority approved package designs Ageing management with evaluation of ageing mechanisms according to para 613A of IAEA SSR-6 (Rev. 1) and their effects are part of the general management system. Essential items are: AMS (systemic-related), AMP (package design-related) and AMD (package-related) There are different requirements for organization and extent of ageing management depending on type of use There are also different requirements for ageing evaluation depending on type of use for packaging/package, classification of components and their accessibility and replaceability T2 - PATRAM22 CY - Juan-les-Pins, France DA - 11.06.2023 KW - Package KW - Ageing KW - Mechanism KW - Management KW - Guide PY - 2023 AN - OPUS4-57821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Bin A1 - Widjaja, Martinus Putra T1 - Introduction of numerical methods to simulate damage accumulations of composite pressure vessel N2 - The development of hydrogen as a reliable energy sector is strongly connected to the performance and the level of safety of hydrogen storage system. Composite damage due to static, fatigue loading and ageing effect is a progressive process. The common failure modes of composite pressure vessels are majorly fibre break, then interface debonding, matrix cracking and delamination. The damages occur subsequently or even simultaneously, failure modes may interactive each other. These attributes make the composite fatigue more complex and difficult. The presentation here is to show how the numerical methods being developed to match this challenge, particularly the numerical model of composite pressure vessel developed by FibreMod research project is introduced. The potential role of numerical simulation in the certification process and the outlook for the further trend is also discussed. T2 - Abteilungskolloquium CY - BAM Berlin, Germany DA - 10.05.19 KW - Fibre Break KW - Composite Pressure KW - Vessels KW - Simulation PY - 2019 AN - OPUS4-48302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Schubert, Sven A1 - Wille, Frank A1 - Komann, Steffen A1 - Neumann, Martin T1 - Introduction of an ageing management approach for packages for the transport of radioactive materials N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. For these package designs, the evaluation of ageing management is now mandatory for the maintenance of the package design approvals with a validity period of 5 years and beyond. The ageing management includes amongst others a gap analysis, the assessment of ageing effects and operational experiences during operation and interim storage. BAM works on the compilation of a guideline for implementation of paras 613A, 809(f) and 809(k) for packages requiring competent authority approval at the application procedure in Germany. The paper describes essential items of ageing mechanisms and will give a foresight to the ageing management evaluation by BAM. T2 - INMM & ESARDA Joint Annual Meeting CY - Online Meeting DA - 30.08.2021 KW - Ageing KW - Dual purpose casks KW - Transport of radaioactive materials KW - Ageing mechanisms KW - Interim storage KW - SSR-6 PY - 2021 AN - OPUS4-53197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reichardt, Adrian A1 - Schubert, Sven A1 - Komann, Steffen A1 - Wille, Frank A1 - Neumann, Martin T1 - Introduction of An Ageing Management Approach for Dual Purpose Casks N2 - With integration of the new para 613A into SSR-6 [1] the consideration of ageing mechanisms is now obligatory for the design of packages and their approval. In addition, para 809(f) of SSR-6 [1] requires consideration of the effects of storage on ageing mechanisms, safety analyses and operation and maintenance instructions. German competent authorities Bundesanstalt für Materialforschung und -prüfung (BAM) and Bundesamt für die Sicherheit der nuklearen Entsorgung (BASE) are considering the aspect of ageing in approval procedures. Ageing assessment is mainly focused on dual purpose casks (DPC) package designs which are long-term stored in interim storage facilities. T2 - BAM-IRSN Symposium 2021 CY - Online meeting DA - 08.09.2021 KW - Ageing KW - DPC KW - Interim storage KW - Ageing management PY - 2021 AN - OPUS4-53287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Internationale Forschungsprojekte zur langfristigen trockenen Zwischenlagerung bestrahlter Brennelemente N2 - Der Vortrag vermittelt einen Überblick über internationale Forschungsaktivitäten im Hinblick auf zukünftig deutlich zu verlängernde Zwischenlagerzeiträume für bestrahlte Brennelemente. Ausgehend von der aktuellen Entsorgungssituation werden die relevanten Fragestellungen skizziert. Davon ausgehend werden die FuE-Aktivitäten der IAEA vorgestellt sowie die wichtigsten Themen beim Extended Storage Collaboration Program (ESCP) in den USA. Schließlich wird das "European Joint Programme on Radioactive Waste Management and Disposal“ kurz vorgestellt und werden die nationalen Initiativen auf diesem Sektor diskutiert. T2 - 8. Symposium Lagerung und Transport radioaktiver Stoffe CY - Hannover, Germany DA - 04.09.2018 KW - Brennelemente KW - Zwischenlagerung KW - Forschung PY - 2018 AN - OPUS4-46373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger T1 - Internationale Forschung zur langfristigen trockenen Zwischenlagerung bestrahlter Brennelemente N2 - Der Vortrag adressiert die internationalen Forschungsprogramme und -schwerpunkte im Zusammenhang mit der Notwendigkeit einer deutlich verlängerten Zwischenlagerung Wärme entwickelnder radioaktiver Abfälle. T2 - BGZ - Workshop Zwischenlagerung CY - Berlin, Germany DA - 22.10.2019 KW - Zwischenlagerung KW - Radioaktive Abfälle KW - Behälter PY - 2019 AN - OPUS4-49619 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - Fire KW - MLI KW - Safety PY - 2023 AN - OPUS4-57974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eiben, Mario A1 - Schlick-Hasper, Eva A1 - Drousch, Björn A1 - Heinrich, Annika A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Influence of the Length of the Internal Sleeve Valve on the Release of Powdery Substances from the Closures of Valved Bags for Dangerous Goods N2 - In practice, checks on dangerous goods transports often detect leaks of powdered dangerous goods from valved bags. In this work, the influence factors of a sudden release of powdery substances from the valves of valved bags were investigated. Drop tests were carried out on paper bags of UN design type 5M2 with internal sleeve valve using two different powdery substances (Esplas H130 and zinc oxide “Rotsiegel”). The internal sleeve valves of all test samples were not sift-proof with respect to both filling substances. For almost all test samples, the Esplas H130 powder already leaked out of pasted joints during manual filling. This is a contradiction to the requirement in UN 6.1.4.18.1, according to which closures and joints of paper bags 5M2 should be sift-proof. In the drop tests, longer valve lengths had a greater sealing effect for both filling substances (for filling degrees of at least 95% and for test samples which had already been mechanically loaded). As an extreme example, at the drop height of 1.20 m and a filling degree of 100%, the released amount of zinc oxide powder from a 10 cm long valve was about 16 times higher than from a valve length of 12.5 cm. The valve length is therefore a safety-relevant parameter and should be specified by the manufacturer. To ensure that only filling goods with similar physical properties in comparison to the test substance are used for valved bags, the user must be informed of the particle size of the test substance. T2 - 21st IAPRI World Conference on Packaging 2018 CY - Zhuhai, People's Republic of China DA - 20.06.2018 KW - Sift-proofness KW - Dangerous goods packagings KW - Bags KW - Sacks KW - Drop test PY - 2018 AN - OPUS4-45273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Eiben, Mario A1 - Drousch, Björn A1 - Heinrich, Annika A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Influence of the Length of the Internal Sleeve Valve on the Release of Powdery Substances from the Closures of Valved Bags for Dangerous Goods N2 - In practice, checks on dangerous goods transports often detect leaks of powdered dangerous goods from valved bags. In this work, the influence factors of a sudden release of powdery substances from the valves of valved bags were investigated. Drop tests were carried out on paper bags of UN design type 5M2 with internal sleeve valve using two different powdery substances (Esplas H130 and zinc oxide “Rotsiegel”). The internal sleeve valves of all test samples were not sift-proof with respect to both filling substances. For almost all test samples, the Esplas H130 powder already leaked out of pasted joints during manual filling. This is a contradiction to the requirement in UN 6.1.4.18.1, according to which closures and joints of paper bags 5M2 should be sift-proof. In the drop tests, longer valve lengths had a greater sealing effect for both filling substances (for filling degrees of at least 95% and for test samples which had already been mechanically loaded). As an extreme example, at the drop height of 1.20 m and a filling degree of 100%, the released amount of zinc oxide powder from a 10 cm long valve was about 16 times higher than from a valve length of 12.5 cm. The valve length is therefore a safety-relevant parameter and should be specified by the manufacturer. To ensure that only filling goods with similar physical properties in comparison to the test substance are used for valved bags, the user must be informed of the particle size of the test substance. T2 - Abteilungskolloquium der 3. Abteilung CY - BAM-Berlin, Germany DA - 08.06.2018 KW - Dangerous goods packagings KW - Bags KW - Sacks KW - Drop-test KW - Sift-proofness PY - 2018 AN - OPUS4-45140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Popiela, Bartosz T1 - Influence of manufacturing process related residual stresses in wound composite material on the operational safety of H2 pressure vessels: PhD Topic Introduction N2 - Short introduction of the PhD Topic 5 in the BTU-BAM Graduate School "Trustworthy Hydrogen". Description of the objectives, deliverables and expected added value of the thesis. T2 - Introduction Week - BTU-BAM Graduate School "Trustworthy Hydrogen" CY - Berlin, Germany DA - 16.01.2023 KW - Residual stress KW - Composite KW - Pressure vessel KW - Hydrogen PY - 2023 AN - OPUS4-56882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Neitsch, Marcel A1 - Goedecke, Thomas T1 - Industrial leak testing of dangerous goods packagings N2 - The Dangerous Goods Regulations currently do not include limit leakage rates or sensitivity requirements for industrial leak testing procedures that are equivalent to the bubble test, which is the prescribed test method for design type testing of dangerous goods packagings. During series production of such packagings, various methods are used which often do not reach the sensitivity of the bubble test. Based on a suitable pragmatic approach, its sensitivity under industrial conditions can be considered 10-4 Pa m³/s (SLR). For the selection of a suitable industrial leak testing method, however, factors other than the sensitivity are also important, for example flow direction, pressure level and automatability. The following methods are in principal suitable and equally effective as the bubble test: pressure rise test (vacuum chamber), ultrasonic bubble leak detection and gas detection methods (pressure technique by accumulation and vacuum chamber technique). To ensure a uniform test level during design type testing and production line leak testing and therefore a comparable safety level as required by the Dangerous Goods Regulations, it is necessary to include a more precise specification in these regulations. On the one hand, this requires an information about the sensitivity of the bubble test, on the other hand, the inclusion of a list of suitable, equally effective industrial test methods with their specific boundary conditions T2 - 22nd IAPRI World Packaging Online Conference CY - Online meeting DA - 15.06.2020 KW - Bubble test KW - Dangerous goods packagings KW - Industrial leak testing KW - Leakproofness test KW - Series production PY - 2020 AN - OPUS4-51132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Okeke, Joseph A1 - Widjaja, Martinus Putra A1 - Waske, Anja A1 - Markötter, Henning A1 - Dayani, Shahabeddin A1 - Eddah, Mustapha A1 - Britton, M. A1 - Kendrick, E. A1 - Allan, P. A1 - Alsofi, G. A1 - Williams, E. T1 - In situ and operando imaging, spectroscopy and tomography of batteries N2 - The development of more powerful and more efficient lithium-ion batteries (LIBs) is a key area in battery research, aiming to support the ever-increasing demand for energy storage systems. To better understand the causes and mechanisms of degradation, and thus the diminishing cycling performance and lifetime often observed in LIBs, in operando techniques are essential, because battery chemistry can be monitored non-invasively, in real time. Moreover, there is increasing interest in developing new battery chemistries. Beyond LIBs, sodium ion batteries (NIBs) have gained increasing interest in recent years, as they are a promising candidate to complement LIBs, owing to their improved sustainability and lower cost, while still maintaining high energy density.[1] Initial phases of NIB commercialisation have occurred in the past year. However, for the widespread commercialisation of NIBs, there are still challenges that need to be overcome in developing optimized electrode materials and electrolytes. For the development of such materials and greater understanding of sodium storage mechanisms, solid electrolyte interface (SEI) formation and stability, and degradation processes, in operando methodologies are crucial. Among the techniques available for in operando analysis, nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI) are becoming increasingly used to characterize the chemical composition of battery materials, study the growth and distribution of dendrites, and investigate battery storage and degradation mechanisms. In situ and in operando 1H, 7Li and 23Na NMR and MRI have recently been used to study LIBs and NIBs, identifying chemical changes in Li and Na species respectively, in metallic, quasimetallic and electrolytic environment as well as directly and indirectly studying dendrite formation in both systems.[2-4] The ability of NMR and MRI to probe battery systems across multiple environments can further be complemented by the enhanced spatial resolution of micro-computed X-ray tomography (μ-CT) which can provide insight into battery material microstructure and defect distribution. Here, we report in operando 1H and 7Li NMR and MRI experiments that investigate LIB performance, and the identification of changes in the Li signal during charge cycling, as well as the observation of signals in both 1H and 7Li NMR spectra that we attribute to diminishing battery performance, capacity loss and degradation. Additionally, recent operando methodology are adapted and implemented to study Sn based anodes in NIBs. 23Na spectroscopy is performed to monitor the formation and evolution of peaks assigned to stages of Na insertion into Sn, while 1H MRI is used to indirectly visualize the volume expansion of Sn anodes during charge cycling. Battery operation and degradation is further explored in these NIBs, using μ-CT, where the anode is directly visualized to a higher resolution and the loss of electrolyte in the cell, during cycling is observed T2 - 17th International Conference on Magnetic Resonance Microscopy CY - Singapore DA - 27.08.2023 KW - Sodium ion battery KW - Lithium ion battery KW - NMR KW - MRI KW - Tomography PY - 2023 AN - OPUS4-58421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thomas, Sebastian T1 - Improvement of Type Approval Regulations of Pressure Vessels for Hydrogen Fueled Vehicles using Probabilistic Methods N2 - Composite pressure vessels (CPVs) are becoming the state of the art for storage for compressed hydrogen (CH2) in automotive applications. There is a strong interest of car manufacturers to use lightweight and less-costly gas storage units. In order to reduce the necessary amount of expensive carbon fibre, the nominal safety margins are becoming gradually smaller, pushing the limits of the regulations for type approval. At the same time, the total volume of these vessels increases to extend the range of the vehicles, increasing the consequences for worst-case scenarios like the rupture of the CPVs in service. This presentation presents insights gained in the project “TAnk HYdrogen Automotive” (TAHYA). Its aim is to improve the safety of current regulations for type approval of pressure vessels for the use in hydrogen fueled vehicles, namely GTR No. 13 and ECE R 134. For the assessment of safety, the probabilistic approach developed by division 3.5 of BAM is used. Monte-Carlo-Simulations were conducted leading to the identification of several weak spots, mainly found in the burst test and the batch test. By changing the requirements for burst tests and the approach for batch tests, the identified weak spots can be strongly reduced. T2 - Colloquium of Department 3 CY - Online meeting DA - 19.11.2020 KW - Monte-Carlo Simulation KW - Safety Assessment KW - Pressure Vessel PY - 2020 AN - OPUS4-51696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lengas, Nikolaos A1 - Müller, Karsten A1 - Schlick-Hasper, Eva A1 - Neitsch, Marcel A1 - Johann, Sergej A1 - Zehn, M. W. T1 - Improved criteria for evaluating impact targets in regulative drop tests of dangerous goods packagings N2 - For dangerous goods packagings, drop testing onto an essential unyielding target can be used to assess the mechanical resistance to impact loads. Adopted regulations like ADR/RID require that the impact surface provided shall be integral with a mass at least 50 times than that of the heaviest package to be tested. The problem is that many manufacturers do not possess impact targets that satisfy the required 50 times mass ratio for regulative drop tests during series production. The objective of this work is to verify existing and define improved criteria for impact target structures based on systematic investigations. Previous evidence highlights the relevance of other parameters in addition to the mass ratio. Therefore, in this research, a variation of drop test parameters was carried out experimentally. Furthermore, numerical vibration analysis was applied to investigate the deformability of the impact surface. The results conclude that the mass ratio of 1:50 cannot be defined as a decisive criterion. In order to determine the influence of further drop test parameters, the research findings were used to validate a parametric model which assesses impact target deflection. An approximation quality of over 90 % was achieved. As a result, new evaluation criteria are proposed. Firstly, a method for identifying critical impact target designs is provided. Secondly, a new comprehensive formula compares the approximated maximum deflection of a real impact target to the respective theoretical threshold derived from a worst-case assumption. In practice, this leads to great advantages in the evaluation of already installed impact targets for dangerous goods packagings. T2 - 31st IAPRI Members’ conference CY - Mumbai, India DA - 22.05.2023 KW - Drop test KW - Structural dynamics KW - Dangerous goods packagings KW - Impact target KW - Vibration analysis PY - 2023 AN - OPUS4-57715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias T1 - Implementing a Structural Health Monitoring System using Digital Models of the BAM Large Drop Test Facility N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - System Identification KW - Digital Twin KW - Point Cloud KW - Drop Test PY - 2020 AN - OPUS4-51734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Impact of sloshing and non-sloshing cargo N2 - Longitudinal Load transfer light sensitivity to cargo type, fill level and the impact distance. Maximum sloshing effect for the case of the lowest fill level 12 while for half fill level the sloshing cargo performs as a dynamic damper, with a maximum effect of 6 in the case of medium impact input The sloshing effect for the highest fill level yielded a mixed output, with the maximum impact distance producing a positive but moderate effect. T2 - CONiiN XV International Engineering Congress CY - Santiago de Querétaro, Mexico DA - 13.05.2019 KW - Sloshing KW - Non-sloshing KW - Cargo PY - 2019 AN - OPUS4-48116 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Otremba, Frank A1 - Sklorz, Christian A1 - Rehfeldt, Rainer T1 - Impact of biocomponents in the fuel and heating oil on the compatibility of fluorocarbon rubber under compressed conditions N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether sealing materials are resistant to fuels with bioethanol and biodiesel (rapeseed oil fatty acid methyl ester). Previous research considered the resistance of frequently used sealing materials such as FKM (fluorocarbon rubber), FVMQ (methyl-fluoro-silicone rubber), VMQ (methyl-vinyl-silicone rubber), EPDM (ethylene-propylene-diene rubber), CR (chloroprene rubber), CSM (chlorosulfonated polyethylene), IIR (butyl rubber), PA (polyamides), NBR (acrylonitrile-butadiene rubber) and PUR (polyester urethane rubber) in fuels and heating oil with admixtures of biogenic substances such as biodiesel and B10 (heating oil with 10 % biodiesel) under purely static conditions. The aim of this study was to evaluate the fluorocarbon rubber performance under compressed conditions. For the investigations, the mass and the compression set of the FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in E10 (fuel with 10 % ethanol), E85 (fuel with 85 % ethanol), biodiesel (fatty acid methyl ester, FAME), Super (fuel with max. 5 % ethanol), diesel fuel with max. 5 % biodiesel, pure diesel fuel, Super Plus (fuel without ethanol) and heating oil with 10 % biodiesel (B10) at 40 °C according to ISO 815-1 “Rubber, vulcanized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. The compression set test belongs beside the determination of the Shore hardness, the density and the tensile properties to the basic test methods for elastomers. It was measured in regular time intervals up to a re-drying of more than 90 days after relaxation of test specimens. For comparison, FKM test specimens were exposed without fuel under compressed conditions at 40 °C. The highest mass increase of FKM test specimens was measured after 90 days exposure in E10 by 9 %, followed by 8 % in Super fuel, by 4 % in E85 and by 0.6 % in biodiesel. Mass increase and swelling of the test specimens in E10 and Super fuel with max. 5 % ethanol had an influence on the compression set values which were subject to high fluctuations in comparison to the values obtained after exposure to other fuels such as biodiesel, diesel fuel and B10. The results of the present work confirmed the higher swelling of the elastomers such as FKM in E10 obtained under static condition. It can be concluded on the basis of the mass increase and compression set values that FKM is resistant in all fuels under compressed conditions at 40 °C. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Sealing materials KW - Compression set KW - Compatibility KW - Fuels KW - Heating oil KW - Biodiesel KW - Bioethanol PY - 2018 AN - OPUS4-45935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina T1 - Impact limiter behaviour under IAEA fire test conditions N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minutes enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification, a new approach was made and a test bench was designed. T2 - Abteilungskolloquium Abteilung 3 CY - BAM, Berlin, Germany DA - 10.07.2019 KW - Stoßdämpfer KW - Brandversuche KW - Transportbehälter PY - 2019 AN - OPUS4-49398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Moosavi, R. A1 - John, Sebastian A1 - Schumacher, David A1 - Grunwald, Marcel A1 - Auster, Jürgen A1 - Szczepaniak, Marius A1 - Mair, Georg A1 - Waske, Anja T1 - Impact damage evaluation of hydrogen composite pressure vessels by analysing computed tomography images N2 - The objective of this work is to find a method that describes the degree of damage from an impact experiment. This experiment was performed on Composite Pressure Vessels (CPV) in order to find the correlation of impact damage to the residual burst pressure. Computed Tomography (CT) approach was used to capture the before and after impact condition of the CPVs. The Wasserstein function was used to calculate how much the after impact image has differed from the original one. In the end, a good correlation was obtained to the residual burst pressure. The smaller the Wasserstein distance is, the higher the residual burst pressure would be and vice versa. T2 - HyFiSyn Conference CY - Online meeting DA - 15.09.2021 KW - Hydrogen KW - Composite pressure vessel KW - Carbon fibre KW - Burst test KW - Image analysis KW - Computed tomography (CT) PY - 2021 AN - OPUS4-53496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naster, Maximilian A1 - Gleim, Tobias A1 - Wille, Frank T1 - Hydrogen Fire Testing N2 - In this presentation we present a new hydrogen-based test rig for an ongoing feasibility study of using hydrogen as an energy source for the thermal testing of transport packages containing radioactive materials. The test rig will be capable of combusting hydrogen for a wide range of different burner geometries, mass flows and if necessary hydrogen blends. As this type of fire test according to the IAEA boundary conditions does not yet exist, a large number of preliminary investigations, safety assessments and calculations must be carried out in order to develop a viable concept for hydrogen fires. In the first step of the feasibility study, the temperature, structure, and radiation of various hydrogen flames are surveyed. In future works, the results will make it possible to design burner frames that are suitable for fire reference tests in order to make comparisons with pool and propane fires used in assessment procedures today. In parallel comparative numerical simulations are conducted to model the thermal behaviour of hydrogen flames using the software package Ansys®. On the one hand, the numerical simulations support the experiments by providing an overview of numerous parameters and the measuring range; on the other hand, they will help with the design of the burner frame in future work. This paper gives an overview in the design and capabilities of the test rig. Furthermore, the results of the parameter studies show that burner geometry and mass flow provide a significant design margin for the thermal shape of the hydrogen flames. In addition, the results of the initial numerical calculations will be used to determine the necessary sensors, the positions, and their operating range. Only the optimal interaction allows a controlled system that permits user-defined hydrogen fires. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 04.06.2024 KW - Hydrogen PY - 2024 AN - OPUS4-60341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg T1 - Hydrogen as Energy carrier – Contributions to safety assessement of storage systems N2 - The introduction reflects the political background in Germany and worldwide concerning hydrogen as energy carrier. This leads to available hydrogen strategies and the reaction of BAM by launching the competence centre H2Safety@BAM. Fokus is set on the competence area TestCert, the special role of the division “Safety of Gas Storage Systems” there and its increasing success in research activities. The main part explains the needs for a risk-controlled market ramp-up concerning hydrogen products and appropriate measures being under development in division 3.5: risk control, tools for consequence estimation and limitation, probabilistic assessment of end of safe life, the efficiency assessment and optimization of current regulations, the structural health monitoring (SHM) with necessary improvement of measures for quality management in the digital world of safety assessment. Last but not least, the wide range of full-scale testing and simulation of worst-case scenarios is explained. T2 - Colloquium zu Antrittsvortrag Leitung Sicherheit von Gasspeichern CY - Online meeting DA - 20.08.2021 KW - H2Safety@BAM KW - Markthochlauf KW - Lebensdauervorhersage KW - statistische Bewertung KW - Risikosteuerung PY - 2021 AN - OPUS4-54617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holtappels, Kai A1 - Orellana Pérez, Teresa A1 - Mair, Georg A1 - Maiwald, Michael A1 - Sobol, Oded T1 - Hydrogen - Trust through safety N2 - In den Virtual Talks der DECHEMA wurden allgemeine Aspekte der Sicherheit und Akzeptanz von Wasserstofftechnologien vorgestellt. Wie kann Vertrauen in neue Technologien geschaffen werden, wenn Unfälle aus der Vergangenheit zu Mythen und Märchen führten? Der Vortrag räumt mit allgemeinen Vorurteilen auf und zeigt, dass der Umgang mit Wasserstoff weder unsicherer, noch sicherer ist als der Umgang mit anderen Brenngasen. Basis für den sicheren Umgang mit Wasserstoff ist immer eine Risikoanalyse. N2 - In the DECHEMA Virtual Talks, general aspects of the safety and acceptance of hydrogen technologies were presented. How can trust in new technologies be built when past accidents led to myths and fairy tales? The presentation does away with general prejudices and shows that handling hydrogen is neither more unsafe nor safer than handling other fuel gases. The basis for the safe handling of hydrogen is always a risk analysis. T2 - DECHEMA Virtual Talks CY - Online meeting DA - 23.11.2020 KW - Hydrogen KW - Wasserstoff KW - Safety KW - Sicherer Umgang KW - Sicherheit PY - 2020 AN - OPUS4-52082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Wolff, Dietmar T1 - How to test the Arrhenius validity of elastomers during ageing N2 - The main task of the division "Safety of Storage Containers" at BAM is the safety assessment of storage containers for radioactive waste. A sufficient sealing of bolted lid systems for the safe containment of the waste for transport, storage and disposal is very important. Extensive knowledge of the change of the elastomer’s properties during ageing and the availability of reliable end-of-lifetime criteria is mandatory to guarantee long term safe enclosure. In a long-term test programme over 5 years we have studied the degradation and the change of sealing properties of several elastomers, including EPDM, at four different ageing temperatures (75 °C, 100 °C, 125 °C and 150 °C). Compression stress relaxation (CSR) and compression set (CS) experiments were carried out. It has been found that when the data does not cover a sufficient time frame necessary for the evolution of the degradation of a chosen property, a curvature in the Arrhenius relationship is observed. For CSR, the curvature was observed for samples aged up to 186 days. As for CS experiments, the curvature was detected for sample aged up to 2 years. To cover the possible lack of experimental long-term data at low temperatures, a numerical model for CSR was developed and longer ageing times for the simulation were adopted. A degradation-rate based model for the evolution of degradative processes is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing an Arrhenius straight-line extrapolation. The model was also applied to CS experiments and validated by the 5 years experimental results where the curvature was gone, and the degradation property has followed an Arrhenius relationship. In the figure the contribution of the two degradative processes are shown over CS and CSR respectively. T2 - 2nd advanced material science world congress CY - Online meeting DA - 14.06.2021 KW - Arrhenius KW - Processes KW - Compression set KW - Compression stress relaxation KW - Modelling PY - 2021 AN - OPUS4-52825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Bethke, John A1 - Goedecke, Thomas T1 - How To Measure The Angle of Repose of Hazardous Substances in the Test Centers for Dangerous Goods Packagings N2 - The flow properties of powdery or granular filling substances for dangerous goods packagings are safety-relevant parameters. To specify the flow behavior, the angle of repose is measured in the recognized test centers for dangerous goods packagings in Germany. Previous investigations performed on non-hazardous substances revealed that some of the methods currently used have disadvantages in application. Additionally, for occupational health and safety reasons, it was generally viewed critically to carry out measurements of the angle of repose for dangerous goods at all. Instead, the dimensionless Hausner ratio to describe the flow behavior was proposed. In this work, the investigations were extended to real hazardous substances to concretize the assessment. Five exemplary hazardous substances were tested for their angle of repose using the methods commonly applied in the test centers. The Hausner ratio was also determined. In addition, the influence of a different climatic preconditioning on the angle of repose measurement was examined using three selected non-hazardous bulk materials. The results show that the measurement of the angle of repose is not fundamentally excluded for dangerous goods. However, for reasons of applicability, repeatability and occupational health and safety, only the ISO method can be applied for dangerous filling substances. This method provides conservative results regarding a safety-related evaluation of flow properties for the transport of dangerous goods. In principle, both the ISO method and the determination of the Hausner ratio can be used for dangerous goods. It is also essential especially with finely powdered filling goods, to carry out controlled preconditioning. T2 - 31st IAPRI Members' Conference CY - Navi Mumbai, India DA - 22.05.2023 KW - Angle of repose KW - Flow properties KW - Flowability KW - Hausner ratio KW - Powders KW - Sift-proofness PY - 2023 AN - OPUS4-57619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg T1 - Hintergrund zur neuen SV 674 für Over-moulded cylinders (OMC) N2 - Der Vortrag zeigt den alternativen Ansatz mit wissenschaftlichem Hintergrund zur wiederkehrenden Prüfung von sog. over-moulded cylinders OMC, wie er ab ADR/RID 2019 im Recht zu finden sein wird. Zuletzt wird noch erläutert, dass die Nutzung des Ansatzes für die Wasserstoffinfrastruktur eine große Bedeutung haben könnte. T2 - Jährlicher Austausch zwischen der BAM und DIN, IGV und DVFG CY - IGV-Sitz in Berlin-Mitte, Germany DA - 21.02.2018 KW - Umformte Flaschen KW - P15y KW - Statistische Auswertung KW - Innendruckprüfung KW - General Provisions KW - Periodic inspection PY - 2018 AN - OPUS4-45463 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Morcillo, Dalia A1 - Winckelmann, Alexander A1 - Richter, Silke A1 - Recknagel, Sebastian A1 - Jacobsen, Lars A1 - Frick, Daniel A1 - Schmidt, Anita A1 - Leonhardt, Robert A1 - Panne, Ulrich A1 - Abad Andrade, Carlos Enrique T1 - High-resolution absorption isotopic spectrometry as a tool for aging studies of Li-ion batteries N2 - Lithium (Li) is the key element in the manufacturing of batteries. Isotopic study of Li may help to identify the causes of battery aging due to isotopic fractionation during charge/discharge cycles. Isotopic ratio determination is based on monitoring the isotopic components of lithium by their spin-orbit coupling and its isotopic shift of about 15 pm for the 22P←22S electronic transition around 670.788 nm. In this work, we propose improvements to our previous work [1] by using a higher-resolution double echelle modular spectrometer (HR-DEMON II) coupled to a continuum source graphite furnace atomic absorption spectrometer (HR-CS-GF-AAS) for the isotopic analysis of Li. The data analysis was carried out by using a decision-tree-based ensemble machine learning (ML) algorithm (XGBoost). A set of samples with 6Li isotope amount fractions ranging from 0.0004 to 0.99 mol mol-1 was used for the algorithm's training. Subsequently, the procedure was validated by a set of stock chemicals (Li2CO3, LiNO3, LiCl, and LiOH) and a BAM candidate reference material, a cathode material (NMC111). Finally, the ML model was applied to determine the isotope ratio of geological samples, including anorthosite, granite, soil, rhyolite, nepheline syenite, and basalt and battery samples. These samples were measured as digested without any further purification step. Improvements in the optical resolution resolve the lithium isotopic components of the atomic spectra. In the studied geological samples, were found δ7Li values between -0.5 and 4.5 ‰ with a precision range of 1 to 2 ‰. In addition, the proposed method was validated with multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS), and these results are comparable and compatible. T2 - Caltech-BAM Meeting CY - Online meeting DA - 10.08.2022 KW - Lithium isotope KW - Machine learning KW - Battery KW - High-resolution absorption isotopic spectrometry PY - 2022 AN - OPUS4-56380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Anita A1 - Pampel, Jonas T1 - Herausforderung: Verpackungen von Lithiumbatterien N2 - Je nach Zustand bestehen unterschiedliche Anforderungen an Verpackungen zum Transport von Lithiumbatterien. Hierbei sind bestimmte Prüfungen und Kriterien zu betrachten. Aktuell besteht insbesondere der Bedarf an Verpackungen für kritisch defekte Batterien. Innovative Lösungen sind gefordert. T2 - Workshop AG Future Markets New Energy Packaging CY - Online meeting DA - 12.03.2021 KW - Lithium Batterien KW - Gefahrgutverpackungen PY - 2021 AN - OPUS4-54181 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Nehrig, Marko A1 - Bletzer, Claus A1 - Musolff, André A1 - Wille, Frank T1 - Heat Flux from Wood Filled Impact Limiter under Fire Conditions N2 - Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smouldering and influence the cask thermal behaviour with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. T2 - 9th International Scientific Conference - wood & fire safety 2020 CY - Online meeting DA - 02.11.2020 KW - Fre KW - Smouldering KW - Wood PY - 2020 AN - OPUS4-51517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Hazmat tanks subjected to fire N2 - Smaleand large scale tests have been carried out. Pressure vessel –to improve numerical modelling. Thermal coating –increase of surveillance time. Numerical calculations -quantifying the safety margin. RV cannot avoid catastrophic failure. T2 - Kolloquium Gefahrgut an der UAQ CY - Queretaro, Mexico DA - 22.03.2018 KW - Hazmat KW - Tank KW - Fire PY - 2018 AN - OPUS4-44629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank T1 - Hazmat tanks subjected to fire N2 - Transport safety depends in great extent of what happens to the cargo once the carrying vehicle derails or rollovers. The exposure of tanks to direct fire is a condition that potentially involves catastrophic consequences. Studying the behavior of the contained fluid under these drastic circumstances, is critical to develop methods and techniques to mitigate the serious consequences of many mishaps. In this paper, the experimental potentials of a Particle Image Velocimetry data acquisition system are described, for providing experimental data that could be used to calibrate mathematical models. As an example of the situations that need to be modelled, an experiment is described concerning the effect of the boundary conditions and protecting devices, on the rate of variation of pressure and temperature of the fluid in a tank exposed to a direct fire. In this regard, the results emphasize the importance of equipping the vessels with both thermal insulation and safety valves. T2 - ICMEA CY - Da Nang, Vietnam DA - 16.01.2019 KW - Pool fire KW - Pressure vessel PY - 2019 AN - OPUS4-47231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krug von Nidda, Jonas A1 - Böttcher, Nils A1 - Yusfi, Nawar A1 - Schmidt, Anita T1 - Hazard-Based Classification of Lithium-Ion Cells and Batteries N2 - Next to performance features, safety aspects of lithium-ion batteries (LIBs) are a crucial research field. The abuse/misuse of a LIB can trigger a chain of exothermic reactions on cell level. Hence, the cell temperature increases dramatically, causing the so-called thermal runaway (TR). Moreover, the TR of one cell can initiate the TR of adjacent cells leading to a TR-propagation. Due to the risk of a TR, special measures need to be applied while handling, storing, and transporting batteries. According to current transport regulations, all different types of lithium-ion and lithium metal cells/batteries (by means of cell format, cathode chemistry, etc.) require the same transport conditions regardless of the intensity of their reaction during abuse tests. To allow more differentiated transport requirements, the United Nations (UN) Subcommittee Transport of Dangerous Goods created an Informal Working Group (IWG) on the topic of a hazard-based classification of LIBs. BAM is one of nine laboratories working on the development of a respective classification scheme including appendant test protocols. Herein, we discuss the latest results of our safety tests on commercial LIB-cells employing the test protocols developed in the UN-IWG. Single cell tests are analysed regarding different hazardous features during the TR, e.g., cell temperature, flame occurrence, and gas amount. Next to the general occurrence of a propagation, the propagation speed is analysed by propagation tests. In total, the presented results are gathered from over 200 tests. Next to the classification of the tested cells, the data set obtained is analysed in respect to the cells’ key features, such as cell energy, state of charge and cathode type. Generally, the presented results can increase the overall understanding of the TR-mechanism supporting the design of advanced safety measures on cell level in the future. T2 - International Battery Safety Workshop CY - Ulm, Germany DA - 28.09.2023 KW - Battery Classification KW - Safe Transport KW - Thermal Runaway KW - Lithium Ion Batteries PY - 2023 AN - OPUS4-59269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orellana Pérez, Teresa A1 - Mair, Georg A1 - Günzel, Stephan A1 - Bock, Robert A1 - Holtappels, Kai A1 - Askar, Enis A1 - Patzelt, Katrin A1 - Sobol, Oded A1 - Theiler, Geraldine A1 - Maiwald, Michael A1 - Tiebe, Carlo T1 - H2Safety@BAM N2 - Overview on the Competence Centre H2Safety@BAM including the following topics: current international developments regarding the market ramp up of hydrogen technologies, European policies, hydrogen market projections, etc. T2 - H2SAFETY@BAM: WORKSHOP 2023 CY - Berlin, Germany DA - 27.06.2023 KW - Hydrogen safety KW - Hydrogen market PY - 2023 AN - OPUS4-59305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Orellana Pérez, Teresa T1 - Guest lecture: European policy framework regulations codes and standards for safe hydrogen technologies N2 - This lecture describes the history of hydrogen from the first scientific discoveries in the 18th century to the current technological and political developments for the market ramp-up of hydrogen technologies. The European policy framework for safe hydrogen technologies is explained comprehending the European Green Deal, European Climate Law, European Hydrogen Strategy, Clean Hydrogen Partnership, etc. Safety in hydrogen technologies is governed by international and European regulations and standards. An overview on regulatory bodies, technical committees, regulations, directives, standards, and technical guidelines with special attention on the BAM-GGR 021 is given in this lecture. T2 - MSc Fuel Cells and Hydrogen Technologies at the University of Birmingham (LM Hydrogen Safety, MSc FCHT module C7B) CY - Birmingham, UK DA - 21.10.2022 KW - Hydrogen KW - Safety KW - Regulations KW - Standards PY - 2022 AN - OPUS4-59296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg A1 - Szczepaniak, Mariusz A1 - Duffner, Eric T1 - Grenzen der Sicherheitsbewertung von Druckgefäßen für Wasserstoff als Energieträger N2 - Druckbehälter aus Verbundwerkstoffen (sog. Composites) werden vielfältig zur Speicherung von Wasserstoff in und auf Fahrzeugen eingesetzt: auf Bus- und Zugdächern, im Pkw und auf für den Transport von Wasserstoff in sog. Batteriefahrzeugen. Alleine dort haben die neuen Composite-Speicher zu einer Gewichtsreduktion und damit Steigerung der Transporteffizienz von 10 auf 35 kg Wasserstoff pro Tonne Fahrzeuggewicht geführt. Mit der dadurch gestiegenen Menge von Wasserstoff im Fahrzeug und auch der Anzahl der Fahrzeuge ist es hilfreich, die Risiko-Aspekte genauer zu betrachten. Die Druckwelle von Wasserstoff ist zwar bei gleichem Druck-Volumen-Produkt (pV-Produkt) von geringerer Konsequenz, aber absolut dennoch erheblich. Kombiniert man diese Betrachtung mit der Risikogrenze, wie diese in der GGR 021 auf Basis der Eintrittswahrscheinlichkeit und des pV-Produkts festgelegt ist, lässt sich das Risiko zukunftsfest steuern. Zieht man als Beispiel den Schweitzer Ansatz zur Seveso-II- Richtlinie hinzu, kommt man z.B. über die Anzahl der Toten zu einer Obergrenze der Konsequenz, die unabhängig vom Risiko kritisch wird. Sobald im Katastrophenfall keine adäquaten Maßnahmen mehr ergriffen werden können, können die entsprechenden Konsequenzen zur mehr unter erheblichen Auflagen akzeptiert werden. Da ein solcher Ansatz für den Gefahrguttransport von (zukünftigen) Massengütern wie Wasserstoff nicht akzeptabel ist, muss bei der Zulassung von Wasserstoffspeichern im Transport auf ein maximales pV-produkt von 1.5 Mio bar-Liter (Prüfdruck) bzw. 1 Mio bar-Liter (Nennbetriebsdruck) geachtet werden. Diese Betrachtung hat bereits zu erheblichen Begrenzungen des Geltungsbereichs in Normungsprojekten geführt. T2 - 17. Gefahrguttechniktage Verpackungen CY - BAM, Berlin, Germany DA - 07.11.2019 KW - Druck-Volumen-Produkt KW - Katastrophe KW - Risiko KW - Konsequenz KW - Druckwelle PY - 2019 AN - OPUS4-50091 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Joannes, S. A1 - Bunsell, A. A1 - Mair, Georg A1 - Thionnet, A. T1 - General update of the PhD work for mid_term consortium meeting N2 - Before the multiscale model is used to calculate real scale composite structures, a study to improve the effectiveness is required, especially the computation time. The reduced volume method has been studied and proved to be useful for the multiscale model of Mines ParisTech. T2 - Mid_Term Consortium Meeting of FiBreMoD CY - Imperial College London, United Kingdom DA - 11.09.2018 KW - Reduced volume method KW - Integral range KW - Composite pressure vessels KW - Multiscale model KW - Fibre breaks PY - 2018 AN - OPUS4-48570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neitsch, Marcel T1 - Gefahrgutverpackungen richtig verwenden N2 - Im Vortrag wird an Praxisbeispielen auf die richtige Nutzung von Gefahrgutverpackungen einschl. der Bewertung der UN-Kennzeichen und anderer vom Gefahrgutrecht vorgeschriebener Kennzeichen eingegangen. T2 - 09. Gefahrgut-Infomarkt CY - Online meeting DA - 16.05.2022 KW - Gefahrgutverpackungen KW - ADR KW - UN-Kennzeichen KW - Gefahrguttransport PY - 2022 AN - OPUS4-58895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Anita T1 - Gefahrgutverpackungen - Gesetzliche Rahmenbedingungen und BAM Gefahrgutregeln N2 - Gefahrgut darf nur in speziell dafür zugelassenen Umschließungen (Verpackungen, IBC, Großverpackungen etc.) transportiert werden. Die BAM ist in Deutschland die zuständige Behörde für die Erteilung von Zulassungen, für die (Baumuster-)Prüfung von Gefahrgutverpackungen sowie die Anerkennung der Qualitätssicherungsprogramme, nach denen die Gefahrgutverpackungen zu fertigen sind. Hierfür erlässt die BAM sogenannte BAM-GGRs (Gefahrgutregeln). T2 - IK-Seminar Qualitätssicherung bei der Herstellung von Gefahrgutverpackungen aus Kunststoff CY - Bad Homburg, Germany DA - 15.10.2018 KW - Gefahrguttransport KW - Gefahrgutverpackungen KW - Regelsetzung KW - Transportrecht KW - Zuständige Behörde PY - 2018 AN - OPUS4-47123 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mair, Georg T1 - Gase als Energieträger - Aktivitäten der BAM mit Wirkung auf die Gaseindustrie N2 - Zunächst werden die aus der Themenfeldstruktur der BAM resultierenden Änderungen im Auftreten der BAM vorgestellt und erläutert, wie diese für die Antragsteller zu verstehen sind. Danach werden die Zielsetzung der GGRn 021 und 022 und deren inhaltlicher Ansatz vorgestellt und auch erläutert, welche Interaktion mit dem Distribtionsverkehr von gasförmigen Energeiträgern besteht. Zuletzt wird dargelegt, welches Optimierungspotential hinter dem Ansatz in den GGRn steckt. T2 - Jährlicher Austausch zwischen der BAM und DIN, IGV und DVFG CY - IGV-Sitz in Berlin-Mitte, Germany DA - 21.02.2018 KW - BAM-Gefahrgutregel KW - Composite-Druckgefäße KW - Wasserstoff KW - Lebensdauerüberwachung KW - Prüffristenfestlegung PY - 2018 AN - OPUS4-45462 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive waste PY - 2023 AN - OPUS4-57731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas A1 - Wille, Frank T1 - Friction coefficients for wood-wood and wood-steel interfaces in impact limiters for transport casks N2 - Wood is widely used in impact limiters of transport casks for radioactive material. Encapsulated by an outer and inner steel structure, spruce wood is often applied in layers of alternating direction. The friction at the interfaces between these layers is of crucial importance for the impact and energy absorption e.g., at an accidental impact of a cask against a hard target. In order to get detailed information for corresponding numerical calculations, in this study the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C according to the relevant stress conditions for such casks. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C to for a wood-wood combination. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Wood KW - Friction KW - Transport cask PY - 2023 AN - OPUS4-57702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gleim, Tobias A1 - Gradt, Thomas T1 - Friction coefficients for wood-wood and wood-steel contacts N2 - The friction at the interfaces between pieces of wood and steel is of crucial importance for the impact and energy absorption in impact limiters of transport casks for radioactive material. Here, the friction coefficient for the combinations wood-wood and wood-steel was measured in the temperature range between -40°C and 90°C. Results show decreasing friction with increasing temperature, ranging from 0.43 at -40°C to 0.22 for 90°C for wood-steel combinations and from 0.3 at -40°C to 0.24 at 90°C for a wood-wood combination. T2 - Sandia-BAM Workshop CY - Berlin, Germany DA - 21.11.2022 KW - Wood KW - Friction KW - Transport cask PY - 2022 AN - OPUS4-56342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Gaddampally, Mohan Reddy A1 - Völzke, Holger T1 - Fracture Mechanics Analysis of Spent Fuel Claddings during Long-Term Dry Interim Storage N2 - The prevention of brittle fracture of spent fuel claddings during long-term dry interim storage is based on experimental investigations, numerical analyses and assessment methods for predicting the mechanical behavior and determining limiting conditions. The ring compression test (RCT) is an established experimental method for characterizing cladding material. Test results for various high-burnup pressure water reactor zirconium-based fuel cladding alloys (e.g., ZIRLO®, M5®) are publicly available. To reduce the effort associated with irradiated samples in hot cells, it is helpful to perform studies on unirradiated surrogate cladding material. Based on such experimental data, load-displacement curves were numerically analyzed for selected cladding materials. In the presence of radial hydrides, a sample may suddenly fail by fracture even at small deformations. Noticeable load drops in the RCT occur associated to unstable crack propagation through the radial hydride network. The failure mechanism is quasi-cleavage in the hydrides and micro-void nucleation, growth, and coalescence in the zirconium matrix, with ductile tearing patches connecting neighboring hydrides. The failure process was simulated by cohesive zones controlled by the fracture energy and the cohesive strength. A modeling approach is presented in which the radial hydride morphology is taken into account. Based on the developed fracture mechanics approach with cohesive zone modeling, not only the deformation behavior but also the failure behavior of irradiated as well as unirradiated claddings with radial hydrides under RCT loading conditions can be adequately described. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2022) CY - Juan-les-Pins, France DA - 11.06.2023 KW - Extended Interim Storage KW - Nuclear Fuel Cladding KW - Numerical Failure Analysis KW - Ring Compression Test KW - Spent Fuel Characterization PY - 2023 AN - OPUS4-59147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Investigations on a Welding Seam of a Thick-Walled Transport Package N2 - Untersuchung einer Schweißnaht mit verschiedenen Codes. Vergleiche von experimentellen und numerischen Ergebnissen T2 - Technical Exchange IRSN – BAM: Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-56055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Fracture mechanical analysis of a cylindrical cast iron cask N2 - The safety evaluation of cask components made of ductile cast iron includes investigations to prevent brittle fracture. Generally, ductile cast iron is endangered by brittle fracture especially at low temperatures (down to -40°C) and in combination with existing crack-like material defects. An applicable method is the assessment of fracture resistance using fracture mechanics according to the IAEA guidelines. The approach is based on the prevention of fracture initiation. For application of these principles for drop loads, account must be taken both of dynamic stresses within the component and dynamic material behavior. Basically, the dynamic stress intensity factor of postulated pre-existing crack-like defects is compared with the dynamic fracture toughness of the material. Applicable numerical and experimental methods for the safety assessment of cask components are demonstrated for the case of an artificially pre-cracked cylindrical cast iron cask which undergoes dynamic loading conditions as result of the hard impact between the cask and a concrete target. The proposed evaluation procedure is a combination of numerical and experimental steps. Exemplarily, the calculated stress intensity factor is compared with measured fracture toughness values from single edge notched bending specimens. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) CY - New Orleans, LA, USA DA - 04.08.2019 KW - Ductile Cast Iron KW - Brittle Fracture KW - Cylindrical Cask PY - 2019 AN - OPUS4-48915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gleim, Tobias A1 - Komann, Steffen A1 - Neumann, Martin A1 - Linnemann, Konrad A1 - Wille, Frank T1 - Fracture Mechanical Analyses of a Welding Seam of a Thick-Walled Transport Package N2 - Transport packages shall satisfy various safety criteria regarding mechanical, thermal and radiation phenomena. Typical requirements focusing mechanical aspects are usually drop tests in accordance with IAEA regulations [1]. The drop tests are usually carried out experimentally and, as an additional measure, finite element analyses (FEA) are performed. A specific part of the investigations presented is the evaluation of the welding seam connecting cask shell and cask bottom. Experimental results and FEA are presented and compared. The evaluation of the welding seam performed includes a variety of aspects. In addition to the experimental and analytical stresses determined, different standards are used to investigate a possible crack initiation. Several destructive and non-destructive tests are performed for quality assurance in the manufacturing process as well as for different input parameters. The necessary monitoring and non-destructive measurement methods to define the boundary conditions of the standards are introduced. Taking into account all required parameters, the welding seam is examined and evaluated using the failure assessment diagrams (FAD) of the respective standards. It can be shown under the given boundary conditions that considering the experimental data, the welding seam is in the context of crack initiation below the enveloping curve in the acceptable region. More critical drop tests to be conducted are proposed and need to be investigated in future work. T2 - Pressure Vessels & Piping Conference® 2022 CY - Las Vegas, NV, USA DA - 17.07.2022 KW - Drop test KW - Fracture initiation KW - Transport package PY - 2022 AN - OPUS4-55374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Jan A1 - Würsig, Andreas T1 - Formale Pflichterfüllung N2 - Darstellung der Probleme im Zulassungsverfahren von Gefahrguttanks unter Berücksichtigung aktueller Regelwerksänderungen und daraus folgender Konsequenzen T2 - 23. Gefahrgutkongress Mecklenburg-Vorpommern CY - Rostock, Germany DA - 07.11.2019 KW - Baumusterzulassung KW - Tanks KW - Gefahrgut KW - Regelwerk KW - Antragsteller KW - Behörde KW - Prüfstelle PY - 2019 AN - OPUS4-50409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Jáuregui-Correa, Juan Carlos T1 - Forces on rails in turns: A review N2 - Curves represent a demanding situation for the railway materials. The different levels of effects are Bogie “Adaptation”, Centre plate Friction and Longitudinal load transfer. Besides rail damage and safety effects, the kinetic energy is lost due to turning. T2 - CONIIN CY - Online meeting DA - 28.09.2020 KW - Forces KW - Rail KW - Turns PY - 2020 AN - OPUS4-51384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Bethke, John A1 - Vogler, Nico A1 - Goedecke, Thomas T1 - Flow properties of powdery or granular filling substances of dangerous goods packagings - Comparison of the measurement of the angle of repose and the determination of the Hausner ratio N2 - To ensure safety when transporting dangerous goods, it is important to specify the flow properties of the respective solid filling substance of the packagings. For this purpose, the angle of repose is currently used for the UN approvals in Germany. Measurements were carried out on 12 powdery or granular substances applying the angle of repose measuring methods customary in the test centres. The results of the methods differ significantly from each other. In addition, some of the techniques cannot be applied for very cohesive or coarse-grained materials. The results for the angle of repose show a strong scatter for some constellations (coefficient of variation more than 20 %). Safety during transport of dangerous goods cannot be guaranteed with this currently practiced system of measuring the angle of repose. As a consequence, an alternative parameter to characterize the flow properties of bulk materials should be used in the recognized test centers for dangerous goods packagings, such as the Hausner ratio. This approach leads to more precise test results for the substances examined (maximum coefficient of variation 2.8 %). It also has advantages in terms of applicability and occupational safety. Since the flow properties are safety-relevant, both in terms of mechanical safety and safety against the release of dangerous substances, the testing practice in the recognized test labs should be improved and standardized. T2 - IAPRI Bangkok 2022 23rd World Packaging Conference CY - Online meeting DA - 12.06.2022 KW - Sift-proofness KW - Powders KW - Flow properties KW - Flowability KW - Angle of repose KW - Hausner ratio PY - 2022 AN - OPUS4-55103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Bethke, John T1 - Fließeigenschaften von festen Gefahrgütern - Vergleich der Messung des Schüttwinkels und der Bestimmung des Hausner-Faktors N2 - Fazit: Nachteile der Schüttwinkel-Messmethoden: Einschränkungen bei der Anwendbarkeit auf Füllgüter mit bestimmten Eigenschaften; Die einzelnen Methoden liefern dann unterschiedliche Ergebnisse (statist. signifikante Abweichung der Mittelwerte); Schlechte Wiederholbarkeit; Bedienereinfluss spielt Rolle; Gewährleistung des Arbeitsschutzes schwierig; Bestimmung des Hausner-Faktors: Keins dieser Defizite Mögliche Abhilfemaßnahmen: Prüfbericht und Zulassungsschein sollten zumindest die Methode angeben, die zur Messung des Schüttwinkels 𝛼 eingesetzt wurde; Einheitliches Verfahren zur Schüttwinkelmessung (DIN-Methode)? Umstellung des Systems auf einen alternativen Parameter zur Bestimmung der Fließeigenschaften: Hausner-Faktor 𝐻: Bessere Wiederholbarkeit der Ergebnisse; Zuverlässige Anwendbarkeit auch auf Extremfälle von Schüttgütern; Sicherere Handhabung von Gefahrgütern T2 - 35. Sitzung des BAM AK Prüfstellen CY - Berlin, Germany DA - 21.09.2022 KW - Gefahrgutverpackungen KW - Schüttwinkel KW - Hausner-Faktor KW - Pulver PY - 2022 AN - OPUS4-55810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Jan A1 - Sklorz, Christian T1 - Fire tests on BAM TTS test facilities N2 - Overview Test facilities TTS Division 3.2 for ´visit of IRSN T2 - Technical Exchange IRSN – BAM CY - BAM TTS, Germany DA - 12.09.2019 KW - FIRE TESTS BAM TTS TEST FACILITIES PY - 2019 AN - OPUS4-49194 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Borch, Jörg-Peter T1 - Fire tests of RAM packages and containers under high thermal load N2 - Fire testing is an essential part of the hypothetical, cumulative mechanical and thermal test conditions that shall guarantee package safety in severe accidents. Within regulatory approval of transport or storage packages for radioactive material, specific thermal load tests are required in accordance to licensing conditions and international standards, respectively. The specifications of these thermal tests are based on test conditions with equivalent heat input to that of a hydrocarbon fuel fire. In the past, light heating oil, diesel or kerosene was mostly used as the fuel to generate the pool fire. In accordance with IAEA regulations for a fire in an accident, the temperature of 800 °C over a period of 30 minutes must be fulfilled. Furthermore, the delivery acceptance criteria for containers in nuclear waste repositories could reach for example average temperatures of 800 °C during a period of one hour in combination with defined requirements on activity release. BAM as a scientific and technical German federal government institute operates an open air Technical Safety Test Site for experimental investigations of dangerous good and its containment. In this areal a large fire test facility is under operation. Liquid Propane is utilized as fuel which is pumped via pipelines from a central storage tank to the fire exposed test facility areas. In the ring burner system, the gas is released from nozzles, and ignited by ignition burners. The paper includes examples of fire test performance with prototypes of a transport package and a storage container, respectively. In preparation of the thermal load, calorimeter tests have been performed using test specimens of appropriate size and behavior. For the fire test scenario is demonstrated that the IAEA thermal test requirements are fulfilled. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA Thermal Test KW - Thermal package testing KW - Transport package KW - Container for radioactive waste PY - 2019 AN - OPUS4-49092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Musolff, André A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Wille, Frank T1 - Fire Testing - Current Activities N2 - The presentation gives an overview over three current fire testing activities for testing transport packages for the transport of high-level radioactive material. Packages for the transport of high-level radioactive material must withstand severe hypothetical accidents. Regulatory test conditions shall cover these severe accident conditions and consist of mechanical tests and a following thermal test. To withstand the mechanical tests heavy weight packages are often designed with impact limiters consisting of wood encapsulated in steel sheets. The thermal test is defined precisely in the IAEA-regulations as a 30 minute fully engulfing 800 °C fire. After the fire phase a pre-damaged impact limiter might continue burning or smoldering and influence the cask thermal behavior with its energy release. The energy transferred from the impact limiter to the cask is of importance for the safety of transport packages. A full-scale fire test with an impact limiter of 2.3 m in diameter and filled with spruce wood was designed and performed. The impact limiter continued burning for 3 days. Energy transfer and temperature measurements were performed. A new test is designed to examine pressure build up and possible mechanical failures in an undamaged impact limiter with a diameter of 1.9 m. The test is designed to measure heat flux from the impact limiter in case of its ignition and burning. To furthermore examine the burning behavior of steel encapsulated wood piles, tests are prepared with wood fire containers and an infrared ignition source. A fire reference package for calorimetric tests was designed. The fire reference package design consists of a closed steel sheet cylinder with a length of 1,500 mm, an exterior diameter of 1,050 mm, and a wall thickness of 10 mm. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The measured local steel sheet temperatures allow the determination of local as well as overall integral heat fluxes versus time and versus surface temperature. Currently, tests are planned with a new and relatively small fire reference package design. The new design will have a steel sheet cylinder with a length of 182 mm, an exterior diameter of 120 mm. Additionally heat flux sensors will be used in the new fire reference package test design. The propane gas fire will be adjusted with respect to the outcome of the fire tests to meet the requirements of the IAEA-fire. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor KW - Propane gas fire KW - Wood fire PY - 2021 AN - OPUS4-53242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Fire Reference Tests for Qualification of IAEA Fire N2 - A small cylindrical fire reference package was designed. A fire test setup was created using the fire reference package in accordance with IAEA standards. Four propane gas fire tests were conducted to determine heat fluxes into the fire reference package. The initial test setup was modified to create the final design of the fire test facility. This allowed for the heat flux to be adjusted to meet the regulatory IAEA fire qualification criteria. Furthermore, a numerical model of the fire reference package was created using boundary conditions derived from the experimental data. The simulation results demonstrated good agreement with the experimental data and provided additional insights. T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Cadarache, France DA - 13.10.2022 KW - Fire KW - IAEA KW - Propane PY - 2022 AN - OPUS4-57251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Thermal testing KW - Convection coefficient KW - IAEA fire KW - Propane gas fire test facility PY - 2019 AN - OPUS4-48841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference package - Results of large-scale fire tests N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - IRSN-BAM Symposium - Safety of Transport and Storage Packages CY - Online meeting DA - 19.11.2020 KW - Fire reference KW - Calorimetric test KW - Propane KW - Heat flux KW - Propane gas fire test facility PY - 2020 AN - OPUS4-51686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian T1 - Fire protection systems for above ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, The Netherlands DA - 16.06.2019 KW - Fire protection systems KW - Popane storage tanks PY - 2019 AN - OPUS4-49022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Nehrig, Marko A1 - Wille, Frank A1 - Êhrenberg, M. T1 - Fire Influence to Wood Filled Impact Limiters - Implications for the Package Design Safety Case N2 - Impact limiters with wooden components are widely used in the design of packages for transportation of radioactive material. In most designs, the wood is encapsulated with steel sheets. Impact limiters mainly determine the mechanical and thermal behaviour of the package in accident conditions of transport in accordance with the IAEA Regulations. In context with research and development for package design approval competence, the thermal behaviour of heavy-weight packages was investigated at BAM with an artificially pre-damaged generic impact limiter design. Within this first investigation, the pre-damaged impact limiter with a diameter of 2.3 meters was mounted on a water tank simulating the thermal capacity of a cask during the fire test. The water tank is part of a water circulating system built of several components such as pump, heater, cooler, sliding valve, flow meter, thermocouples and control unit in order to measure the heat flux. Furthermore, the investigations focus on the effects this additional heat generation would have on the cask and especially on the lid-closure system with the gasket. The results of these experiments could find consideration in the safety case of the transport packages of radioactive material using wood filled impact limiters. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - Fire test KW - Impact limiter KW - Mechanical and thermal behaviour PY - 2023 AN - OPUS4-57719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Eisenacher, Germar A1 - Schönfelder, Thorsten A1 - Wille, Frank T1 - Finite element simulation of the crush of package components made of encapsulated wood N2 - Typical transport packages used in Germany are equipped with encapsulated wooden impact limiting devices. We would like to present the current status regarding the development of a Finite Element (FE) material model for the crush of wood for the FE-code LS-DYNA. The crush of is a phenomenon governed by macroscopic fracture. Here, we would like to reproduce fracture and failure mechanisms over the continuous volume. In a first step we altered an existing LS-DYNA material model for foams, which considers an ellipse shaped yield surface. For the use for longitudinal compression of wood, we modified the existing material model to consider the deviatoric strain for the evolution of the yield surface as well. This is in accordance with the results of crush tests with spruce wood specimens, where the crushing deformation was rather deviatoric for uniaxial stress states and rather volumetric for multiaxial stress states We rate the basic idea of this approach to be reasonable, though other problems exist regarding the shape of the yield surface and the assumption of isotropic material properties. Therefore we developed a new transversal isotropic material model with two main directions, which considers different yield curves according to the multiaxiality of the stress state via a multi-surface yield criterion and a non-associated flow rule. The results show the ability to reproduce the basic strength characteristics of spruce wood. Nevertheless, problems with regularization etc. show that additional investigations are necessary. T2 - 11th International Conference on the Transport, Storage and Disposal of Radioactive Materials CY - London, UK DA - 15.05.2018 KW - Wood KW - FEM PY - 2018 AN - OPUS4-45093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra A1 - Malgioglio, Fabio A1 - Alves, Marco T1 - Fibre Misalignment Distribution of the Hoop Layer from a Type IV Pressure Vessels N2 - A high resolution micro-CT scan of a hoop layer from type IV cylinder has been carried out. The directional Gradient function had been used to analyse the in-plane and out-of-plane fibre misalignment from the Micro-CT Images. A correlation Analysis of the directional Gradient has also been performed and compared with the existing results from the cited paper. T2 - Secondment at Siemens Industry Software CY - Leuven, Belgium DA - 22.05.2019 KW - Micro-CT KW - Composite pressure vessels KW - Fibre misalignment KW - Fibre waviness KW - Correlation length KW - Correlation width PY - 2019 AN - OPUS4-48572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Habib, Abdel Karim A1 - Homann, Tobias A1 - Hussels, Maria-Teresa A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter T1 - Feasibility study: Continuous monitoring of pipes using distributed acoustic and fibre optic sensors N2 - The feasibility study „AGIFAMOR. Ageing infrastructures – distributed acoustic monitoring of pipes” is an interdisciplinary research project at BAM internally financed from 2015 to 2018. Therefore, the quite young fibre optic sensing technology of distributed acoustic sensing (DAS) was investigated to possibly be extended towards a global condition monitoring system for pipelines operating in real time. DAS is a highly dynamic fibre optic sensing technology based on the method of coherent optical time domain reflectometry (C-OTDR). DAS allows capturing strain changes in the range of kHz. For the experimental work, the most suitable application yielding an optimum sensitivity was proven by wrapping a standard single-mode silica fibre around the pipe. The DAS sensitivity was investigated regarding the detection of 1) incidents that initiate propagation of acoustic waves in the pipe wall, 2) changes inside the pipeline causing altered flow and 3) damage development in the pipe wall. Therefore, several testing setups in laboratory as well as in real scale were realized. For comparison purposes, experiments were accompanied by acoustic emission analyses and by measurements with accelerometers. DAS was found to be very sensitive to gas ignition and its propagation across the pipe. Furthermore, the ability of DAS to detect and localize acoustic signals associated with pipeline leakage was demonstrated. The detection of crack formation and propagation within the pipe wall by means of DAS was studied during bending tests on several pipe segments, but was not proven so far with certainty. As expected, these studies turned out as the most difficult challenge due to the random occurrence and transient nature of microscopic damage phenomena. T2 - International Symposium on Structural Health Monitoring and Nondestructive Testing CY - Saarbrücken, Germany DA - 04.10.2018 KW - Fibre optic acoustic sensing KW - Continous monitoring KW - Acoustic emission KW - Accelerometers KW - Bending tests on pipe segments KW - Leak detection PY - 2018 AN - OPUS4-46200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lengas, Nikolaos A1 - Müller, Karsten A1 - Schlick-Hasper, Eva A1 - Neitsch, Marcel A1 - Johann, Sergej A1 - Zehn, M. W. T1 - FEA of the mechanical response of installed impact target foundations in drop tests of dangerous goods packagings N2 - Packagings for the transport of dangerous goods need to meet special requirements to get an approval. This includes free fall drop testing onto an essentially unyielding surface as a means to assess a package’s resistance to mechanical damage. A main requirement for drop tests is that the impact target’s mass shall be at least 50 times that of the heaviest package to be tested. Nevertheless, many manufacturers do not possess foundation structures with the required mass ratio. Previous evidence highlights that the mass ratio is not a decisive criterion on its own. Parameters such as the impact target foundation’s connection and the impulse experienced by the impacting object are essential as well. However, these factors are not easily verifiable since experimental measurements are not possible at most facilities. The objective of this work is to provide a detailed analysis on the interaction between impact target foundation and subgrade in dynamic impact testing using validated finite-element (FE) models. This research is highly beneficial for industrial application since it allows manufacturers to make informed predictions about the mechanical response of installed impact target foundations. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2012 KW - Dangerous goods packagings KW - Drop test KW - Foundation KW - Structural dynamics PY - 2023 AN - OPUS4-58213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Eiben, Mario A1 - Drousch, Björn A1 - Annika, Heinrich A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Fallprüfungen an Gefahrgutsäcken mit Innenventil N2 - Untersuchung der stoßartigen Freisetzung pulverförmiger Füllgüter aus Ventilsäcken für Gefahrgüter mit Innenventil. Fallprüfungen an einem Papiersack 5M2 mit zwei Füllgütern (Esplas H130 und Zinkoxid). Variation von Ventillänge, Fallhöhe und Füllgrad in Kombination mit der Anzahl der Fallversuche pro Prüfmuster. Bei Esplas H 130 war ein Pulveraustritt aus den Klebestellen bereits beim Befüllen zu verzeichnen. Dies ist ein Widerspruch zu UN 6.1.4.18.1 (Staubdichheit). Bei beiden Substanzen waren die Ventile aller Prüfmuster nach der Fallprüfung nicht mehr staubdicht. Es wird auf erste mögliche Lösungsvorschläge eingegangen. T2 - ERFA Verpackungen CY - BAM, Berlin, Germany DA - 27.09.2018 KW - Gefahrgutsäcke KW - Staubdichtheit KW - Fallprüfung PY - 2018 AN - OPUS4-46096 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlick-Hasper, Eva A1 - Eiben, Mario A1 - Björn, Drousch A1 - Heinrich, Annika A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Fallprüfungen an Gefahrgutsäcken mit Innenventil N2 - Untersuchung der stoßartigen Freisetzung pulverförmiger Füllgüter aus Ventilsäcken für Gefahrgüter mit Innenventil. Fallprüfungen an einem Papiersack 5M2 mit zwei Füllgütern (Esplas H130 und Zinkoxid). Variation von Ventillänge, Fallhöhe und Füllgrad in Kombination mit der Anzahl der Fallversuche pro Prüfmuster. Bei Esplas H 130 war ein Pulveraustritt aus den Klebestellen bereits beim Befüllen zu verzeichnen. Dies ist ein Widerspruch zu UN 6.1.4.18.1 (Staubdichheit). Bei beiden Substanzen waren die Ventile aller Prüfmuster nach der Fallprüfung nicht mehr staubdicht. Es wird auf erste mögliche Lösungsvorschläge eingegangen. T2 - 31. Sitzung des BAM AK Prüfstellen CY - BAM, Berlin, Germany DA - 28.09.2018 KW - Gefahrgutsäcke KW - Staubdichtheit KW - Fallprüfung PY - 2018 AN - OPUS4-46098 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaddampally, Mohan Reddy A1 - Zencker, Uwe A1 - Völzke, Holger T1 - Failure Analysis on Irradiated Claddings Subjected to Long-Term Dry Interim Storage N2 - Long-term dry interim storage may adversely affect the mechanical properties of spent fuel rods, possibly resulting in a reduced resilience during handling or transport after storage. Since the cladding is the first barrier for the spent fuel pellets, its integrity must be demonstrated until the end of interim storage and subsequent transportation. An established method for characterizing the cladding material is the ring compression test, in which a small, cylindrical sample of the cladding tube is subjected to a compressive load. This test is a laboratory representation of a load case where the fuel rod is crushed. Pre-storage drying and the early stage of interim storage can subject the cladding to higher temperatures and higher pressure induced tensile hoop stresses than those associated with in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate in zirconium-based alloys (Zircaloy) during slow cooling, which result in embrittlement of the cladding material and eventually a possible sudden failure of cladding integrity under additional mechanical loads. Especially long, continuous radial hydride structures and low temperature can cause severe embrittlement of claddings and finally failure by fracture even at small deformations. Therefore, the study of hydride morphology plays an important role in describing the brittle failure behaviour of the claddings. The focus of the presented research is on the development of appropriate numerical methods for predicting the mechanical behaviour and identification of limiting conditions to prevent brittle fracture of Zircaloy claddings. Typical hydride morphologies are shown. An iterative inverse analysis method is described for deriving the elastic-plastic material properties in the hoop direction of a ring-shaped sample. A modelling approach based on cohesive zones is explained which is able to reproduce the propagation of cracks initiated at radial hydrides in the zirconium matrix. The developed methods are applied to defueled samples of cladding alloy ZIRLO®, which were subjected to a thermo-mechanical treatment to reorient existing circumferential hydrides to radial hydrides. A selected sample showing sudden load drops during a quasi-static ring compression test is analysed by means of fracture mechanics for illustrative purposes. This project as part of the European Joint Programme on Radioactive Waste Management has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 847593. T2 - BAM-Kolloquium der Abteilung 3 CY - Berlin, Germany DA - 05.06.2023 KW - Cladding Embrittlement KW - Cohesive Zone Modelling KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2023 AN - OPUS4-57598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Eiben, Mario A1 - Farahbakhsh, Mahin T1 - Fachinformationssytem Datenbank GEFAHRGUT - Recherche für nicht-radioaktive Stoffe N2 - Präsentation der Möglichkeiten und Themen der Recherche in der Datenbank GEFAHRGUT T2 - 34. Internationale Gefahrgut-Tage Hamburg CY - Hamburg, Germany DA - 26.02.2018 KW - Datenbank KW - Gefahrgut KW - Fachinformationssystem KW - Recherche KW - Database KW - Dangerous Goods KW - Specialised Information System PY - 2018 AN - OPUS4-44332 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Eiben, Mario A1 - Simon, Katja A1 - Tscheuschner, Frank A1 - Farahbakhsh, Mahin T1 - Fachinformationssytem Datenbank GEFAHRGUT - Recherche für nicht-radioaktive Stoffe N2 - Präsentation der Möglichkeiten der Recherche in der Datenbank GEFAHRGUT T2 - Behörden-Erfahrungsaustausch CY - BAM, Berlin, Germany DA - 04.06.2018 KW - Datenbank KW - Gefahrgut KW - Fachinformationssystem KW - Dangerous goods KW - Database KW - Transport of dangerous goods KW - Specialised Information System KW - Gefahrguttransport PY - 2018 AN - OPUS4-45146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Simon, Katja A1 - Farahbakhsh, Mahin T1 - Fachinformationssytem Datenbank GEFAHRGUT - Recherche für nicht-radioaktive Stoffe N2 - Präsentation der Möglichkeiten und Themen der Recherche in der Datenbank GEFAHRGUT T2 - 20. Stuttgarter Gefahrguttag CY - Stuttgart, Germany DA - 18.10.2018 KW - Datenbank KW - Fachinformationssystem KW - Gefahrgut KW - Recherche KW - Specialised Information System KW - Dangerous Goods KW - Database PY - 2018 AN - OPUS4-46345 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Tscheuschner, Frank A1 - Eiben, Mario A1 - Farahbakhsh, Mahin T1 - Fachinformationssytem Datenbank GEFAHRGUT - Recherche für nicht-radioaktive Stoffe N2 - Präsentation der Möglichkeiten und Themen der Recherche in der Datenbank GEFAHRGUT T2 - ERFA Verpackungen CY - Berlin, Germany DA - 27.09.2018 KW - Datenbank KW - Fachinformationssystem KW - Gefahrgut KW - Recherche KW - Specialised Information System KW - Dangerous Goods KW - Database PY - 2018 AN - OPUS4-46196 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Farahbakhsh, Mahin A1 - Eiben, Mario A1 - Stahl, Michael T1 - Fachinformationssystem Datenbank GEFAHRGUT - Modul für Beförderungspapiere N2 - Die Vorteile bei der Erstellung von Beförderungspapieren mit dem Modul der Datenbank GEFAHRGUT werden dargestellt. Dazu zählen u.a. die einfache Erstellung eines Beförderungspapieres für Stückgut im Straßenverkehr durch Nutzung eines Schritt-für-Schritt-Assistenten, bei dem z. B. grundsätzliche Verbote der Zusammenladung und -packung geprüft werden. Bei der Auswahl der Verpackung werden bei Einzelverpackungen und IBCs nur Verpackungen/IBCs angeboten, die für den jeweiligen Stoff zulässig sind. T2 - Internationale Gefahrgut-Tage Hamburg CY - Hamburg, Germany DA - 17.02.2020 KW - Datenbank GEFAHRGUT KW - Gefahrgut KW - Modul für Beförderungspapiere KW - Gefahrguttransport KW - Dangerous Goods Database KW - Dangerous Goods KW - Transport Documents Modul KW - Dangerous Goods transport PY - 2020 AN - OPUS4-50442 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Eiben, Mario A1 - Farahbakhsh, Mahin T1 - Fachinformationssystem Datenbank GEFAHRGUT - Jetzt auch Hilfe bei der Kennzeichnung der Umweltgefahr N2 - Um Gefahrgutumschließungen richtig kennzeichnen zu können ist es erforderlich zu wissen, ob ein Stoff umweltgefährdende Eigenschaften hat. Als Informationsquelle hierfür kann sowohl die Rechercheanwendung der Datenbank GEFAHRGUT als auch die Daten des Gefahrgutdatenservices im BAM-Nummern-System als auch im UN-Nummern-Systems verwendet werden. T2 - 34. Internationale Gefahrgut-Tage Hamburg CY - Hamburg, Germany DA - 26.02.2018 KW - Datenbank KW - Gefahrgut KW - Fachinformationssystem KW - Kennzeichnung KW - Umweltgefahr KW - Umweltgefährdend KW - Transport of Dangerous Goods KW - Dangerous Goods KW - Specialised Information System KW - Database KW - Environmentally Hazardous PY - 2018 AN - OPUS4-44331 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stahl, Michael A1 - Simon, Katja A1 - Farahbakhsh, Mahin T1 - Fachinformationssystem Datenbank GEFAHRGUT - Jetzt auch Hilfe bei der Kennzeichnung der Umweltgefahr N2 - Um Gefahrgutumschließungen richtig kennzeichnen zu können ist es erforderlich zu wissen, ob ein Stoff umweltgefährdende Eigenschaften hat. Als Informationsquelle hierfür kann sowohl die Rechercheanwendung der Datenbank GEFAHRGUT als auch die Daten des Gefahrgutdatenservices im BAM-Nummern-System als auch im UN-Nummern-Systems verwendet werden. T2 - 20. Stuttgarter Gefahrguttag CY - Stuttgart, Germany DA - 18.10.2018 KW - Datenbank KW - Fachinformationssystem KW - Gefahrgut KW - Kennzeichnung KW - Umweltgefahr KW - Umweltgefährdend KW - Environmentally Hazardous KW - Dangerous Goods KW - Database KW - Specialised Information System KW - Transport of Dangerous Goods PY - 2018 AN - OPUS4-46344 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -