TY - CONF A1 - Unger, Wolfgang T1 - Advanced surface chemical analysis of plasma modified polymers and plasma-polymers N2 - A comprehensive characterization of plasma modified polymer surfaces or plasma-polymerized thin films needs access to parameters as - concentration of saturated/unsaturated carbon species (e.g. aromaticity) or other double bonds as C=N or C=O, - branching, and - losses of crystallinty or other degrees of structural order. Furthermore the complex ageing phenomena of plasma modified polymers/plasma-polymers and the measurement of an in-depth distribution of chemical species are challenges for the analyst. The talk will display selected examples where such challenges have been met by using advanced methods of surface chemical analyses as Photoelectron Spectroscopy with variable excitation energy (“SyncXPS”), X-ray Absorption Spectroscopy (NEXAFS) at C, N and O K-edges and Time-of-Flight Secondary Mass Spectroscopy (ToF-SIMS) combined with Principal Component analysis (PCA). T2 - IAP workshop – IAP 2016 "Organic surface modifications by plasmas and plasma-polymers" CY - Nancy, France DA - 08.06.2016 KW - XPS KW - NEXAFS KW - SIMS KW - Plasmapolymer PY - 2016 AN - OPUS4-36725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Holzweber, M. A1 - Lippitz, Andreas A1 - Hesse, R. A1 - Hodoroaba, Vasile-Dan A1 - Werner, W. A1 - Denecke, R. A1 - Unger, Wolfgang T1 - Ionische Flüssigkeiten als Referenzmaterial in der Oberflächenanalytik N2 - Energiedispersive Röntgenspektroskopie (EDX) ist eine der meist verbreiteten Methoden zur Bestimmung der chemischen Zusammensetzung von Festkörpern und dünnen Schichten. Durch die technologische Weiterentwicklung energiedispersiver Röntgenspektrometer wurde die Leistungsfähigkeit auch im niederenergetischen Bereich unter 1 keV verbessert. Geeignete Testmaterialien zur Überprüfung der Leistungsfähigkeit im niederenergetischen Bereich in Übereinstimmung mit ISO 15632 sind kaum vorhanden und basieren hauptsächlich auf C K und F K Linien. Um gültige Resultate aus akkreditierten und zertifizierten Prüf- und Kalibrierlaboratorien in Übereinstimmung mit ISO/IEC 17025 zu gewährleisten sind regelmäßige Funktionsprüfungen der Spektrometer notwendig. In einer Machbarkeitsstudie wurde die Eignung einer bestimmten Substanz-klasse, nämlich ionische Flüssigkeiten, als Referenzmaterial zur routinemäßi-gen Überprüfung der Energieskala, der Energieauflösung und der Spektrometer Effizienz untersucht. Es kann gezeigt werden, dass mit einer einzigen Messung an einem einzigen Referenzmaterial mehrere Geräteparameter überprüft werden können. Damit ist es im niederenergetischen Bereich möglich regelmäßige Funktionsprüfungen von Spektrometern durchzuführen, aber auch die Leistungsfähigkeit verschiedener Spektrometer zu vergleichen. Beides kann sehr effizient durch einen einfachen qualitativen Vergleich mehrerer Spektren erreicht werden. Durch die Verwendung von ionischen Flüssigkeiten als Referenzmaterial, deren Stöchiometrie genau bekannt ist bzw. zertifiziert werden kann, können eventuell sogar die gängigen Modelle zur Matrixkorrektur validiert werden. Auch wäre eine Neubewertung von Fundamentalparametern (Fluoreszenzausbeute, Massenschwächungskoeffizienten usw.) von Elementen niedriger Ordnungszahl möglich. T2 - 19. Arbeitstagung Angewandte Oberflächenanalytik (AOFA) CY - Soest, Germany DA - 05.09.2016 KW - Ionische Flüssigkeiten KW - Referenzmaterial KW - Oberflächenanalytik PY - 2016 UR - http://www.awz-soest.fraunhofer.de/de/aofa2016.html AN - OPUS4-37322 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fréjafon, E. A1 - Salvi, O. A1 - Hazebrouck, B. A1 - Le Feber, M. A1 - López de Ipiña Peña, J. A1 - Unger, Wolfgang T1 - Creation of the European centre for risk management and safe innovation in nanomaterials & nanotechnologies (EC4SafeNano) N2 - Safe innovation & sustainable production with MNMs need that we: Understand risks and benefits (diagnostic, assessment) Identify and implement risk reduction strategies (manage) Communicate on residual risks (acceptance) Huge knowledge on characterization, hazards, diagnostic (science) Little effective use of it for operational risk management (expertise) Objectives of the centre: Bridge the gap between research and application (public, private), Bridge the gap between knowledge on risks and risk management, Balance between Science and Appliance, in a sustainable way: Efficient & Sustainable structure Collective, harmonized, shared expertise EU scale, internationally connected. T2 - Workshop "NanoSafety: from research to implementation" CY - Amsterdam, The Netherlands DA - 22.06.2016 KW - Nano materials KW - Risk management KW - Safe innovation PY - 2016 UR - http://nanomile.eu-vri.eu/news.aspx?lan=230&tab=2361&nid=991#n991 AN - OPUS4-36966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Lippitz, A. A1 - Illgen, R. A1 - Ehlert, C. A1 - Girard-Lauriault, P.-L. A1 - Donskyi, Ievgen A1 - Haag, R. A1 - Adeli, M. T1 - Low pressure plasma, UV photo and wet chemical modification of graphite, graphene and carbon nano tubes N2 - Graphene is a two-dimensional carbon network with unique properties, including high mechanical stiffness, strength, and elasticity, outstanding electrical and thermal conductivity, and many others. Despite these advantages, its low solubility, poor reactivity and the limited accessibility of a well-defined basal plane are major challenges for applications. An ideal method to overcome these problems is the covalent attachment of functional molecules to its surface which enables further reactive modifications for specific applications. There is a number of different technologies for surface functionalization of graphene and related CNT materials. However, to get control on the functionalization process and to optimize the performance of the modified surfaces analytical tools for surface chemical characterization are required. X-ray absorption (NEXAFS) and photoelectron spectroscopy (XPS) have been identified to be rather powerful here. Specifically NEXAFS spectroscopy underpinned by quantum chemical spectrum simulations is unique in a way to address changes of aromaticity and defect formation at the graphene surface during functionalization. For relevant surface modification technologies, we present examples on how NEXAFS and XPS can perform well. All presented modifications aim on the production of platforms for defined functional 2D nanomaterials, as for example multifunctional hybrid architectures. In detail, we investigated: • Graphene and carbon nanotube functionalized by a Vacuum-Ultraviolet (VUV) induced photochemical process in NH3 or O2 atmospheres in order to introduce amino or hydroxy functionalities, respectively. • Br bonding on r.f. cw low pressure plasma brominated graphite surfaces by using Br2 and bromoform as plasma gases. • A wet chemical method for covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. Here a reaction between 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized graphene sheets. T2 - The 17th European Conference on Applications of Surface and Interface Analysis CY - Montpellier, France DA - 24.09.2017 KW - Graphene KW - XPS KW - NEXAFS PY - 2017 AN - OPUS4-42787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Fréjafon, Emeric A1 - Hazebrouck, Benoît T1 - Designing a sustainable European centre for risk management and safe innovation in nanomaterials & nanotechnologies (EC4SafeNano) N2 - A central challenge to ensure the sustainable production and use of nanotechnologies is to understand the risks for environment, health and safety associated with this technology and resulting materials and products, and to identify and implement practical strategies to minimize these risks. Knowledge about nanotechnology-enabled processes and products and related environment, health and safety issues is growing rapidly, achieved through numerous European or national R&D programs over the last decade, but effective use of this knowledge for risk management by market actors is lagging behind. The EC4SafeNano initiative (www.EC4SafeNano.eu) is an ongoing effort to build a European Centre for Risk Management and Safe Innovation in Nanomaterials and Nanotechnologies. EC4SafeNano aims to bridge the gap between scientific knowledge on hazard and risk, and ‘fit-for-purpose’ risk management tools and strategies supported by measurement and control methods. The consortium comprises 15 partners (INERIS (coordinator), EU-VRi, TNO, BAM, FIOH, VITO, SP, DEMOKRITOS, TECNALIA, Health and Safety Executive, NRCWE, Paris Lodron University Salzburg, Université Libre de Bruxelles, University of Birmingham and ENEA) from 11 European Member States with significant expertise on risk assessment and management, who already provide knowledge and technical services to public and private organizations, to industry and to public authorities and regulatory bodies. The overall objective of the EC4SafeNano project is to develop a distributed Centre of European Organisations offering services for Risk Management and Safe Innovation for Nanomaterials & Nanotechnologies. The Centre will be structured as a hub-based network of organizations managed by a core group of public-oriented bodies providing risk management and safe innovation support to all stakeholders. It will be operated with the support of Associated Partners so as to expand its capabilities, resources and services. It will interact with existing platforms and centres of excellence in nanosafety and foster the organization or development of national hubs mirroring the European hub. The Centre will seek financial support from stakeholders and service users to sustain the services in the longer term. The operational objectives of the project involve understanding and mapping the needs of the various stakeholders (private and public). It will identify the resources and capabilities and develop a range of harmonized services required to meet these needs. The construction of the centre will include putting in place and implementing processes to deliver and update services, to test and benchmark services, to evaluate the governance of the Centre, and developing a business plan to ensure self-sufficiency of the Centre beyond the project lifetime. A cornerstone of the project is to build a community for risk management and safe innovation for nanotechnology. Interested persons or organisations are invited to join this initiative as registered stakeholders or Associated Partners, to engage in focus networks and to help shape the future Centre. The poster will present the EC4SafeNano initiative and will detail the role of registered stakeholders and Associated Partners. T2 - UBA Scientific Stakeholder Meeting on Nanomaterials in the Environment CY - Dessau, Germany DA - 10.10.2017 KW - Risk management KW - Nanomaterials KW - Nanotechnologies PY - 2017 AN - OPUS4-42788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Nonlocal continuum damage modeling N2 - Nonlocal continuum damage modelung using the gradient enhanced damage model and the phase-field model for brittle fracture. T2 - WIBE 2016 CY - Garching, Germany DA - 13.10.2016 KW - Gradient enhanced KW - FEM KW - Damage KW - Phase-field PY - 2017 AN - OPUS4-42612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - A finite element tearing and interconnecting (FETI) approach for phase-field models and gradient enhanced damage models is presented. These diffusive crack models can solve fracture mechanics problems by integrating a set of partial differential equations and thus avoid the explicit treatment of discontinuities. However, they require a fine discretization in the vicinity of the crack. FETI methods distribute the computational cost among multiple processors and thus speed up the computation. T2 - GACM 2017 CY - Stuttgart, Germany DA - 11.10.2017 KW - FEM KW - DDM KW - FETI PY - 2017 AN - OPUS4-42604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huschke, Philip A1 - Unger, Jörg F. T1 - Domain decomposition methods for fracture mechanics problems N2 - Strain hardening ultra high performance fiber reinforced cementitious composites (UHPFRCC) exhibit increased strength, ductility, and energy absorption capacity when compared to their quasibrittle, unreinforced counterparts. A mesoscale finite element model can depict the underlying causes for the structural response of UHPFRCC and thus help to optimize the fiber content, the fiber dimensions, and the fiber orientation. The mesoscale model can either be used directly or as a representative volume element for a macroscopic model. We present a two-dimensional and a threedimensional mesoscale finite element model to simulate the structural response of strain hardening UHPFRCC. The mesoscale model employs an implicit gradient enhanced damage model for the cement matrix and a local bond stress-slip model for the bond between the cement matrix and the steel fibers. The steel fibers are modeled discretely as one-dimensional truss elements that are coupled to the cement matrix via bond elements. The tensile stress-strain response of UHPFRCC is a consequence of local matrix cracking and bond failure. Both phenomena can be depicted when modeling the cement matrix, the steel fibers, and the fiber-to-matrix bond explicitly. The second part of the talk deals with the efficient modeling of fracture and the prediction of crack initiation, propagation, merging, and branching through the computational domain. Phase-field models and gradient enhanced damage models can solve fracture mechanics problems by integrating a set of partial differential equations for the system and thus avoid the explicit treatment of discontinuities. The main attributes of these approaches are their simplicity and generality. However, they require a fine discretization in the region where the crack evolves. A finite element tearing and interconnecting (FETI) approach for the diffusive crack models is presented to distribute the computational cost among multiple processors and thus speed up the overall computation. T2 - ICAM 2017 CY - Garching, Germany DA - 20.05.2017 KW - FEM KW - FETI KW - DDM PY - 2017 AN - OPUS4-42605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hupatz, H. A1 - Schröder, H. A1 - Heinrich, Thomas A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Schalley, C. T1 - Deposition of redox-switchable rotaxanes on surfaces N2 - Deposition of Redox-switchable rotaxanes on surfaces Nature has created molecular machines which can perform a variety of different tasks. They exhibit defined operational pathways and order, resulting in directed macroscopic effects. Within the last decades researchers have been developing numerous artificial molecular machines which are so far mostly operating in solution. However, this represents a major obstacle for the generation of a macroscopic output, due to the random orientation of molecules in solution. As a general approach to this problem, interfaces have been used to generate ordered arrays of functional molecules. Recently, we developed a new class of redox-switchable crown ether/ammonium-based [2]- and [3]rotaxanes which incorporate redox-active tetrathiafulvalene and naphthalene diimide units in their wheels resulting in emergent optoelectronic properties. Electrochemical stimuli influence the interactions between the two macrocycles of [3]rotaxanes and induce conformational changes. In a proof-of-principle study [2]pseudorotaxanes were deposited on gold surfaces by “click”-reaction to azide-terminated self-assembled monolayers to generate ordered arrays of redox-active rotaxanes on-surface. X-ray photoelectron spectroscopy (XPS) confirms the successful deposition of a rotaxane monolayer, though angle-resolved near-edge X-ray absorption fine structure spectroscopy (NEXAFS) exhibits poor order of the rotaxanes. Following, new terpyridine-stoppered rotaxanes will be synthesised opening a pathway for the deposition of [2]- and [3]rotaxanes in a layer-by-layer metal-mediated self-assembly procedure. This approach would allow for a programmed sequence of different rotaxanes in multilayers. Electrochemical on-surface switching will be investigated by angle-resolved NEXAFS spectroscopy, XPS, cyclic voltammetry and UV/Vis spectroscopy. A more detailed understanding of the electron-transfer between the surface and the different rotaxane layers as well as of the on-surface switching could give rise to potential applications like optoelectric data-storage devices or potential-driven molecular motors. T2 - Gordon Research Conference - Artificial Molecular Switches & Motors CY - Holderness, NH, USA DA - 11.06.2017 KW - Rotaxane KW - Immobilization KW - XPS KW - NEXAFS PY - 2017 AN - OPUS4-42843 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hupatz, H. A1 - Schröder, H. V. A1 - Heinrich, Thomas A1 - Schalley, C.A. A1 - Unger, Wolfgang T1 - Redox-Switchable Rotaxanes on Surfaces N2 - Nature has created molecular machines which can perform a variety of different tasks. They exhibit defined operational pathways and order, resulting in directed macroscopic effects. Within the last decades researchers have been developing numerous artificial molecular machines which are so far mostly operating in solution. However, this represents a major obstacle for the generation of a macroscopic output, due to the random orientation of molecules in solution. As a general approach to this problem, interfaces have been used to generate ordered arrays of functional molecules. Recently, we developed a new class of redox-switchable crown ether/ammonium-based [2]- and [3]rotaxanes which incorporate redox-active tetrathiafulvalene and naphthalene diimide units in their wheels resulting in emergent optoelectronic properties. Electrochemical stimuli influence the interactions between the two macrocycles of [3]rotaxanes and induce conformational changes. In a proof-of-principle study [2]pseudorotaxanes were deposited on gold surfaces by “click”-reaction to azide-terminated self-assembled monolayers to generate ordered arrays of redox-active rotaxanes on-surface. X-ray photoelectron spectroscopy (XPS) confirms the successful deposition of a rotaxane monolayer, though angle-resolved near-edge X-ray absorption fine structure spectroscopy (NEXAFS) exhibits poor order of the rotaxanes. Following, new terpyridine-stoppered rotaxanes will be synthesised opening a pathway for the deposition of [2]- and [3]rotaxanes in a layer-by-layer metal-mediated self-assembly procedure. This approach would allow for a programmed sequence of different rotaxanes in multilayers. Electrochemical on-surface switching will be investigated by angle-resolved NEXAFS spectroscopy, XPS, cyclic voltammetry and UV/Vis spectroscopy. A more detailed understanding of the electron-transfer between the surface and the different rotaxane layers as well as of the on-surface switching could give rise to potential applications like optoelectric data-storage devices or potential-driven molecular motors. T2 - GDCh-Wissenschaftsforum Chemie CY - Berlin, Germany DA - 10.09.2017 KW - NEXAFS KW - Rotaxane KW - XPS KW - Surface characterization PY - 2017 AN - OPUS4-42848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -