TY - CONF A1 - Thiede, Tobias T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano-Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, Bernd R. T1 - X-Ray-Refraction-Imaging-Techniques high-resolution microstructural characterization N2 - X-ray refraction is analogous to visible light deflection by matter; it occurs at boundaries between different media. The main difference between visible light and X-rays is that in the latter case deflection angles are very small, from a few seconds to a few minutes of arc (i.e., the refraction index n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks and quantify their densities in bulk (not too heavy) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in materials science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in additively manufactured alloys; 3) Fiber de-bonding in metal and polymer matrix composites. Such techniques, especially at the Synchrotron BESSY II, Berlin, Germany, can be used in-situ, i.e. when the specimen is subjected to temperatures or external loads. Applications of in-situ X-ray refraction radiography on aluminum alloys and composites are also shown. The use of X-ray refraction analysis yields quantitative information, which can be directly input in kinetics, mechanical and damage models. T2 - ICT 2023 CY - Fürth, Germany DA - 27.02.2023 KW - X-ray refraction KW - Composites KW - In-situ KW - Additive Manufacturing KW - Sintering KW - Ceramics PY - 2023 AN - OPUS4-57200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zscherpel, Uwe T1 - X-ray back scatter techniques for additive manufacturing N2 - X-ray back scatter imaging is rarely applied compared to classical X-ray projection imaging. More than 20 years ago the company Philips developed “COMSCAN”, a first application case for aircraft industry, which allowed even a depth resolution using back scatter imaging. The company AS&E in Boston offers back scatter imaging solutions for the security market. The principle is to scan the object with a highly collimated X-ray needle beam from one side only and to detect the backscattered radiation by a large area detector side by side with the collimation wheel. A new prototype is investigated at BAM for application and optimization in non-destructive testing. As modern industrial application field in-situ inspection in additive manufacturing is targeted. The accessibility of the printed part during the production process is very limited. This prevent the application of a two sided X-ray inspection or Computed Tomography, were an rotation of the object is required to acquire projections from 360 degrees. An important advantage for the X-ray back scatter technique are also the materials used in additive manufacturing (polymers, ceramics, light metals like Aluminum or Titanium). These materials with lower density and lower Z values give better scatter signals than metals with higher densities and Z values. The back scatter intensity decreases with increasing density and Z value of the material. But the requirements on spatial resolution and contrast sensitivity are more stringent for non-destructive testing of additive manufactured parts compared to the security area. In NDT sizes of indications smaller than 1 mm have to be detected clearly. The investigation of these limits on a state-of-the-art prototype for X-ray back scattering using rotating collimated X-ray needle beams is a part of the BAM project “ProMoAM”. The contribution shows first results of the optimization for NDT and the achieved application limits for several example cases. T2 - International Symposium on Nondestructive Characterization of Materials CY - Portoroz, Slovenia DA - 17.09.2019 KW - Non-destructive testing KW - X-ray back scattering KW - Additive Manufacturing PY - 2019 AN - OPUS4-50523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray Absorption and Refraction techniques for characterization and non-destructive-testing of materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will show how Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load, can well be coupled to the microstructural framework gained by CT, allowing understanding the microstructure-property relationships in materials. T2 - ENSAM CY - Paris, France DA - 28.11.2019 KW - Additive Manufacturing KW - Computed Tomography KW - Neutron Diffraction KW - X-ray refraction techniques KW - Composites PY - 2019 AN - OPUS4-49927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Winterkorn, René T1 - Wire arc additive manufacturing of high strength al-mg-si alloys N2 - Direct energy deposition additive manufacturing technologies utilizing an electric arc offer a great potential in generating large volume metal components. However, the selection of process parameters that yield the desired near net shape design as well as the requested mechanical component behavior is not a trivial task due to the complex relationship. Exemplarily for additive manufacturing of high-strength precipitation hardening AlMgSi-aluminum alloy this paper shows the application of a newly developed matching solid welding wire doped with TiB as grain refiner. The correlation between process parameters and component quality is examined analyzing the size and distribution of pores as well as the grain morphology. Furthermore, the influences of different post-weld heat treatments are evaluated to meet the reference mechanical properties of the corresponding wrought material. Finally, the digital integration of the entire additive manufacturing chain enables an overall traceability of the relevant process steps which is the basis for a reliable subsequent quality assessment. T2 - THERMEC'2023 International Conference on PROCESSING & MANUFACTURING OF ADVANCED MATERIALS: Processing, Fabrication, Properties, Applications CY - Vienna, Austria DA - 02.07.2023 KW - Additive Manufacturing KW - DED-Arc KW - Grain refinement KW - High strength AlMgSi aluminium alloys KW - Mechanical properties PY - 2023 AN - OPUS4-59500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Water-based additive manufacturing of ceramics by Laser-Induced Slip Casting (LIS) N2 - The Laser-Induced Slip Casting is an additive manufacturing technology specifically developed for ceramic materials using water-based ceramic slurries. The process takes place layer-by-layer in a similar fashion as top-down vat photopolymerization, selectively consolidating each layer by means of a laser energy source positioned on the top. Contrary to vat photopolymerization, in which the consolidation is achieved by selectively cross-linking a ceramic-filled resin, LIS uses water-based slurries with a low amount of organic additives (typically < 5 wt%) as feedstocks. In LIS, a green body is formed by local evaporation of water which causes the suspension to collapse forming a cast, following a mechanism similar to slip casting. Only a small content of organic additives is needed to effectively disperse the ceramic particles and to increase the green strength. The technology is very versatile and can be applied to all ceramic systems that can be dispersed in water. One of the main advantages is that even dark materials such as silicon carbide can be processed without issues related to light scattering and absorption. The presentation will discuss strengths and limitations of LIS compared to other AM technologies and will highlight the latest results for alumina and for silicon carbide ceramics. T2 - 48th International Conference and Expo on Advanced Ceramics and Composites (ICACC2024) CY - Daytona, FL, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Ceramic KW - Water-based KW - Slurry KW - Laser PY - 2024 AN - OPUS4-60054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seeger, Stefan T1 - VOC, Fine and Ultrafine Particles Emissions from Additive Manufacturing and 3D-Printers N2 - The presentation gives an overview on Additive Manufacturing techniques and related potential risks from emission of hazardous gases and aerosols, based on emission characterizations in BAM. Voluntary mitigation strategies are presented T2 - BAM - JBMIA (Japan Business Machine and Information System Industries Association) Meeting, JBMIA Emissions Working Group Meeting CY - Tokyo, Japan DA - 04.05.2019 KW - 3D Printing KW - Additive Manufacturing KW - Particulate emissions KW - Emissions of hazardous gases KW - Filament comparison PY - 2019 AN - OPUS4-47812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marquardt, R. A1 - Osayi, J. A1 - Kmieciak, S. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Verschleißschutz einer Schneckengeometrie durch funktional gradierte Materialien N2 - Hochbelastete Stahlbauteile lassen sich durch Auftragen von Kobalt-Chrom Legierungen vor Verschleiß schüt-zen. Die plötzliche Änderung der Materialeigenschaften führt jedoch zu Spannungen und Rissen im Anbindungs-bereich. Daraus resultierende Abplatzungen stellen eine Gefahr für die Funktionsfähigkeit der Maschine und damit für Mensch und Umwelt dar. Um die Belastbarkeit der Schutzschicht zu verbessern, kann die Anbindung durch einen gradierten Materialübergang optimiert werden. Diese funktional gradierten Materialien können mit-tels pulverbasiertem Directed Energy Deposition aufgetragen werden. Die Methodik zum Aufbau und zur Quali-tätssicherung solcher Materialien wurde in vorangegangenen Arbeiten für dickwandige Geometrien gezeigt. Für dünnwandige Geometrien ist die Anwendbarkeit bisher unzureichend untersucht worden. Diese Arbeit zeigt am Beispiel einer dünnwandigen gradierten Schneckengeometrie die Einsatzfähigkeit der Methodik. Dafür wird die Gefügestruktur der Gradierung auf Fehler untersucht und der Härteverlauf gemessen. Außerdem wird die relative Dichte anhand eines bereits trainierten neuronalen Netzes vorhergesagt und mit einer Porositätsuntersuchung verglichen. T2 - 14. Tagung Verschleiß- und Korrosionsschutz von Bauteilen durch Auftragschweißen CY - Halle (Saale), Germany DA - 12.06.2024 KW - Directed Enery Deposition KW - Funktionally Graded Material KW - Additive Manufacturing KW - DED KW - FGM KW - AM PY - 2024 AN - OPUS4-62688 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Unraveling thermal radiation by multispectral thermography: Real temperatures in LMD N2 - Additive manufacturing of metals offers the opportunity to build parts with a high degree of complexity without additional costs, opening a new space for design optimization. However, the processes are highly complex and due to the rapid thermal cycles involved, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine the formation of internal stresses and the microstructure, in-process spatially resolved measurements of the part temperature are needed. If the emissivity of the inspected part is known, its thermodynamic temperature can be reconstructed by a suited radiometric model. However, in additive manufacturing of metals, the emissivity of the part surface is strongly inhomogeneous and rapidly changing due to variations of, e.g., the degree of oxidation, the material state and temperature. Thus, here, the applicability of thermography in the determination of thermodynamic temperatures is limited. However, measuring the process thermal radiation at different wavelengths simultaneously enables one to separate temperature and emissivity spatially resolved to obtain further insight into the process. Here, we present results of an initial study using multispectral thermography to obtain real temperatures and emissivities in the powderfree LMD process. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 AN - OPUS4-52514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - DKG Jahrestagung 2023 CY - Jena, Germany DA - 27.03.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Two-Photon-Polymerization for Ceramics Powder Processing N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with laser light into the volume of a ceramic powder compound its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP) for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ECerSXVIII Conference Exhebition of the European Ceramic Society CY - Lyon, France DA - 02.07.2023 KW - Additive Manufacturing KW - Transparent ceramics PY - 2023 AN - OPUS4-59883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - Two approaches for multi measurand in-situ monitoring of the L-PBF process – bicolor- and RGB-optical tomography N2 - Since metal additive manufacturing (AM) becomes more and more established in industry, also the cost pressure for AM components increases. One big cost factor is the quality control of the manufactured components. Reliable in-process monitoring systems are a promising route to lower scrap rates and enhance trust in the component and process quality. The focus of this contribution is the presentation and comparison of two optical tomography based multi measurand in-situ monitoring approaches for the L-PBF process: the bicolor- and the RGB-optical tomography. The classical optical tomography (OT) is one of the most common commercial in-situ monitoring techniques in industrial L-PBF machines. In the OT spatial resolved layer-images of the L-PBF process are taken from an off-axis position in one near infrared wavelength window. In addition to the explanatory powers classical OT, both here presented approaches enable the determination of the maximum surface temperature. In contrast to thermography that may also yield maximum temperature information, the needed equipment is significantly cheaper and offers a higher spatial resolution. Both approaches are implemented at a new in-house developed L-PBF system (Sensor-based additive manufacturing machine - SAMMIE). SAMMIE is specifically designed for the development and characterization of in-situ monitoring systems and is introduced as well. T2 - ICAM2022 CY - Orlando, FL, USA DA - 31.10.2022 KW - Additive Manufacturing KW - L-PBF KW - In-process monitoring KW - Optical tomography PY - 2022 AN - OPUS4-56594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Towards the Use of Representative Specimens for the Qualification of Additively Manufactured Parts N2 - The understanding of the process-structure-property-performance relationship is the key challenge for the qualification of safety-relevant parts made of additively manufactured metallic materials. The complexity of the manufacturing process and the number of influencing parameters affect the properties of test coupons and parts even fabricated in the same batch. This poses the problem of using reliable witness specimens for part qualification. This work presents a new approach which aims at the fabrication of test coupons tailored to the specific microstructure and fatigue properties of a component. The first step consisted in the evaluation of the temperature field by means of process monitoring during the production of parts. The results were used to tailor finite element models which were then used to design witness specimens representative of the thermal history in the component. Finally, the fatigue properties of designed specimens were compared to coupons machined out of the component. T2 - TMS2024 – 153rd Annual Meeting & Exhibition CY - Orlando, FL, USA DA - 03.03.2024 KW - Additive Manufacturing KW - Process simulation KW - Thermal history KW - Structural integrity KW - Damage tolerance PY - 2024 AN - OPUS4-65072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The laser powder bed fusion of 316L leads to the formation of large residual stress. In this presentation, different stress relieve treatments were employed to assess their potential to relax the residual stress. The residual stress was determined by X-ray and neutron diffraction. The results give insights on the range of relaxation one can obtain by employing low and high temperature heat treatments and relates the relaxation to changes in the microstructure. T2 - Online-Sitzung des Fachausschusses 13 - Eigenspannungen CY - Online meeting DA - 08.12.2021 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing KW - Stainless Steel PY - 2021 AN - OPUS4-53947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Towards the optimization of post laser powder bed fusion stress relieve treatments of stainless steel 316L N2 - The formation of high magnitude residual stresses is inherent in laser powder bed fused processed austenitic steel 316L. Post-process heat treatments to relieve these stresses are necessary. In this study, heat treatment temperatures of 450°C, 800°C and 900°C were applied in order to avoid excessive sensitization. This temperature range thereby encompassed the upper and lower bounds for stress relieving treatment of this material. The residual stresses were determined by neutron diffraction and the evolution of the microstructure was monitored using scanning electron microscopy and electron backscattered diffraction. The results show that a full relaxation of the residual stresses is achieved when applying 900°C for 1 hour, which seems to be closely related to the dissolution of the subgrain solidification cellular structure. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Residual Stress KW - Additive Manufacturing KW - Steel PY - 2021 AN - OPUS4-52709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Towards the determination of real process temperatures in the LMD process my multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 DO - https://doi.org/10.1117/12.2587881 AN - OPUS4-52515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay T1 - Towards arc welding reference data: Open Science laboratories at BAM N2 - As industries move for ever faster development and adoption cycles of emerging new technologies in the field of welding, the meticulous and longer-winded approach of the scientific research process can feel harder to integrate. To help bridge this gap and increase the speed, quality, and adoption rate of publicly funded research, the Bundesanstalt für Materialforschung und -prüfung (BAM) continues to work towards enabling scientists with direct access to necessary software tools and - in the future – highest quality welding research reference data to further foster collaborations. On the experimental side, the arc welding group at BAM division 9.3 “welding technologies” is continuing to expand and upgrade its capacities of robotic welding systems with integrated state of the art sensor technologies and software solutions. This allows all experiments to be recorded and measured in micro-millimeter accuracy and at sub-millisecond precision, including welding process data, complete spatial geometry and temperature measurements, process video recordings and more. The custom software-based solutions and interfaces allow scaling of the welding systems from large thick plate offshore applications to small additive repair weldments in wind turbine blades to multi-hour continuous weldments in additive manufacturing applications. In addition to the data gathered during the welding process itself, the relevant testing results and materials properties produced at BAM or externally can be integrated seamlessly. This allows detailed traceability of all results back to the actual welding process. Regardless of the scope and application, complete datasets can be made accessible for research or industry partners in the highest resolution based on the open source WelDX (welding data exchange) file format. Figure 1. Welding experiment representation including dynamic process data, cross-section imaging and hardness measurements from a single weldx file. The talk will give an overview of the experimental facilities and workflows as well as current software developments with a focus on research data quality assurance, traceability, and accessibility. Based on the integration into latest research trends and activities of the “welding technologies” division, the path to publishing reference datasets for arc welding process for various applications and materials is outlined and discussed. T2 - 4th Symposium on Materials and Additive Manufacturing - Additive 2024 CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Arc welding KW - DED-arc KW - Research data KW - Reference data PY - 2024 AN - OPUS4-60249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Thermography in laser powder bed fusion of metals: time over threshold as feasible feature in thermographic data N2 - Thermography is one on the most promising techniques for in-situ monitoring for metal additive manufacturing processes. The high process dynamics and the strong focus of the laser beam cause a very complex thermal history within the produced specimens, such as multiple heating cycles within single layer expositions. This complicates data interpretation, e.g., in terms of cooling rates. A quantity that is easily calculated is the time a specific area of the specimen is at a temperature above a chosen threshold value (TOT). Here, we discuss variations occurring in time-over-threshold-maps during manufacturing of a defect free cuboid specimen. T2 - 15th Quantitative InfraRed Thermography conference CY - Online meeting DA - 21.09.2020 KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - L-PBF KW - Time over threshold PY - 2020 AN - OPUS4-51630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - The relaxation of macroscopic residual stresses in laser powder bed fused stainless steel 316L N2 - The processing of stainless steel 316L using the additive manufacturing process Laser Powder Bed Fusion (LPBF) can widen its field of application due to a strong increase in Yield strength, without making major compromises on the ductility nor its outstanding corrosion and oxidation properties. Furthermore, improved designs that either reduce the weight or optimise the function of a part can be obtained using LPBF. These benefits are however counterbalanced by the proneness of LPBF to inducing high Residual Stresses (RS) during manufacturing. The characterisation and monitoring of these RS are of paramount importance for the wider acceptance of the LPBF process. This study focuses on the relaxation of the initial macroscopic RS present in an LPBF 316L as-built prism that undergoes various routes of manufacturing steps to achieve different specimen geometries and stress relieving treatments. The RS are determined using Angle-Dispersive (AD) and Time-of-Flight (TOF) neutron diffraction. The results reveal high tensile RS close to the surfaces and compressive RS near the centre of the as-built parts. The reduction in size and change of geometry heavily impact the stress ranges of the remaining RS, with lower stress ranges in cylindrical shaped compared to rectangular shaped specimens. Also, the application of different stress relieving heat treatments showed that heat-treating temperatures above 800 °C are necessary to obtain a strong relaxation in LPBF 316L. T2 - The second European Conference on the Structural Integrity of Additively Manufactured Materials CY - Online meeting DA - 08.09.2021 KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2021 AN - OPUS4-53263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - The Impact of Ultrasonic-Assisted Milling and Alloying Elements on the Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing focus on energy and resource efficiency has driven the implementation of additive manufacturing (AM) of high-performance materials, particularly in lightweight constructions with optimization of material efficiency. Iron aluminides (FeAl) hold great potential due to their low density, excellent corrosion and wear resistance, high-temperature stability, and vast availability. However, the inherent heterogeneity and anisotropy of FeAl-AM structures pose significant challenges, especially regarding hardness and brittleness. These material characteristics complicate the mostly necessary post-processing via mechanical finish machining, often resulting in elevated cutting forces, accelerated tool wear, and suboptimal surface integrity. Ultrasonic-assisted milling (USAM), a hybrid machining process, offers significant advantages over conventional milling (CM), including the reduction of cutting forces and tool wear. Notably, USAM has been demonstrated to decrease surface defect density and mitigate tensile residual stresses, while potentially inducing beneficial compressive residual stresses within the depth profile of the component’s surface. These effects can significantly enhance crack propagation resistance, improve corrosion behavior, and extend the fatigue life of components in safety-relevant applications. The present study investigates the effects of additional alloying elements such as molybdenum, nickel, titanium and Vanadium in FeAl as well as milling parameters, including cutting speed vc and feed rate fz, on the surface integrity with special regard to residual stress formations. T2 - 4th International Conference on Advanced Joining Processes CY - Coimbra, Portugal DA - 16.10.2025 KW - Additive Manufacturing KW - Wear Protection KW - Ultrasonic-assisted Milling KW - Iron-aluminides KW - MPEA KW - Surface Integrity KW - Residual Stresses PY - 2025 AN - OPUS4-65235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Witte, Julien T1 - The Impact of Ultrasonic-Assisted Milling and Alloying Elements on the Surface Integrity of Additively Manufactured Iron Aluminides N2 - The increasing focus on energy and resource efficiency has driven the implementation of additive manufacturing (AM) of high-performance materials, particularly in lightweight constructions with optimization of material efficiency. Iron aluminides (FeAl) hold great potential due to their low density, excellent corrosion and wear resistance, high-temperature stability, and vast availability. However, the inherent heterogeneity and anisotropy of FeAl-AM structures pose significant challenges, especially regarding hardness and brittleness. These material characteristics complicate the mostly necessary post-processing via mechanical finish machining, often resulting in elevated cutting forces, accelerated tool wear, and suboptimal surface integrity. Ultrasonic-assisted milling (USAM), a hybrid machining process, offers significant advantages over conventional milling (CM), including the reduction of cutting forces and tool wear. Notably, USAM has been demonstrated to decrease surface defect density and mitigate tensile residual stresses, while potentially inducing beneficial compressive residual stresses within the depth profile of the component’s surface. These effects can significantly enhance crack propagation resistance, improve corrosion behavior, and extend the fatigue life of components in safety-relevant applications. The present study investigates the effects of additional alloying elements such as molybdenum, nickel, titanium and Vanadium in FeAl as well as milling parameters, including cutting speed vc and feed rate fz, on the surface integrity with special regard to residual stress formations. T2 - BMDK der OvGU Magdeburg CY - Magdeburg, Germany DA - 10.12.2025 KW - Additive Manufacturing KW - Wear Protection KW - Ultrasonic-assisted Milling KW - Iron-aluminides KW - MPEA KW - Surface Integrity KW - Residual Stresses PY - 2025 AN - OPUS4-65234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Sänger, Johanna A1 - Pauw, Brian Richard T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - Manipulating ceramic powder compacts and ceramic suspensions (slurries) within their volume with light requires a minimum transparency of the materials. Compared to polymers and metals, ceramic materials are unique as they offer a wide electronic band gap and thus a wide optical window of transparency. The optical window typically ranges from below 0.3 µm up to 5µm wavelength. Hence, to penetrate with light into the volume of a ceramic powder compound, its light scattering properties need to be investigated and tailored. In the present study we introduce the physical background and material development strategies to apply two-photon-polymerization (2PP), and other volumetric methods for the additive manufacture of filigree structures within the volume of ceramic slurries. T2 - ICACC 2024 CY - Daytona Beach, Florida, USA DA - 28.01.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Tailoring powder properties for the light based volumetric additive manufacture of Ceramics N2 - In order to be able to manipulate ceramic powder compacts and ceramic suspensions (slurries) within their volume with light, a minimum transparency of the materials is required. Compared to polymers and metals, ceramic materials are characterized by the fact that they have a wide electronic band gap and therefore a wide optical window of transparency. The optical window generally ranges from less than 0.3 µm to 5 µm wavelength. In order to focus light into the volume of a ceramic powder compact, its light scattering properties must therefore be tailored. In this study, we present the physical background and material development strategies for the application of two-photon polymerization (2PP) and selective volumetric sintering for the additive manufacturing of structures in the volume of ceramic slips and green compacts. T2 - SmartMade 2024 CY - Osaka, Japan DA - 10.04.2024 KW - Additive Manufacturing KW - Two Photon Polymerization KW - Advanced ceramics PY - 2024 AN - OPUS4-59888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Surface and bulk residual stress in laser powder bed fused 316L: Influence of inter layer time and scanning velocity N2 - The influence of the inter-layer-time and the scanning velocity on the surface and bulk residual stress in laser powder bed fused 316L specimens was investigated. This study combines X-ray and neutron diffraction results with the thermal history of the specimens acquired through in-situ process monitoring. The process parameter variations were observed to directly influence the thermal history, which gave new insights in the assessment of the residual stress results. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing KW - Stainless Steel PY - 2022 AN - OPUS4-54582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Starting new adventures at BAM. The focus area projects PROMOAM and AGIL N2 - While additive manufacturing (AM) is blossoming in nearly every industrial field, and the most different process are being used to produce components and materials, little attention is paid on the safety concerns around AM materials and processes. Leveraging on our leading expertise in non-destructive testing (NDT) and materials characterization, we approach AM at BAM under two important viewpoints: first the on-line monitoring of the process and of the product, second the evolution of the (unstable) microstructure of AM materials under external loads. These two subjects are the core of the two new-born internal projects ProMoAM and AGIL, respectively. A detailed view of the goals and the organization of these two projects will be given, together with the expected output, and some preliminary results. T2 - Vortragsveranstaltung Bauhaus Universität, im Rahmen der Kolloquien der Fakultät Bauwesen. CY - Weimar, Germany DA - 01.06.2018 KW - Thermography KW - Additive Manufacturing KW - Non-destructive testing KW - On-line monitoring KW - Residual stress PY - 2018 AN - OPUS4-45118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-49082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization in emerging technologies - The case of additive manufacturing N2 - Additive Manufacturing provides an important enabling technology for the digital transformation of the economy. As an emerging technology it has seen a remarkable development over the last three decades. Nevertheless, it is far from a broad adoption with several barriers to overcome yet. One of the major challenges is the lack of standards. The critical role of standardization for innovation is generally recognized, still the topic too often has been neglected in strategic roadmapping exercises for emerging technologies. Too little is known about the complex dynamics and interrelations of standardization and innovation. The anticipation of standardization needs and the timely and efficient implementation of standards is challenging. This paper aims at contributing to a better understanding of the role that standards play in the multi-dimensional system of innovation. It analyzes the trajectories of innovation in Additive Manufacturing in a systematic and holistic way, focusing on standardization activities with regard to coordination, stakeholders involved, the timing and types of standards developed. Putting standardization in context of the multi-dimensional innovation system of Additive Manufacturing the research shows where standards can support the diffusion of an emerging technology. T2 - ITU Kaleidoscope Academic Conference: Challenges for a data-driven society CY - Nanjing, China DA - 27.11.2017 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2017 AN - OPUS4-46033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization for emerging technologies - Additive manufacturing case study N2 - This was a short presentation on the role of Standards and standardization for the development and diffusion of an emerging technology - using additive manufacturing as an example. T2 - 6th Annual Meeting of the Indo-German Working Group on Quality Infrastructure CY - Berlin, Germany DA - 17.01.2019 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2019 AN - OPUS4-47397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe T1 - Simultaneous temperature measurement during LMD by OES and thermography N2 - While sensors for monitoring the energy source, the melt pool size or temperatures during the process of metal-based Additive Manufacturing (AM) systems are commercially available, the impact of their results on the part quality are often unclear. In the BAM project ProMoAM, results of different process monitoring techniques are combined to achieve quality assurance for the produced parts during the build. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L are presented. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Additive Manufacturing KW - Spectroscopy KW - Thermographie KW - LMD PY - 2019 AN - OPUS4-48525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Short fatigue crack propagation in L-PBF 316L stainless steel N2 - Fracture mechanics is a key to fatigue assessment in AM metal components. Short fatigue cracks are initiated at defects and pronounced surface roughness intrinsic to AM. The subsequent crack-propagation is strongly influenced by microstructural interactions and the build-up of crack-closure. The aim of the present study is to give an insight into short-crack propagation in AM-metals. Fatigue crack propagation resistance curves were determined experimentally for AISI 316L manufactured by Laser Powder Bed Fusion (L-PBF) which was heat treated at three different temperatures. Differences in the build-up of the fatigue-crack propagation threshold in between the L-PBF specimens and compared to wrought material are due to the residual stress states, a pronounced roughness of the crack-faces in the L-PBF specimens and phase transformation in the vicinity of the crack-tip, resulting in increased crack-closure. This, together with crack-branching found along the crack path, enhances the resistance to the propagation of fatigue cracks. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Cyclic R-Curve KW - Component assessment KW - L-PBF KW - 316L KW - Residual Stress KW - Fatigue Crack Growth PY - 2020 AN - OPUS4-51585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE: Eigenbau-Anlage für Metall-AM zur Sensorentwicklung und Qualifizierung N2 - Im additiven Fertigungsprozess Laser-Pulverbettschweißen wird Metallpulver lagenweise mittels eines Lasers aufgeschmolzen, um Bauteile zu generieren. Hierbei werden die Eigenschaften der Bauteile zu einem großen Teil durch die im Verlauf des Prozesses vorliegenden Temperaturen bestimmt. Dies beinhaltet unter anderem Materialeigenschaften wie Mikrostruktur, Härte, thermische und elektrische Leitfähigkeiten sowie die Ausbildung von Defekten wie z.B. Anbindungsfehler, Keyhole-Porosität (Gaseinschlüsse) oder auch die Ausbildung von Rissen. Zur Überwachung bzw. Vorhersage dieser Eigenschaften sowie zum Abgleich von Simulationen ist eine orts- und zeitaufgelöste Messung der Temperaturverteilung im Prozess daher von herausragender Bedeutung. In der Industrie kommen optische Verfahren, die auf der Messung der thermischen Strahlung basieren, regelmäßig zum Einsatz. Allerdings dienen diese bislang nur der statistischen Auswertung und der Identifikation von Abweichungen vom Normalprozess. Der quantitativen Auswertung zur Temperaturbestimmung stehen aktuell noch eine Vielzahl von Herausforderungen entgegen. Einerseits stellt der Prozess an sich hohe Anforderungen an die Datenerfassung und -auswertung: der Emissionsgrad verändert sich dynamisch im Prozess und lokale Schmauchbildung sorgt für potenzielle Absorption oder Streuung der thermischen Strahlung oder auch des Fertigungslasers. Weiterhin stellt der hochdynamische Prozess hohe Anforderungen an Orts- und Zeitauflösung der eingesetzten Sensorik (z.B. Kameratechnik). Andererseits erschweren an üblichen kommerziell erhältlichen Fertigungsanlagen praktische Hindernisse wie eine eingeschränkte optische Zugänglichkeit und der fehlende Zugriff auf die Anlagensteuerung sowie fehlende Möglichkeiten der Synchronisation der Messtechnik mit dem Prozess eine eingehende Untersuchung dieser Effekte. Um letztere Hindernisse zu umgehen, wurde an der BAM die Forschungsanlage SAMMIE (sensor-based additive manufacturing machine) entwickelt. Einerseits bietet das System alle Möglichkeiten, die auch übliche kommerzielle Systeme bieten. Dies beinhaltet die Fertigung ganzer Bauteile (maximale Größe ca. 65mm x 45 mm x 30 mm) und den Einsatz einer Inertgasatmosphäre inkl. gefiltertem Schutzgasstrom. Andererseits bietet es aber auch einen besonders kompakten Bauraum, um die Sensorik möglichst nah an den Prozess führen zu können, sechs optische Fenster zur Prozessbeobachtung aus unterschiedlichen Winkeln und die Möglichkeit der Prozessbeobachtung koaxial zum Fertigungslaser. Des Weiteren besteht eine einfache Austauschbarkeit aller Fenster, Spiegel und Strahlteiler, um den gesamten optischen Pfad der aktuellen Messaufgabe flexibel anzupassen. Die komplette Anlagensteuerung ist eine Eigenentwicklung und bietet daher auch völlige Anpassbarkeit. Eine synchrone und frei konfigurierbare Triggerung diverser Sensoriken und synchrone Datenerfassung bieten maximale Kontrolle über die Sensorsteuerung. Dieser Beitrag gibt einen Überblick über die Fertigungsanlage SAMMIE. Wissenschaftliche Ergebnisse sowie laufende Arbeiten an der Anlage werden in weiteren Beiträgen vorgestellt. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60234 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE – PBF-LB/M Research System for the Development of in-situ Monitoring methods N2 - The additive manufacturing of metals has now reached a level of maturity that enables its use in many branches of industry or brings it within reach. The main advantages are the ability to produce complex components that cannot be produced conventionally or only at great expense, as well as in the production of highly individualized components in small quantities. However, the additive manufacturing process is highly complex and prone to errors. In order to guarantee the quality control required particularly for safety-relevant components, complex downstream nondestructive testing NDT of the individual components is currently necessary. In-situ process monitoring and testing could offer alternatives, but these have not yet reached a sufficient level of functionality. Industrial production facilities offer little or no flexibility and accessibility to enable extensive investigations in this area. For this reason, we developed a system for the powder bed fusion process of metals (PBF-LB/M) called SAMMIE. It offers a completely open system architecture with full control over the process and flexible access to the build chamber, e.g., optically both on-axis and off-axis to the production laser. In this contribution, we present the system and show first experimental results of in-situ monitoring and testing, e.g., high-resolution thermographic melt pool monitoring, multispectral optical tomography, and high-speed videos of the process. SAMMIE enables us to conduct fundamental investigations that will help to further develop in-situ process monitoring and testing, gain new insights into the process, and improve its safety and reliability. T2 - 48th MPA-Seminar CY - Stuttgart, Germany DA - 08.10.2024 KW - PBF-LB/M KW - In situ monitoring KW - Custom machine KW - Additive Manufacturing KW - Process monitoring PY - 2024 AN - OPUS4-61350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - SAMMIE – Forschungssystem für die additive Fertigung von Metallen (PBF-LB/M) zur Entwicklung von In-situ-Überwachungs- und -prüfmethoden N2 - Die additive Fertigung von Metallen hat inzwischen einen Reifegrad erreicht, der einen Einsatz in vielen Industriezweigen ermöglicht oder in greifbare Nähe rückt. Die Vorteile liegen vor allem in der Möglichkeit der Fertigung komplexer Bauteile, die sich konventionell nicht oder nur sehr aufwändig produzieren lassen, sowie in der Fertigung von hochindividualisierten Bauteilen in kleinen Stückzahlen. Allerdings ist der additive Fertigungsprozess hoch komplex und fehleranfällig. Um eine insbesondere für sicherheitsrelevante Bauteile notwendige Qualitätskontrolle zu gewährleisten, ist aktuell aufwändige nachgelagerte ZfP der einzelnen Bauteile notwendig. Alternativen könnten die In-situ-Prozessüberwachung und -prüfung bieten, die aktuell aber noch keinen ausreichenden Entwicklungsstand erreicht haben. Industrielle Fertigungsanlagen bieten keine oder nur geringe Flexibilität und Zugänglichkeit, um umfangreiche Untersuchungen auf diesem Gebiet zu ermöglichen. Daher haben wir an der BAM ein System für den Prozess des selektiven Laserschmelzens (PBF-LB/M) entwickelt, genannt SAMMIE. Es bietet eine komplett offene Systemarchitektur mit voller Kontrolle über den Prozess und flexiblem Zugang zur Baukammer, z.B. optisch sowohl direkt als auch koaxial zum Fertigungslaser. In diesem Beitrag stellen wir das System vor und zeigen erste experimentelle Ergebnisse der In-situ-Überwachung und -prüfung: Thermografische Schmelzbadüberwachung, optische Tomografie und In-situ-Laserthermografie. SAMMIE ermöglicht uns grundlegende Untersuchungen, die helfen werden, die In-situ-Prozessüberwachung und -prüfung weiterzuentwickeln, neue Erkenntnisse über die additive Fertigung zu gewinnen und die Sicherheit und Zuverlässigkeit des Prozesses zu verbessern. T2 - DGZfP-Jahrestagung 2024 CY - Osnabrück, Germany DA - 06.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Anlage KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60149 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - SAMMIE - Research PBF-LB/M system for the development of in-situ monitoring methods N2 - By allowing economic on-demand manufacturing of highly customized and complex workpieces, metal based additive manufacturing (AM) has the prospect to revolutionize many industrial areas. Since AM is prone to the formation of defects during the building process, a fundamental requirement for AM is to find ways to assure the safety and reliability of the additively manufactured parts to become applicable in most fields. A possible solution for this problem lies in the deployment of various in-situ monitoring techniques. However, only a few of these techniques are commercially available and are not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. Since commercial AM machines are not designed for research applications, they provide only limited access to the build chamber during the process and little control over the exact timing and parameters of the process. Therefore, for our research at BAM, we built a laser powder bed fusion system (PBF-LB/M), called “Sensor-based Additive Manufacturing MachInE” (SAMMIE). It provides a fully open system architecture with flexible accesses to the build camber and full control of the complete process. In this contribution, we show first results using thermographic cameras and optical tomography. The flexibility of SAMMIE allows us to use the multiple cameras either fixed relatively to the build plate or coaxially to the process laser. T2 - 20th World Conference on Non-Destructive Testing (WCNDT) CY - Incheon, South Korea DA - 27.05.2024 KW - PBF-LB/M KW - In situ monitoring KW - Custom machine KW - Additive Manufacturing KW - Thermography PY - 2024 AN - OPUS4-62471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD DA - 07.10.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Residual stresses in Laser Beam Melting (LBM) – Critical Review and outlook of activities at BAM N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, which is coupled with the knowledge about the resulting material properties and performance. In particular, residual stress (RS) was soon recognized as an important issue in AM parts, such that parts are usually subjected to a post build-heat-treated. Significant effort has been spent on simulations of RS in AM, especially using finite element methods. As a consequence, the experimental determination of RS has thereby become increasingly important as a validation tool for simulations, as well as a method for assessing the influence of process parameters. In particular, diffraction methods, which are fundamentally non-destructive, offer enormous possibilities to gain knowledge on the residual stress state in real components, since synchrotron radiation and neutrons can penetrate even heavy metals up to several millimeters or centimeters, respectively. Indeed, significant progress has been achieved, in the understanding of the origins of the RS fields as a function of process parameters, as well as their stability under thermal and/or mechanical exposure. In this paper, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with the focus on those produced by laser powder bed fusion) has even revealed that process parameters that were previously considered unimportant (e.g. the position and orientation on the base plate) play a major role in the onset of residual stress accumulation. However, while RS characterization is starting to be considered in the component design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigates about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even those which to date are unclear, will also be discussed. These include the determination of the stress-free reference and of the principal axes of stress. All of these aspects will lead towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - Fourth ASTM Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD, USA DA - 07.10.2019 KW - Residual stress KW - Additive Manufacturing KW - Diffraction PY - 2019 AN - OPUS4-49822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses in am review and oulook of activities at BAM N2 - Critical discussion of residual stress Analysis in additive manufacturing from examples in literature and an overview of activities at BAM T2 - Workshop on Fatigue of Additive Manufactured Metallic Components CY - BAM, Berlin, Germany DA - 16.05.2019 KW - Diffraction KW - Additive Manufacturing KW - Residual stress PY - 2019 AN - OPUS4-49843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses and micromechanical properties of additively manufactured metals: why do we need a paradigm shift? N2 - An overview of the challenges and successes in the methodology to characherise residual stresses and micromechnical properties in additively manufactured metals T2 - CAM2 Annual Seminar 2022 - 5-year journey CY - Gothenburg, Sweden DA - 24.10.2022 KW - Additive Manufacturing KW - Residual stress KW - AGIL KW - MANUFACT KW - Micromechnical properties PY - 2022 AN - OPUS4-56466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Residual stress in simple and complex geometries manufactured by laser powder bed fusion N2 - Design of freedom, performance improvement, cost reduction and lead time reduction are key targets when manufacturing parts in a layer-by-layer fashion using the laser powder bed fusion process (LPBF). Many research groups are focussed on improving the LPBF process to achieve the manufacturing of sound parts from a structural integrity perspective. In particular, the formation and distribution of residual stress (RS) remains a critical aspect of LPBF. The determination of the RS in LPBF benefits from the use of neutron diffraction (ND), as it allows the non-destructive mapping of the triaxial RS with a good spatial resolution. Two case studies are presented based on experiments carried out on the angular-dispersive neutron diffractometers Strain Analyser for Large Scale Engineering Applications (SALSA) (Institut Laue Langevin, Grenoble) and STRESS-Spec (FRM II, Garching). The RS in LPBF parts having a rectangular and more complex geometry (lattice structure) is analysed. The former example discusses the mapping of the RS in a rectangular body manufactured from stainless steel 316L. The manufacturing of these parts was monitored using an in-situ thermography set-up to link the RS to the thermal history. The latter discusses the RS in a lattice structure manufactured from the nickel base superalloy IN625. This geometry is challenging to characterise, and the use of a X-ray computed tomography twin is presented as tool to support the alignment of the ND experiment. The results from these case studies show a clear link between the thermal history and the RS magnitudes, as well as giving insights on the RS formation. T2 - 1st International Conference on Advanced Manufacturing for Air, Space and Land Transportation CY - Online meeting DA - 07.03.2022 KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Residual stress formation in selective laser melted parts of Alloy 718 N2 - Additive manufacturing (AM) by selective laser melting (SLM) offers ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses which develop during the process can limit the application of SLM parts because they can reduce the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. This study aims at the characterization of residual stresses in SLM parts by using different measurement techniques. The material used is the nickel based super Alloy 718. Microstructure as well as surface and bulk residual stresses were characterised. For residual stress analysis X-ray, synchrotron and neutron diffraction were applied. The results show different residual stress states dependent on the penetration depth in the sample offered by the different measurement techniques. Samples of Alloy 718 manufactured by SLM process can show high tensile residual stresses in the surface as high as the yield strength of the wrought alloy. Residual stresses in the bulk show considerably lower stress values. T2 - 1st International Congress on Welding, Additive Manufacturing and associated non-destructive testing - ICWAM CY - Metz, France DA - 17.05.2017 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual stresses PY - 2017 AN - OPUS4-40345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Residual stress formation in selective laser melted parts of alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotron- and the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates a dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from both X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - Forschungsseminar OvGU Magdeburg CY - Magdeburg, Germany DA - 15.11.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-46876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. New developments in topology optimization are leading to weight-optimized designs of increasing complexity. Direct energy deposition processes (DED) such as wire and arc-based additive manufacturing are an important method of additive manufacturing. The wire filler metals enable a wide range of materials, while the arc process provides a high deposition rate compared to laser and powder-based processes. Combined with the use of high-strength steels, the thickness of walls or components can be significantly reduced in the context of lightweight construction, which results in significant savings in energy, costs, time and resources. Suitable high-strength steel filler metals are commercially available for DED-arc AM processes. However, guidelines and quantitative knowledge about welding stresses and cold cracking issues during component production and service are lacking. This limits the industrial application considerably. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute- Villigen, Switzerland (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps compared to XRD. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times and less post heat treatment cycles of following AM layers in the area of the top layer. T2 - IIW Intermediate Meeting C-XIII CY - Online meeting DA - 20.04.2023 KW - Additive Manufacturing KW - High strength steel KW - Residual Stress PY - 2023 AN - OPUS4-59308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Residual stress analysis on a DED-Arc additive manufactured high-strength steel component using the contour method N2 - Direct Energy Deposition with arc (DED-arc) or wire arc additive manufacturing (WAAM) has significantly transformed the manufacturing paradigm in recent years by the virtue of its capability to fabricate intricate, large scale metallic parts owing to high deposition rates, high efficiency, and cost effectiveness. Subsequent enhancement in efficiency can be achieved through the utilization of the high-strength structural steels. The fabrication of the intricate geometries possesses challenges in regulating the residual stresses (RS), representing a significant concern in the realm of additive manufacturing (AM). High residual stresses contribute to an increased risk of cold cracking particularly in the welding of the high strength steels arising from complex interactions among the material, process conditions and component design. Reliable residual stress evaluation is vital in the structural integrity assessment of the welded components. Therefore, in the present study, the contour method was used to analyse the full field longitudinal residual stresses in an open hollow cuboid specimen fabricated by DED-arc. In this method, the specimen is cut along a desired plane of interest and the deformation caused by the cut surface is measured using the coordinate measuring machine and an industrial non-contact 3D scanner. A different cutting and restraint methodology was adopted and its influence on the residual stresses was analysed. The results indicate that the maximum tensile residual stresses around 600 MPa occurred in the left wall of the DED-arc structure exactly two layers below from the top. Additionally, the stresses at the bottom layer of the base plate demonstrate tensile in longitudinal direction and the corresponding balancing compressive residual stresses occurred at the top layer of the base plate. The contour approach is efficient and precise way for generating a two-dimensional residual stress map. The results obtained from the contour method was further validated using the X-ray Diffraction and both sets of findings demonstrated similarity. T2 - European Conference on Residual Stresses - ECRS11 CY - Prague, Czech Republic DA - 03.06.2024 KW - High strength steels KW - Additive Manufacturing KW - Residual stress KW - Contour methode PY - 2024 AN - OPUS4-61948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohr, Gunther T1 - Prozessinduzierte Vorerwärmung beim pulverbasierten Laserstrahlschmelzen und deren Auswirkung auf die Bauteileigenschaften austenitischer Stahlbauteile N2 - Heterogene Fehlstellendichten und Mikrostrukturausbildungen sind große Heraus-forderungen für den Einsatz des pulverbettbasierten Laserstrahlschmelzens (L PBF) besonders für sicherheitskritische Bauteile. Unter der Vielzahl an Einflussfaktoren auf die Qualität und die mechanischen Eigenschaften von L PBF-Bauteilen hat die Zwischenlagenzeit (ILT) bisher wenig Beachtung gefunden. Sie nimmt ebenso wie die Bauteilgeometrie Einfluss auf die thermische Historie während der Fertigung. Ihr Einfluss auf die intrinsische Vorerwärmung ist in Kombination mit der Bauteilhöhe mittels thermografischer Temperaturmessung untersucht worden. Signifikante Unterschiede in der thermischen Historie konnten dabei mit variierenden Schmelzbaddimensionen, Korngrößen und Fehlstellendichten am Beispiel der austenitischen Stahllegierung AISI 316L in Zusammenhang gebracht werden. T2 - DVM Tagung Additiv gefertigte Bauteile und Strukturen CY - Berlin, Germany DA - 03.11.2021 KW - Additive Manufacturing KW - Laser powder bed fusion KW - In-situ process monitoring PY - 2021 AN - OPUS4-53729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Properties of powder-in-tube formed magnetocaloric materials N2 - This talk gives an overview of the shaping options for magnetocaloric materials. We have shown that powder-in-tube processing of these functional materials is a straightforward and efficient way to obtain wires and stacked structures for heat exchange. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk T1 - Process-related influences and correlations in wire arc additive manufacturing of high-strength steels N2 - High-strength fine-grained structural steels have great potential for weight-optimized, efficient structures in many modern steel applications. Further advances in efficiency can be achieved through additive manufacturing and bionic design. Commercial high-strength filler materials for wire arc additive manufacturing (WAAM) are already provided by the consumable producers. Today, application would be strictly limited due to absence of quantitative findings or any guidelines for the industry regarding welding-related stresses and component safety during manufacturing and service. Hence, process- and material-related influences and design-related restraint conditions associated with formation of residual stresses and cold cracking risk are investigated. The aim is the accessibility of special WAAM self-restraining cold cracking tests and easy applicable processing recommendations, enabling an economical, fit-for-purpose and crack-safe WAAM of high-strength steels. This first study focuses on determination of interactions between WAAM process parameters, resulting layer geometry, microstructure and residual stresses, analyzed via X-ray diffraction. Defined reference specimens are automated welded using a special WAAM solid wire (yield strength >820 MPa). Geometric properties can be specifically adjusted by wire feed and welding speed, but cannot be varied arbitrarily, since a high heat input causes local overheating, inadmissible changes of microstructure and mechanical properties, defects and comparable high tensile residual stresses. T2 - 22. Werkstofftechnischen Kolloquium der TU Chemnitz CY - Online meeting DA - 24.03.2021 KW - Additive Manufacturing KW - High-strength steel KW - Residual stresses PY - 2021 AN - OPUS4-53328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Process monitoring in metal AM @ BAM - The project ProMoAM N2 - Results of the project ProMoAM (Process monitoring in additive manufacturing) presented. Results from in-situ eddy current testing, optical emission spectroscopy, thermography, optical tomography as well as particle and gas emission spectroscopy are summarized and correlated to results from computed tomography for future in-situ defect detection. T2 - 3rd Meeting of WG6 (NDT in AM) of the EFNDT CY - Online meeting DA - 15.03.2022 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2022 AN - OPUS4-54484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - Prediction of the fatigue limit of additively manufactured metallic materials N2 - Structural alloys are largely employed in key industrial sectors and their demand is predicted to rise rapidly for the next decades. Most of these materials require a large amount of energy for extraction and manufacturing, which causes the emission of greenhouse gases and other pollutants. Therefore, strategies for improving the sustainability of structural metallic alloys are urgently needed. Additive Manufacturing (AM), in particular Laser Powder Bed Fusion (PBF-LB/M), aims to be a sustainable manufacturing process, as it allows the build-up of complex geometry in near net-shape from 3D models, while minimizing material waste and the energy required for the process and post-process treatments. Nevertheless, the application of additively manufactured parts in structural safety-relevant applications is still hindered by the poor fatigue performance. The cause of this has been mainly attributed to the presence of manufacturing defects and surface roughness. Therefore, a huge effort has been made to optimize the process parameters and to introduce post-process treatments to minimize the defect content. However, material flaws cannot be fully eliminated, but these can be considered in a damage tolerance framework for the prediction of the fatigue performance of additively manufactured metallic materials, which is essential for part design and qualification. This work aims at presenting different modelling strategies for the prediction of the fatigue limit of AM metals. Simple empirical models and more complex models based on fatigue short crack propagation are proposed. The investigated material is an AlSi10Mg alloy fabricated by PBF-LB/M and subjected to two different low-temperature heat-treatments (265°C for 1 h and 300°C for 2h). The results show that the models can provide good approximation of the fatigue limits and help in the interpretation of the scatter of fatigue data. T2 - ASTM International Conference on Advanced Manufacturing CY - Washington DC, USA DA - 30.10.2023 KW - Additive Manufacturing KW - AlSi10Mg KW - Fatigue KW - Residual stress KW - Microstructure PY - 2023 AN - OPUS4-58866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Powder-based Additive Manufacturing: beyond the comfort zone of powder deposition N2 - In powder-based Additive Manufacturing (AM) processes, an object is produced by successively depositing thin layers of a powder material and by inscribing the cross section of the object in each layer. The main methods to inscribe a layer are by binder jetting (also known as powder 3D printing) or by selective laser sintering/melting (SLS/SLM). Powder-based AM processes have found wide application for several metallic, polymeric and also ceramic materials, due to their advantages in combining flexibility, easy upscaling and (often) good material properties of their products. The deposition of homogeneous layers is key to the reproducibility of these processes and has a direct influence on the quality of the final parts. Accordingly, powder properties such as particle size distribution, shape, roughness and process related properties such as powder flowability and packing density need to be carefully evaluated. Due to these requirements, these processes have been so far precluded to find commercial use for certain applications. In the following, two outstanding cases will be presented. A first example is that powder-based AM processes are widely used for many metallic and polymeric materials, but they find no commercial application for most technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. The processing of technical ceramics in fact typically requires very fine and poorly flowable powder, which makes them not suitable for the standard processes. There have been several approaches to adapt the raw materials to the process (e.g. by granulation), but in order to maintain the superior properties of technical ceramics it seems necessary to follow the opposite approach and adapt the process to the raw materials instead. This was the motivation for developing the Layerwise Slurry Deposition (LSD), an innovative process for the deposition of powder layers with a high packing density. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder. This allows achieving high packing density (55-60%) in the layers after drying. It is also important, that standard ceramic raw materials can be used. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. Moreover, due to the compact powder bed, no support structures are required for fixation of the part in the printing process. Figure 1 shows the schematics of the working principle of the LSD-3D print and illustrates some examples of the resolution and features achievable. The second outstanding case here described is the application of powder-based AM in environments with reduced or zero gravity. The vision is to be able to produce repair parts, tools and other objects during a space mission, such as on the International Space Station (ISS), without the need of delivering such parts from Earth or carrying them during the mission. AM technologies are also envisioned to play an important role even for future missions to bring mankind to colonize other planets, be it on Mars or on the Moon. In this situation, reduced gravity is also experienced (the gravitational acceleration is 0.16 g on the Moon and 0.38 g on Mars). These environments cause the use of AM powder technologies to be very problematic: the powder layers need to be stabilized in order to avoid dispersion of the particles in the chamber. This is impossible for standard AM powder deposition systems, which rely on gravitation to spread the powder. Also in this case, an innovative approach has been implemented to face this technological challenge. The application of a gas flow through a powder has a very strong effect on its flowability, by generating a force on each particle, which is following the gas flow field. This principle can be applied in a simple setup such as the one shown in Figure 2. In this setup, the gas flow causes an average pressure on the powder bed in direction of the arrows, generating a stabilizing effect which acts in the same direction of the gravitational force. This effect can be used in addition to normal gravity on Earth to achieve a better stabilization of 3D printed parts in the powder bed. In this case, even a significant increase of packing density of the powder was measured, compared to the same experimental setup without gas flow. This is due to the fact that the force on each single particle follows the gas flow field, which is guiding the particles to settle between the pores of the powder bed, thus achieving an efficient packing. The same principle can be applied in absence of gravitation, where the gas flow acts to stabilize the powder layers. It has been shown that ceramic powder could be deposited in layers and laser sintered in µ-gravity conditions during a DLR (Deutsches Zentrum für Luft- und Raumfahrt) campaign of parabolic flights, as shown in Figure 2. A follow-up campaign is dedicated to the deposition of metallic (stainless steel) powder in inert atmosphere and to study the effects of laser melting in µ-gravity. In conclusion, the description of these two example cases shows how the development of novel technological processes can address some of the limitations of standard powder-based AM, in order to enable the use of new materials, such as technical ceramics, or to tackle the challenges of AM in space. T2 - WMRIF 2018 Early Career Scientist Summit CY - London, NPL, UK DA - 18.06.2018 KW - 3D-printing KW - Additive Manufacturing KW - Powder KW - SLM PY - 2018 AN - OPUS4-46338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merz, Benjamin T1 - Position Detection for Hybrid Repair of gas turbine blades using PBF-LB/M N2 - This poster presents a workflow for camera-based position detection of components within PBF-LB/M machines. This enables a hybrid repair process of highly stressed components such as gas turbine blades using PBF-LB/M. T2 - Kuratoriumsführung CY - Berlin, Germany DA - 21.06.2022 KW - Additive Manufacturing KW - PBF-LB/M KW - Position detection KW - Camera KW - Image processing PY - 2022 AN - OPUS4-56587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nietzke, Jonathan T1 - Performance of Conventional and Additive Manufactured Austenitic Stainless Steels under Gaseous Hydrogen Environment using in-situ Hollow Specimen Technique N2 - Hydrogen and its derivatives (e.g. ammonia) are considered as a suitable energy carrier in the future supply of renewable energy. Hydrogen transportation systems require pipes, valves and fittings, among other components. In this sense, austenitic stainless steels are commonly used structural materials for pure hydrogen applications. Stable austenitic alloys, like AISI 316L, are often assumed to be practically unsusceptible to hydrogen embrittlement. At the same time, a number of studies show the influence of hydrogen even in 316L under some circumstances. Some other studies state that this embrittlement could be avoided by using steel grades with a higher nickel equivalent which contributes to a more stable austenitic phase. Nonetheless, 316L is widely used in hydrogen atmospheres since many years because of lower costs and positive practical experience. For these reasons, not only 316L but also 304 could be further utilized by identifying the exact constraints. With increasing demand for components regarding hydrogen applications, additive manufacturing technologies are getting increasingly important complementary to conventional manufacturing. In the context of additive manufacturing, 316L is a common material as well. The manufacturing process offers great advantages due to higher freedoms in design and the possibility for customized components in small batches. For example, valves with improved flow characteristics and reduced component weight can be produced. Nevertheless, there is still lack of experience and experimental results concerning additively manufactured parts under hydrogen service. Therefore, the influence on the material properties for additively manufactured parts in hydrogen environments needs to be further investigated. In the present work, slow strain rate testing (SSRT) has been applied using hollow specimens. This testing procedure allows to perform practicable and faster in-situ tests in comparison to tests in autoclaves and investigate the influence of hydrogen on the mechanical properties. Conventional AISI 304 and 316L specimens as well as additively manufactured 316L specimens were tested at room temperature and a pressure of 200 bar. Elongation at fracture and relative reduction of area (RRA) have been used to evaluate the influence of hydrogen. It is shown that the influence of hydrogen is more pronounced in 304 than in 316L. Furthermore, potentially influencing factors such as surface roughness, microstructure and porosity are discussed. T2 - International Hydrogen Conference CY - Park City, Utah, USA DA - 17.09.2023 KW - Hydrogen KW - Hollow Specimen Technique KW - Additive Manufacturing KW - Austenitic Steels PY - 2023 AN - OPUS4-58776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Tina T1 - PBF-LB/M: Prozess Monitoring mittels Multispektraler OT N2 - Die metallische additive Fertigung hat in den letzten Jahren in der industriellen Fertigung zunehmend an Bedeutung gewonnen. Hierbei dominiert das Laser-Pulverbettschweißen von Metallen (PBF/LB-M) die Fertigung von kleinformatigen Bauteilen mit hoher Oberflächengüte. Die anspruchsvolle und kostspielige Qualitätssicherung stellt aber weiterhin ein Hindernis für eine breitere und kostengünstigere Anwendung der additiven Fertigung dar. Dies resultiert teilweise aus fehlenden zuverlässigen In-situ-Monitoringsystemen. Belastbarere Prozessüberwachungsdaten würden eine oft erforderliche teure nachgelagerte Prüfung mittels Computertomografie entbehrlich machen. Die Aufzeichnung der thermischen Signaturen des Aufbauprozess mittels Thermografie-Kameras zeigen hier vielversprechende Ergebnisse. Eine Korrelation zu auftretender Porosität, Delaminationen und Deformationen scheinen möglich. Die geringe räumliche Auflösung und die hohen Anschaffungskosten für thermografische Kamerasysteme stehen jedoch einer größeren industriellen Nutzung im Wege. Ein bereits industriell angewendeter Ansatz zur in-Situ Überwachung des PBF-LB/M Prozesses ist die Optische Tomografie (OT). Hierbei wird die emittierte Prozessstrahlung jeder Bauteilschicht mittels einer hochauflösenden günstigen Kamera für den sichtbaren Wellenlängenbereich in einer Langzeitbelichtung dokumentiert. Die zeitliche Information der emittierten Strahlung geht hierbei verloren. Der gesamte Bauprozess kann jedoch in einem vergleichsweise kleinen Datensatz dokumentiert werden (ein Bild pro Schicht). Eine direkte Korrelation zu auftretenden Defekten gestaltet sich aufgrund der reduzierten thermischen Informationsdichte jedoch schwierig. In diesem Beitrag soll deshalb das Prinzip der Multispektralen Optischen Tomografie (MOT) vorgestellt und erste Messergebnisse an der Forschungsanlage SAMMIE diskutiert werden. Bei der MOT handelt es sich um eine Übertragung des Prinzips der Quotientenpyrometrie auf das etablierte Verfahren der Optischen Tomografie. Die auftretende Prozessstrahlung wird in mehreren Wellenlängenbereichen ortsaufgelöst über die gesamte Bauplattform erfasst und zeitlich in einer Langzeitbelichtung integriert. Hierbei kommen günstige Kamerasysteme für den sichtbaren Wellenlängenbereich zum Einsatz. Das erfasste Signal I jedes Bildpixels für jeden separat erfassten Wellenlängenbereich kann als Maß für das zeitliche Integral der spezifischen Ausstrahlung M des Schmelzbades in diesem Wellenlängenbereich gesehen werden. Nach dem Stefan-Boltzmann-Gesetz hängt die abgestrahlte thermische Leistung P eines idealen Schwarzen Körpers in der vierten Potenz von dessen absoluten Temperatur T ab. Wird nur, wie z.B. bei der klassischen OT angewendet, der nahinfrarote Wellenlängenbereich betrachtet, lässt sich mit dem Planck’schen Strahlungsgesetz sogar eine Proportionalität zur siebten Potenz der Temperatur zeigen. Deshalb liegt ein starker Einfluss der maximal auftretenden Oberflächentemperatur Tmax auf das erfasste Messsignal vor. Das erfasste Signal I wird aber auch durch die spektrale Transmission τ der verwendeten optischen Komponenten des Kamera-Setups, z.B. Filter und Objektive, durch die spektrale Sensitivität S der verwendeten Kamera-Sensoren und den nur sehr schwer zu bestimmenden Emissionsgrad ε der emittierenden (flüssigen) Oberfläche beeinflusst. In einer ersten Näherung wird das Schmelzbad hier als Graukörper, also ein Körper mit wellenlängenunabhängigem Emissionsgrad ε, betrachtet. Basierend auf dieser Annahme und vermessenen optischen Eigenschaften des verwendeten Systems ist es möglich, eine erste Schätzung der maximalen Oberflächentemperatur Tmax vorzunehmen, selbst ohne genaue Kenntnis des tatsächlichen Emissionsgrades ε. Dies wird durch die Anwendung des Planck‘schen Strahlungsgesetzes und die Quotienten Bildung aus den einzelnen erfassten Signalen I ermöglicht. Auch bei diesem Verfahren geht die zeitliche Information einer Schicht, also das Aufwärm- und Abkühlverhalten des Schmelzbades, verloren. Zudem sind die Messergebnisse in Hinblick auf tatsächlich gemessene „maximal auftretende Oberflächentemperatur“ mit gebotener Zurückhaltung zu interpretieren. Trotzdem konnten erste Ergebnisse bereits zeigen, dass die MOT-Daten auch in Bereichen mit Doppelbelichtungen (das teilweise notwendige mehrfache Scannen eines Bereiches mittels des Fertigungslasers) im Gegensatz zur klassischen OT erwartbare Maximaltemperaturen liefern. Abbildung 1 zeigt das erfasste Messergebnis für drei aufeinanderfolgende Schichten eines Bauteils einmal mit MOT (links) und einmal mit einfacher OT (rechts). Deutlich zu erkennen ist das durch die doppelte Belichtung hohe Signal bei der OT. Die Daten der MOT zeigen hier keine erhöhten Werte. Um die ermittelten Temperaturwerte mittels MOT besser einordnen zu können, sind u.a. vergleichende Messungen an Referenzmaterialien geplant. Um die Auswertung der gemessenen Daten zu verbessern, wird zudem der Zeitverlauf des Abkühlens und Aufheizens des Schmelzbades sowie die Einflüsse von Prozessbeiprodukten wie Schmauch und Spritzer näher untersucht. Auch werden Messungen zum Emissionsgrad ε an additiv gefertigten Proben und Metallschmelzen vorgenommen. T2 - Temperatur 2024 CY - Berlin, Germany DA - 05.06.2024 KW - PBF-LB/M KW - In situ monitoring KW - Optische Tomografie KW - Additive Fertigung KW - Prozessüberwachung KW - Additive Manufacturing PY - 2024 AN - OPUS4-60235 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro T1 - On the modelling of the fatigue strength of am components N2 - The topic of the presentation consists in some basic considerations on the application of fracture mechanics to fatigue live and strengh prediction of metallic componends manufatured by additive manufacturing. These are based on an approach developed at BAM which comprises elements such as the elastic-plastic modelling of the cyclic crack driving force, a physically meaningfull determination of the initial crack size and multipile crack initiation and propagation due to variations of the local geometry and material charactaristics. Spezial emphasis is put to spezific aspects of materials composed by selectiv laser melting such as surface roughness, porosity and gradiants in the microstructure. N2 - Beschreibung der IBESS-Prozedur zur zukünftigen Anwendung zur Berechnung der Schwingfestigkeit von Schweißverbindungen T2 - Additive Manufracturing Benchmarks 2018 CY - Gaithersburg, Maryland, USA DA - 18.06.2018 KW - Structural Integrity KW - Fartigue Strength KW - Additive Manufacturing PY - 2018 AN - OPUS4-46062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kern, Simon T1 - Novel Flow Cell Designs for Process Monitoring with Compact NMR Spectroscopy N2 - Compact nuclear magnetic resonance (NMR) instruments make NMR spectroscopy and relaxometry accessible in industrial and harsh environments for reaction characterization and process control. Robust field integration of NMR systems have to face explosion protection or integration into process control systems with short set-up times. This paves the way for industrial automation in real process environments. The design of failsafe, temperature and pressure resistant flow through cells along with their NMR-specific requirements is an essential cornerstone to enter industrial production plants and fulfill explosion safety requirements. Additionally, if fast reactions are monitored, suitable mixing devices need to be placed in close vicinity to the measuring volume to mix the reactants properly. NMR-specific requirements aim at full quantitative pre-magnetization and acquisition with maximum sensitivity while reducing sample transfer times and dwell-times. All parameters are individually dependent on the applied NMR instrument. Luckily, an increasing number of applications are reported together with an increasing variety of commercial equipment. However, these contributions have to be reviewed thoroughly. The performance of sample flow cells commonly used in online analytics and especially for low-field NMR spectroscopy was experimentally and theoretically investigated by 1H-NMR experiments and numerical simulations. Especially, the applicability of 3D printed zirconium dioxide for innovative flow cell designs was of interest. Here, we demonstrate and discuss an automated test method to determine the critical parameters of flow through cells for quantitative online NMR spectroscopy. The setup is based on randomized setpoints of flow rates in order to reduce temperature related effects. Five flow cells and tubing were assessed and compared for high-field as well as low-field NMR spectrometers. T2 - Practical Applications of NMR in Industry Conference ​(PANIC) 2018 CY - La Jolla, California, USA DA - 04.03.2018 KW - Process Monitoring KW - Process Control KW - Flow Cell KW - Online NMR Spectroscopy KW - Additive Manufacturing KW - CONSENS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444364 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-44436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Neutron Diffraction Based Residual Stress Analysis of Additively Manufactured Alloys N2 - Additive manufacturing methods such as laser powder bed fusion offer an enormous flexibility in the efficient design of parts. In this process, a laser locally melts feedstock powder to build up a part layer-by-layer. It is this localized processing manner imposing large temperature gradients, resulting in the formation of internal stress and characteristic microstructures. Produced parts inherently contain high levels of residual stress accompanied by columnar grain growth and crystallographic texture. On a smaller scale, the microstructure is characterized by competitive cell-like solidification with micro segregation and dislocation entanglement. In this context, it is crucial to understand the interplay between microstructure, texture, and residual stress to take full advantage of the freedom in design. In fact, X-ray and neutron diffraction are considered as the benchmark for the non-destructive characterization of surface and bulk residual stress. The latter, characterized by a high penetration power in most engineering alloys, allows the use of diffraction angle close to 90°, enabling the employment of a nearly cubic gauge volume. However, the complex hierarchical microstructures produced by additive manufacturing present significant challenges towards the reliable characterization of residual stress by neutron diffraction. Since residual stress is not the direct quantity being measured, the peak shift imposed by the residual stress present in a material must be converted into a macroscopic stress. First, an appropriate lattice plane must be selected that is easily accessible (i.e., high multiplicity) and insensitive to micro strain accumulation. Second, a stress-free reference must be known to calculate a lattice strain, which can be difficult to define for the heterogeneous microstructures produced by additive manufacturing. Third, an appropriate set of diffraction elastic constants that relate the lattice strain to the macroscopic stress must be known. In this presentation, advancements in the field of residual stress analysis using neutron diffraction are presented on the example of the Ni-based superalloy Inconel 718. The effect of the complex microstructure on the determination of residual stress by neutron diffraction is presented. It is shown, how to deal with the determination of the stress-free reference. It is also shown that the selection of an appropriate set of diffraction elastic constants depends on the microstructure. Finally, the role of the crystallographic texture in the determination of the residual stress is shown. T2 - Deutsche Neutronenstreutagung CY - Aachen, Germany DA - 16.09.2024 KW - Additive Manufacturing KW - Neutron Diffraction KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-61476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikrocomputertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - Seminar Yxlon CY - Dresden, Germany DA - 15.05.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50157 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Mikro-Computertomographie für die zerstörungsfreie Untersuchung von Pulvern und additiv gefertigten Bauteilen N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - TU München Vortragsreihe CY - Munich, Germany DA - 24.01.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50156 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gupta, Kanhaiya T1 - Microstructural fingerprinting of additively manufactured components prepared by PBF LB/M N2 - Additive manufacturing (AM) is rapidly emerging from rapid prototyping to industrial production [1]. Thus, providing AM parts with a tagging feature that allows identification, like a fingerprint, can be crucial for logistics, certification, and anti-counterfeiting purposes since nearly any geometry can be produced by AM with stolen data or reverse engineering of an original product. However, the mechanical and functional properties of the replicated part may not be identical to the original ones and pose a safety risk [2]. Several methods are already available, which range from encasing a detector to leveraging the stochastic defects of AM parts for the identification, authentication, and traceability of AM components. The most prevailing solution consists of local process manipulation, such as printing a quick response (QR) code [3] or a set of blind holes on the surface of the internal cavity of hollow components. Local manipulation of components may alter the properties. The external tagging features can be altered or even removed by post-processing treatments. Integrating electronic systems [4] in AM parts can be used to identify and authenticate components with complex or customized geometries. However, metal-based AM, especially in powder bed fusion (PBF-LB/M) techniques, has a strong shielding effect that interferes with the communication between the reader and the transponder. Figure 1: Selection of the few most prominent pores sorted according to decreasing volume that are suitable for tagging and authentication. Our work aims to provide a new methodology for the identification, authentication, and traceability of AM components using microstructural feathers in AM components without altering their properties. Further, we set various benchmark points that can be used in generating the fingerprints for both identification and authentication. This can help digitalize traceability information and tagging features via the link between the physical and cyber worlds through a deeper understanding of the printed object-tag-virtual twin integration. T2 - MSE Konferennz CY - Darmstadt, Germany DA - 24.09.2024 KW - Fingerprint KW - Additive Manufacturing KW - Computed tomography PY - 2024 AN - OPUS4-62286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ferrari, Bruno T1 - Microstructural evolution of PBF-LB/M Inconel 718 during solution-aging heat treatments - an in-situ x-ray diffraction study N2 - Inconel 718 (IN718) is a traditional age-hardenable nickel-based alloy that has been increasingly processed by additive manufacturing (AM) in recent years. In the as-solidified condition, IN718 exhibits chemical segregation and the undesired Laves phase, requiring a solution annealing (SA) prior to aging. The material produced by AM does not respond to the established thermal routines in the same way as conventionally produced IN718, and there is still no consensus on which routine yields optimal results. This work aims to provide a fundamental understanding of the heat treatment (HT) response by continuously monitoring the microstructural evolution during SA via time-resolved synchrotron x-ray diffraction, complemented by ex-situ scanning electron microscopy (SEM). The samples were produced by laser powder bed fusion to a geometry of 10x20x90 mm³, from which Ø1x5 mm³ cylindric specimens were extracted. Two different scanning strategies – incremental 67° rotations, Rot, and alternating 0°/67° tracks, Alt – were used, leading to two different as-built conditions. 1-hour SAs were carried out in the beamline ID22 of the ESRF at 50 KeV. Two SA temperatures, SA1 = 1020 °C, and SA2 = 1080 °C were tested for each scanning strategy. Data were processed using the software PDIndexer. In the as-built state, all samples showed typical subgrain columnar cell structures with predominant Nb/Mo segregation and Laves phase at the cell walls, as seen by SEM. The Alt scan induced higher intensity on the Laves peaks than the Rot scan, suggesting a greater content of Laves. Chemical homogenization in the SA was largely achieved during the heating ramp (Fig. 1). SA2 eliminated the Laves peaks just before reaching 1080 °C, and mitigated differences between Rot and Alt samples. On the other hand, SA1 induced the precipitation of the generally detrimental δ phase, also observed by SEM. Furthermore, the Rot scan showed higher δ peak intensities than the Alt scan, indicating a higher content of δ in the latter. No signs of recrystallization were observed in any of the investigated SAs. T2 - FEMS EUROMAT 2023 CY - Frankfurt a. M., Germany DA - 03.09.2023 KW - Additive Manufacturing KW - X-Ray Diffraction KW - Inconel 718 KW - Heat Treatments KW - Microstructure PY - 2023 AN - OPUS4-58392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk T1 - MGA Round Robin Test on Al-AM Fatigue Testing - Fractographic Results N2 - Presentation of results of an investigation of fracture mechanisms and crack start sites of an additive manufactured aluminium alloy after fatigue testing. Collaboration within the MGA initiative (Mobility Goes Additive). T2 - MGA Mid Term Meeting 2022 CY - Berlin, Germany DA - 05.07.2022 KW - Aluminium Alloy KW - Fractography KW - Additive Manufacturing PY - 2022 AN - OPUS4-55192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Measurement of real temperatures in metal powder bed fusion: Hyperspectral thermography N2 - Detailed knowledge about the physics of the PBF-LB/M process is still lacking, and the simulation of the fast and small-scale process is challenging. Especially the experimental validation of complex simulations lacks a suitable measurement technique for temperature distributions at high speeds and spatial resolution. The complicated process physics, specifically the rapidly changing emissivity in and around the meltpool, pose a severe challenge for usual thermographic approaches. Here, we present first results of a hyperspectral measurement approach to reconstruct temperature and emissivity maps during the PBF-LB/M process in a custom manufacturing machine. The camera setup measures the thermal radiation of the process along a line at a rate of 20 kHz, spectrally resolved between 1 µm and 1.6 µm. When the meltpool travels perpendicularly across this line, a typical meltpool can be reconstructed by pointwise fitting for temperature emissivity separation, based on typical spectral emissivities from reference measurements. T2 - Lasers in Manufacturing Conference - LiM CY - Munich, Germany DA - 23.06.2025 KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Hyperspectral PY - 2025 AN - OPUS4-63564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Magnetocaloric materials for cooling and harvesting of low-grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. For thermomagnetic materials, we used a commercial magnetocaloric alloy with a transition temperature of 300 K. T2 - Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Energy harvesting KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Machine Learning and Thermography as Tools for Local Porosity Prediction in AM of Metals N2 - Quality assurance of metal additive manufacturing (PBF-LB/M) is still a challenge. Offering deep process insights, thermography is a well-suited monitoring technique. Here, we show how machine learning based on thermographic data enables a local part porosity prediction. T2 - Laser Applications Conference (LAC) CY - Prague, Czech Republic DA - 19.10.2025 KW - PBF-LB/M KW - In situ monitoring KW - Thermography KW - Additive Manufacturing KW - Process monitoring KW - Porosity prediction KW - Machine Learning KW - Feature extraction PY - 2025 AN - OPUS4-64669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - LSD-print: a 10-years journey of an additive manufacturing technology from porcelain to technical ceramics N2 - Motivated by the aim of developing an additive manufacturing (AM) technology easily integrated in the process chains of the ceramic industry, the LSD-print technology was conceived as a slurry-based variation of binder jetting (BJ). BJ and other powder bed technologies (such as powder bed fusion) are amongst the most successful AM techniques, especially for metals and polymers, thanks to their high productivity and scalability. The possibility to use commercially available feedstocks (in the form of powders or granules) makes BJ also attractive for ceramic materials. The application of these techniques to most advanced ceramics has however been difficult so far, because of the limitations in depositing homogeneous layers with fine, typically poorly flowable powders. In this context, the "layerwise slurry deposition" (LSD) was proposed at TU Clausthal (Germany) as a slurry-based deposition of ceramic layers by means of a doctor blade. Combined with layer-by-layer laser sintering of the material, the LSD process was originally demonstrated for the rapid prototyping of silicate ceramics. Due to the difficulties in controlling the microstructure and the defect formation in laser-sintered technical ceramics, the LSD process was later combined with inkjet printing in the LSD-print technology, which has been further developed at BAM (Germany) in the past decade. The LSD-print technology combines the high speed of inkjet printing, typical of BJ, with the possibility of producing a variety of high-quality ceramics with properties comparable to those achieved by traditional processing. Due to the mechanical stability of the powder bed, the process can also be carried out with continuous layer deposition on a rotating platform, which further increases its productivity. This presentation will delve into 10 years of research on the LSD-print of a wide variety of technical ceramics including alumina, silicon carbides and dental ceramics. The discussion highlights how a seemingly small process and feedstock modification (from powders to slurries) has great influence on the challenges and potential of this process, which are being addressed on its path to industrialization. T2 - young Ceramists Additive Manufacturing Forum (yCAM) 2024 CY - Tampere, Finland DA - 06.05.2024 KW - Additive Manufacturing KW - Ceramic KW - Layerwise slurry deposition KW - Slurry KW - LSD-print PY - 2024 AN - OPUS4-60056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - LSD-3D printing: a novel technology for the Additive Manufacturing of ceramics N2 - The layer-wise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for Additive Manufacturing (AM). A slurry with small organic content is repetitively spread as thin layers on top of each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). Each layer is then dried, resulting in the stacking of a dry powder bed with high powder packing. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 15th Conference & Exhibition of the European Ceramic Society (ECerS2017) CY - Budapest, Hungary DA - 09.07.2017 KW - Layerwise Slurry Deposition KW - Ceramics KW - Additive Manufacturing KW - 3D Printing PY - 2017 AN - OPUS4-44171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - LSD- 3D printing: Powder based Additive Manufacturing, from porcelain to technical ceramics N2 - Powder based Additive Manufacturing (AM) processes are widely used for metallic and polymeric materials, but rarely commercially used for ceramic materials, especially for technical ceramics. This seemingly contradicting observation is explained by the fact that in powder based AM, a dry flowable powder needs to be used. Technical ceramics powders are in fact typically very fine and poorly flowable, which makes them not suitable for AM. The layerwise slurry deposition (LSD) is an innovative process for the deposition of powder layers with a high packing density for powder based AM. In the LSD process, a ceramic slurry is deposited to form thin powder layers, rather than using a dry powder This allows the use of fine powders and achieves high packing density (55-60%) in the layers after drying. When coupled with a printing head or with a laser source, the LSD enables novel AM technologies which are similar to *Denotes Presenter 42nd International Conference & Exposition on Advanced Ceramics & Composites 127 Abstracts the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder bed. The LSD -3D printing, in particular, offers the potential of producing large (> 100 mm) and high quality ceramic parts, with microstructure and properties similar to traditional processing. This presentation will give an overview of the milestones in the development of this technology, with focus on the latest results applied both to silicate and to technical ceramics. T2 - 42nd International Conference & Exposition on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 21.01.2018 KW - Additive Manufacturing KW - 3D printing KW - Ceramic KW - Alumina KW - Porcelain KW - Silicon Carbide PY - 2018 AN - OPUS4-44017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Layerwise slurry deposition: an approach for dense powder-beds in additive manufacturing and its application to technical ceramics N2 - Several Additive Manufacturing (AM) processes are based on the deposition of a powder to form a powder-bed layer-by-layer which typically has a low packing density (35-50%) and consequently hinders the ability of sintering ceramic parts to full density. The layerwise slurry deposition (LSD) is an innovative process for the deposition of layers in AM. In the LSD, a slurry with no or small organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). When coupled with a printing head or with a laser, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder-bed. This approach has been successfully applied to silicate ceramics, but implementing technical ceramic slurries is more challenging, because the water is drained too quickly from the suspension into the pores of the previous porous layer. In this presentation, the variables involved in the LSD will be analyzed and the latest improvements in the deposition setup will be described. The application of the LSD to technical ceramics has the potential of generating additive manufacturing parts which in the green state are comparable to those produced by slip casting. T2 - 40th International Conference and Expo on Advanced Ceramics and Composites CY - Daytona, FL, USA DA - 24.01.2016 KW - Layerwise slurry deposition KW - 3D printing KW - Additive Manufacturing PY - 2016 AN - OPUS4-37455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer, which can be used for SLM or for 3DP. This technique offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and is capable of producing parts with physical and mechanical properties comparable to traditionally shaped parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - CIMTEC - International Ceramics Congress CY - Perugia, Italy DA - 04.06.2018 KW - Ceramic KW - Additive Manufacturing PY - 2018 AN - OPUS4-46337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Layerwise Slurry Deposition for the Additive Manufacturing of Ceramics N2 - In powder bed Additive Manufacturing (AM) technologies, a part is produced by depositing and piling up thin powder layers. In each layer, the cross section of the object to build is defined by locally consolidating the powder, by sintering/melting the material (powder bed fusion technologies) or by ink jetting a binder (binder jetting technologies). These are already leading AM technologies for metals and polymers, thanks to their high productivity and scalability. The application of these techniques to most ceramics has been challenging so far, because of the challenges related to the deposition of homogeneous powder layers when using fine powders. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of SLS/SLM and 3DP technologies for advanced ceramic materials. LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade. Each layer is deposited and dried to achieve a highly packed powder layer. The LSD offers high flexibility in the ceramic feedstock used, especially concerning material and particle size, and enables the production of parts with physical and mechanical properties comparable to pressed or slip-casted parts. In this presentation, the LSD technique will be introduced and several examples of application to porcelain, SiC and alumina products will be reported. T2 - ICACC 2019 - 43rd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Additive Manufacturing KW - Ceramic KW - Layerwise KW - Slurry PY - 2019 AN - OPUS4-47865 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea T1 - Layerwise slurry deposition for Additive Manufacturing: from densely packed powder beds to dense technical ceramics N2 - Several Additive Manufacturing (AM) processes are based on the deposition of a powder to form a powder bed layer-by-layer, which typically has a low packing density (35-50%) and consequently hinders the ability of sintering ceramic parts to full density. The layerwise slurry deposition (LSD) is an innovative process for the deposition of layers in AM. In the LSD, a slurry with no or small organic content is repetitively spread as thin layers on each other by means of a doctor blade. During the deposition, the ceramic particles settle to form thin layers with a high packing density (55-60%). When coupled with a printing head or with a laser, the LSD enables novel AM technologies inspired to the 3D printing or selective laser sintering, but taking advantage of having a highly dense powder-bed. The LSD combined with inkjet binder printing (LSD-print) was applied to a submicron Al2O3 powder to produce samples which had a comparable density to uniaxially pressed samples, both in the green and in the sintered state. T2 - 92nd DKG Annual Meeting & Symposium on High-Performance Ceramics 2017 CY - Berlin, Germany DA - 19.03.2017 KW - Layerwise slurry deposition KW - Ceramic KW - Additive Manufacturing KW - 3D Printing PY - 2017 AN - OPUS4-44169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Laser Powder Bed Fusion: Fundamentals of Diffraction-Based Residual Stress Determination N2 - The general term additive manufacturing (AM) encompasses processes that enable the production of parts in a single manufacturing step. Among these, laser powder bed fusion (PBF-LB) is one of the most commonly used to produce metal components. In essence, a laser locally melts powder particles in a powder bed layer-by-layer to incrementally build a part. As a result, this process offers immense manufacturing flexibility and superior geometric design capabilities compared to conventional processes. However, these advantages come at a cost: the localized processing inevitably induces large thermal gradients, resulting in the formation of large thermal stress during manufacturing. In the best case, residual stress remains in the final parts produced as a footprint of this thermal stress. Since residual stress is well known to exacerbate the structural integrity of components, their assessment is important in two respects. First, to optimize process parameter to minimize residual stress magnitudes. Second, to study their effect on the structural integrity of components (e.g., validation of numerical models). Therefore, a reliable experimental assessment of residual stress is an important factor for the successful application of PBF-LB. In this context, diffraction-based techniques allow the non-destructive characterization of the residual stress. In essence, lattice strain is calculated from interplanar distances by application of Braggs law. From the known lattice strain, macroscopic stress can be determined using Hooke’s law. To allow the accurate assessment of the residual stress distribution by such methods, a couple of challenges in regard of the characteristic PBF-LB microstructures need to be overcome. This presentation highlights some of the challenges regarding the accurate assessment of residual stress in PBF-LB on the example of the Nickel-based alloy Inconel 718. The most significant influencing factors are the use of the correct diffraction elastic constants, the choice of the stress-free reference, and the consideration of the crystallographic texture. Further, it is shown that laboratory X-ray diffraction methods characterizing residual stress at the surface are biased by the inherent surface roughness. Overall, the impact of the characteristic microstructure is most significant for the selection of the correct diffraction elastic constants. In view of the localized melting and solidification, no significant gradients of the stress-free reference are observed, even though the cell-like solidification sub-structure is known to be heterogeneous on the micro-scale. T2 - 4th Symposium on Materials and Additive Manufacturing CY - Berlin, Germany DA - 12.06.2024 KW - Additive Manufacturing KW - Residual Stress KW - Electron Backscatter Diffraction KW - Laser Powder Bed Fusion PY - 2024 AN - OPUS4-60294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönsee, Eric T1 - Investigations on multi-sensor data for monitoring volume flow during the printing process N2 - Extrusion based 3D concrete printing (3DCP) is a growing technology because of its high potential for automating construction and the new possibilities of design. In conventional construction methods, a sample is taken to be representative for one material batch. However, in 3DCP continuous mixing is used which results in variations during the mixing process. Therefore, one sample is not representative for the entire structure. This leads to the necessity of continuous and real-time process monitoring. This study focuses on the variations of pressure and temperature which are caused by changes in the material due to the ongoing mixing process. Changes in material, which is transported downstream, are influencing sensor signals in different positions with a time delay. In the following, the data is analysed to investigate if the changing material and the so caused change in pressure can be used to calculate volume flow. T2 - Digital Concrete 2024 CY - Munich, Germany DA - 04.09.2024 KW - Additive Manufacturing KW - In-line Monitoring KW - Volume Flow KW - Process Control PY - 2024 AN - OPUS4-61002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon T1 - Introduction to ProMoAM N2 - A brief introduction to the project ProMoAM is given. T2 - 2nd Workshop on In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - ProMoAM PY - 2021 AN - OPUS4-52513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Insight into the residual stress formation in additively manufactured austenitic steel 316l N2 - Overview of residual stresses in austenitic stainless steel 316l manufactured by laser baser powder bed fusion and determined via x-ray and neutron diffraction T2 - Doktorandenseminar der Otto-von-Guericke Universität CY - Magdeburg, Germany DA - 28.11.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49850 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - Infrared Thermography of the DED-LB/M and PBF LB/M processes N2 - Infrared thermography is a technique that allows to measure the temperatures of objects by analyzing the intensity of the thermal emission without the need of direct contact with very high spatial and temporal resolution. As the temperature is a fundamental factor for the additive manufacturing processes of metals, infrared thermography can provide experimental data that can be used for the validation of simulations and improving the understanding of the processes as well as for in-situ process monitoring for nondestructive evaluation (NDE) for quality control. In this talk we will provide an overview over the possibilities of state of the art thermographic in-situ monitoring systems for the DED-LB/M and PBF-LB/M processes and the challenges such as phase transitions and unknown emissivity values in respect to the determination of real temperatures. We define the requirements for different camera systems in various configurations and give examples on the selection of appropriate measurement parameters and data acquisition techniques as well as on techniques for data analysis and interpretation. Finally, we compare in-situ monitoring methods against post NDE methods by analyzing the advantages and disadvantages of both. This research was funded by BAM within the Focus Area Materials. T2 - Coupled2021 - IX International Conference on Coupled Problems in Science and Engineering CY - Online meeting DA - 13.06.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition PY - 2021 AN - OPUS4-54399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten T1 - Influence of the WAAM process on residual stresses in high-strength steels (IIW-Doc. II-A-408-2022) N2 - High-strength fine-grain structeural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. However, due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the sensitive microstructure of high-strength steels carries a high risk of cold cracking. For this reason, process- and material-related influences, as well as the design aspects on residual stress formation and the risk of cold cracking, are being investigated in a recent project (FOSTA-P1380/IGF21162BG). This high strength of the WAAM welding consumables is adjusted via a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on residual stress evolution. However, this has not yet been investigated in relation to the processing of high-strength steels by WAAM. The aim of this work is to establish a WAAM cold crack test and easy-to-apply processing recommendations that will allow economical, expedient, and crack-resistant fabrication of high-strength steels, especially for SME. This paper focuses on the analysis of the effects of welding heat control and design of WAAM components on cooling conditions, microstructure, mechanical-technological properties and residual stresses. For this purpose, geometrically defined specimens (hollow cuboids) are welded fully automatically with a special, high-strength WAAM solid wire (yield strength >790 MPa). The heat control and specimen dimensions are varied within a statistical experimental design. The weld heat control is adjusted in such a way that the t8/5 cooling times are ensured within the recommended processing range (approx. 5–20 s). For this purpose, additional thermo-physical forming simulations using a dilatometer allowed the complex heat cycles to be reproduced and the resulting ultimate tensile strength of the weld metal to be determined. The WAAM welding of complex geometries with varying welding heat control and geometric factors or wall thicknesses not only has an effect on the cooling conditions, cooling times and microstructure, but also has a significant influence on the structural restraint conditions during welding. Hence, the welding experiments show significant effects of specimen scaling and heat input on the welding residual stresses, which may be detrimental regarding component properties and crack-critical tensile residual stresses. These complex interactions are analyzed within this investigation. T2 - Intermediate Meeting of IIW Comissions II and IX CY - Online meeting DA - 17.03.2022 KW - MAG-Welding KW - Additive Manufacturing KW - Residual stresses KW - high-strength steel KW - cold cracking safety PY - 2022 AN - OPUS4-56712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Influence of Microstructure on the Diffraction-Based Residual Stress Determination in Laser Powder Bed Fused Inconel 718 N2 - Additive manufacturing processes such as laser powder bed fusion (PBF-LB) offer the ability to produce parts in a single manufacturing step. On the one hand, this manufacturing technique offers immense geometric freedom in part design due to its layer-by-layer manufacturing strategy. On the other hand, the localized melting and solidification impose the presence of large temperature gradients in the process. From a microstructural perspective, this inevitably results in micro-segregation and a columnar grain structure, often paired with a significant crystallographic texture. Even worse, these large temperature gradients can lead to internal stress-induced deformation or cracking during processing. At the very least, residual stress is retained in the final structures as a footprint of this internal stress. In this context, diffraction-based methods allow the non-destructive characterization of the residual stress field in a non-destructive fashion. However, the accuracy of these methods is directly related to the microstructural characteristics of the material of interest. First, diffraction-based methods access microscopic lattice strains. To relate these lattice strains to a macroscopic stress, so-called diffraction elastic constants must be known. The deformation behavior is directly linked to the microstructure. Therefore, the diffraction elastic constants also depend on the microstructure. Second, the presence of crystallographic texture should be considered in the residual stress determination, as variations in crystal orientations contribute differently to the diffraction signal. Here we present the influence of the microstructure on the determination of residual stress by diffraction-based methods in as-built PBF-LB Inconel 718 parts. We obtained different microstructures by employing two different scanning strategies. In particular, different crystallographic textures were obtained by changing the relative angle of the scan vectors to the geometric axes of the part. The texture-based characterization of the residual stress field was carried out by surface, sub-surface, and bulk residual stress measurements. It was found that the residual stress determination significantly depends on the microstructure for strong crystallographic textures. T2 - Material Science and Engineering Congress CY - Darmstadt, Germany DA - 24.09.2024 KW - Additive Manufacturing KW - Electron Backscatter Diffraction KW - Microstructure KW - Residual Stress KW - X-ray Diffraction PY - 2024 AN - OPUS4-61475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ temperature measurements of the LMD process by IR-spectroscopy and Thermography N2 - Temperature measurements of the LMD process by IR-spectroscopy and Thermography are presenet and compared. T2 - 2st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Thermography PY - 2021 AN - OPUS4-52565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ Prüfung additiv gefertigter L-PBF-Bauteile mit aktiver Laserthermografie N2 - Die additive Fertigung von metallischen Bauteilen (Additive Manufacturing - AM; auch 3D-Druck genannt) bietet eine Vielzahl an Vorteilen gegenüber konventionellen Fertigungsmethoden. Durch den schichtweisen Auftrag und das selektive Aufschmelzen von Metallpulver im Laser Powder Bed Fusion Prozess (L-PBF) sind u.a. optimierte und flexibel anpassbare Designs und die Nutzung von neuartigen Materialien möglich. Aufgrund der Komplexität des AM-Prozesses und der Menge an Einflussfaktoren ist eine Qualitätssicherung der gefertigten Bauteile unabdingbar. Verschiedene in-situ Monitoringansätze werden bereits angewendet, jedoch findet eine dedizierte Prüfung erst im Nachgang der Fertigung ex-situ statt. Der Grund dafür ist, dass die Entstehung von geometrischen Abweichungen und Defekten auch zeitversetzt zum eigentlichen Materialauftrag und damit auch zum Monitoring stattfinden kann. Die Notwendigkeit geeigneter in-situ Prüfmethoden für L-PBF, um die Erforderlichkeit einer Nacharbeitung frühzeitig festzustellen und Ausschuss zu vermeiden ist angesichts kostenintensiver Ausgangsstoffe und einer oftmals mehrstündigen bis mehrtägigen Prozessdauer besonders hoch. Daraus motiviert wird im Rahmen des Projektes ATLAMP die Möglichkeit der aktiven Laserthermografie mit Hilfe des defokussierten Fertigungslasers untersucht. Damit ist, bei vergleichsweise geringer Laserleistung, eine zerstörungsfreie Prüfung mittels Flying Spot Thermografie möglich. Diese findet jeweils anschließend an die Fertigung einer Schicht statt, womit der reale Status des Bauteils im Verlauf des AM-Prozesses geprüft wird. Als Grundlage dafür werden im Rahmen dieser Arbeit mit AM gefertigte, defektbehaftete Probekörper zunächst losgelöst vom Fertigungsprozess untersucht. Damit werden die Grundlagen für den neuartigen Ansatz der aktiven in-situ Laserthermografie im L-PBF-Prozess mittels des Fertigungslasers geschaffen. Auf diese Weise lassen sich auch zeitversetzt auftretende Defekte zerstörungsfrei im Prozessverlauf feststellen und eine aussagekräftige Qualitätssicherung des Ist-Zustands des Bauteils erreichen. T2 - Thermographie-Kolloquium 2022 CY - Saarbrücken, Germany DA - 28.09.2022 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Defekte KW - Zerstörungsfreie Prüfung KW - Aktive Laserthermografie PY - 2022 UR - https://www.dgzfp.de/Portals/thermo2022/BB178/Inhalt/18.pdf SN - 978-3-947971-27-5 AN - OPUS4-56810 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen (PBF-LB /M) mittels TT und ET N2 - Durch die additive Fertigung ergeben sich durch die nun mögliche wirtschaftliche Fertigung hochgradig individueller und komplexer metallischer Bauteile in kleinen Stückzahlen bis hinunter zum Einzelstück für viele Industriebereiche ganz neue Möglichkeiten. Gleichzeitig entstehen jedoch neue Herausforderungen im Bereich der Qualitätssicherung, da sich auf statistischen Methoden beruhende Ansätze nicht anwenden lassen, ohne wiederum die Vorteile der Fertigung massiv einzuschränken. Eine mögliche Lösung für dieses Problem liegt in der Anwendung verschiedener In-situ-Überwachungstechniken während des Bauprozesses. Jedoch sind nur wenige dieser Techniken kommerziell verfügbar und noch nicht so weit erforscht, dass die Einhaltung strenger Qualitäts- und Sicherheitsstandards gewährleistet werden kann. In diesem Beitrag stellen wir die Ergebnisse einer Studie über mittels L-PBF gefertigte Probekörper aus der Nickelbasis-Superlegierung Haynes 282 vor, bei denen die Bildung von Defekten durch lokale Variationen der Prozessparameter wie der Laserleistung provoziert wurde. Die Proben wurden in-situ mittels Thermographie, optischer Tomographie, Schmelzbadüberwachung und Wirbelstromprüfung sowie ex-situ mittels Computertomographie (CT) überwacht, mit dem Ziel, die Machbarkeit und die Aussichten der einzelnen Methoden für die zuverlässige Erkennung der Bildung relevanter Defekte zu bewerten. T2 - DGZfP Jahrestagung 2022 CY - Kassel, Germany DA - 23.05.2022 KW - Additive Manufacturing KW - Thermografie KW - Additive Fertigung KW - Thermography PY - 2022 AN - OPUS4-55851 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ monitoring of the laser powder bed fusion process by thermography, optical tomography and melt pool monitoring for defect detection N2 - For the wide acceptance of the use of additive manufacturing (AM), it is required to provide reliable testing methods to ensure the safety of the additively manufactured parts. A possible solution could be the deployment of in-situ monitoring during the build process. However, for laser powder bed fusion using metal powders (PBF-LB/M ) only a few in-situ monitoring techniques are commercially available (optical tomography, melt pool monitoring) but not researched to an extent that allows to guarantee the adherence to strict quality and safety standards. In this contribution, we present results of a study of PBF-LB/M printed parts made of the nickel-based superalloy Haynes 282. The formation of defects was provoked by local variations of the process parameters and monitored by thermography, optical tomography and melt pool monitoring. Afterwards, the defects were characterized by computed tomography (CT) to identify the detection limits of the used in-situ techniques. T2 - LiM Conference 2023 - Lasers in Manufacturing CY - Munich, Germany DA - 26.06.2023 KW - Thermography KW - High temperature alloys KW - Additive Manufacturing KW - PBF-LB/M PY - 2023 AN - OPUS4-57947 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring of PBF-LB/M by thermography, optical tomography, melt-pool-monitoring and eddy current N2 - The formation of defects such as keyhole pores is a major challenge for the production of metal parts by Laser Powder Bed Fusion (LPBF). The LPBF process is characterized by a large number of influencing factors which can be hard to quantify. Machine Learning (ML) is a prominent tool to predict the outcome of complex processes on the basis of different sensor data. In this study, a ML model for defect prediction is created using thermographic image features as input data. As a reference, the porosity information calculated from an x-ray Micro Computed Tomography (µCT) scan of the produced specimen is used. Physical knowledge about the keyhole pore formation is incorporated into the model to increase the prediction accuracy. From the prediction result, the quality of the input data is evaluated and future demands on in-situ monitoring of LPBF processes are formulated. T2 - AM Bench 2022 CY - Bethesda, Washingthon DC, USA DA - 15.08.2022 KW - Additive Manufacturing KW - Thermography KW - Additive Fertigung KW - Thermografie PY - 2022 AN - OPUS4-55854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breese, Philipp Peter T1 - In-situ defect detection via active laser thermographic testing for PBF-LB/M N2 - Great complexity characterizes Additive Manufacturing (AM) of metallic components via laser powder bed fusion (PBF-LB/M). Due to this, defects in the printed components (like cracks and pores) are still common. Monitoring methods are commercially used, but the relationship between process data and defect formation is not well understood yet. Furthermore, defects and deformations might develop with a temporal delay to the laser energy input. The component’s actual quality is consequently only determinable after the finished process. To overcome this drawback, thermographic in-situ testing is introduced. The defocused process laser is utilized for nondestructive testing performed layer by layer throughout the build process. The results of the defect detection via infrared cameras are shown for a research PBF-LB/M machine. This creates the basis for a shift from in-situ monitoring towards in-situ testing during the AM process. Defects are detected immediately inside the process chamber, and the actual component quality is determined. T2 - Lasers in Manufacturing (LiM) CY - Munich, Germany DA - 26.06.2023 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Nondestructive Testing KW - Defect Detection KW - Flying Spot Laser Thermography PY - 2023 AN - OPUS4-57922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -