TY - CONF A1 - Fortini, Renata T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - Microscopy Conference CY - Berlin, Germany DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk T1 - Challenges for the design of a universal tribological database for materials N2 - Renowned institutions in the field of tribology combine their testing and analytical capabilities with experts in materials/process information management technology to provide the respective services in Europe (i-TRIBOMAT). This requires a centralized materials information management system or the standardised capture, consolidation and harmonization of tribological information. T2 - 60. Tribologie-Fachtagung CY - Göttingen, Germany DA - 23.09.2019 KW - Database KW - Tribology KW - Digital KW - LIMS PY - 2019 AN - OPUS4-49145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie T1 - Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter N2 - High performance polymers of intrinsic microporosity (PIMs) have emerged as novel materials with broad applications from gas separation to electronic devices. Sufficiently rigid, even contorted polymer chains show only limited molecular mobility, therefore undergo inefficient packing and give rise to intrinsic microporosity with pore size generally smaller than 1 nm and BET surface areas larger than 700 m2/g. Further performance optimization and long-term stability of devices incorporating PIMs rely on our understanding of structure-processing-property relationships and physical aging, in which glass transition plays a key role. Up to now no glass transition temperature (Tg) of PIMs could be detected with conventional thermal analysis techniques before degradation. Decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this. This was achieved by employing fast scanning calorimetry (FSC) based on a chip sensor, which is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. FSC provides definitive evidence of glass transition of a series of PIMs with a special consideration on the chain rigidity. The determined glass transition temperature of these PIMs follows the order of the rigidity of their backbone structures. FSC provides the first clear-cut experimental evidence of the glass transition of PIM-EA-TB with a Tg of 663 K, PIM-1 of 644 K and PIM-DMDPH-TB of 630 K at a heating rate of 1Χ104 K/s. Local fluctuations are featured in glass transition of highly rigid PIMs. As conformational changes are prevented by the backbone rigidity, the glass transition must rather be assigned to local small scale fluctuations. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Glass transition KW - Polymers of intrinsic microporosity KW - Fast scanning calorimeter PY - 2019 AN - OPUS4-47806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie T1 - Molecular Mobility and Charge Transport in Polymers of Intrinsic Microporosity (PIMs) as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a low-cost, energy efficient solution for gas separation. Recently polymers of intrinsic microporosity (PIMs) have emerged as prestigious membrane materials featuring a large concentration of pores smaller than 1 nm, a BET surface area larger than 700 m2/g and high gas permeability and selectivity. Unusual chain structure combining rigid segments with sites of contortion gives rise to the intrinsic microporosity. However, this novel class of glassy polymers are prone to pronounced physical aging. The initial microporous structures approach a denser state via local small scale fluctuataions, leading to a dramatic reduction in the gas permeabilities. For the first time, dielectric relaxation spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate three representative PIMs with a systematic change in chain rigidity: PIM-EA-TB 〉 PIM-1 〉 PIM-MDPH-TB. The molecular mobility, the charge transport and their response upon heating (aging) in the polymers were measured in a broad temperature range through isothermal frequency scans during different heating / cooling cycles. Multiple dielectric processes following Arrhenius behavior were observed for the investigated polymers. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxation phenomena were discussed and attempted to be correlated with the structural features of PIMs. Moreover, all PIMs showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature far below the glass transition temperature of PIMs is explained in terms of the loosely packed microporous structure and the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Dielectric spectroscopy KW - Polymeric membrane KW - Polymers of intrinsic microporosity PY - 2019 AN - OPUS4-47805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - X-Ray Emission during Laser Processing with Ultrashort Laser Pulses N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - 5th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 10.04.2019 KW - Laser-induced X-ray emission KW - Radiation protection KW - Ultrashort laser material interaction PY - 2019 AN - OPUS4-47788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo T1 - New Focus On Boehmite-Reinforced Nanocomposites Molecular Approach With Advanced FTIR-Techniques N2 - By FTIR-study it was possible to proof a chemical reaction between boehmite and the hardener of anhydride cured epoxy resins. Future studies can assume that the chemical environment of the resin system is changed in the surrounding of boehmite nanoparticles. This highly affects especially localized properties. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanocomposite KW - Boehmite KW - FTIR KW - DRIFTS KW - Epoxy PY - 2019 AN - OPUS4-47785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Probenpräparation für AFM-basierte Untersuchungsverfahren N2 - Adapted and advanced sample preparation of semiconductor layer systems with the focused ion beam for AFM-based test methods N2 - Der vorliegende Vortrag gibt einen Überblick über Probenpräparationen mit der Focused Ion Beam (FIB) für AFM-basierte Untersuchungsverfahren. Anhand zweier Beispiele wird gezeigt, wie ionenstrahlpolierte Lamellen aus Halbleiter-Schichtsystemen elektrisch leitfähig auf Substrate platziert werden, so dass in-situ und in-operando Messungen mit Scanning Microwave Microscope (SMM) bzw. Spectroscopic infrared scanning near-field optical microscope (IR-SNOM) durchgeführt werden können. T2 - 15. Berlin-Brandenburger Präparatorentreffen CY - Potsdam/Golm, Germany DA - 11.04.2019 KW - Focused Ion Beam KW - AFM based test methods KW - Sample preparation KW - Semiconductor materials KW - Layer system PY - 2019 AN - OPUS4-47784 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - Evolution of a friction material with braking sequence: properties related to the microstructure N2 - The microstructural complexity (multi-component and multi-scale) of friction materials, such as those used in braking applications,usually limits the characterization to the pristine state, even when they are to be submitted to high loading brake sequences. The understanding of properties ageing as a function of load history and microstructure is an important step to gain further knowledge on the tribological mechanisms occurring at the contact surface, as well as on the braking performances. To do so, the bulk mechanical and microscopical properties of a semi-metallic friction material are investigated before and after a braking sequence. Uniaxial compression tests combined with DIC are used to study the axial evolution of the mechanical behaviour (i.e., from the contact surface to the backplate). A significant mechanical evolution is observed in the after-braking material, which develops a layered behaviour along the depth. The layers (three) exhibit distinct mechanical/microstructural features that can be related to the braking thermal gradients and the occurrence of local damage. T2 - 22nd International Conference on Wear of Materials CY - Miami, Florida, USA DA - 14.04.2019 KW - Semi-metallic friction material KW - Bench braking sequence KW - Load history KW - DIC assisted compression KW - Bulk properties ageing PY - 2019 AN - OPUS4-47777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -