TY - CONF A1 - Lingott, Jana A1 - Riesemeier, Heinrich A1 - Reinholz, Uwe A1 - Buzanich, Günter A1 - Radtke, Martin A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Gadolinium-based MRI Contrast Agents in Biological Samples T2 - 11th European Workshop on Laser Ablation CY - Gijón, Spain DA - 2012-06-18 PY - 2012 AN - OPUS4-26475 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manso, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Pessanha, S. A1 - Guerra, M. A1 - Carvalho, M.L. A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Toxic metals in tattoo inks N2 - Tattooing practice is adopted worldwide and represents a socio-cultural phenomenon, but the injection into the skin of coloring agents, such as metals might pose a serious health problem. Tattoo ink compounds are in general not officially controlled. Moreover, the origins as well as the chemical and toxicological specifications of these coloring agents are hardly known by the producers, the tattooists and by the consumers. In this view, the aim of this study was to characterize the metal composition of tattoo inks available in the market and to draw attention to the associated risk for human health. A set of tattoo inks from the brand Kuro Sumi was analyzed by means of Synchrotron-based X-ray Fluorescence spectrometry (Sy-XRF) at BAMline @ BESSY II and Raman Spectroscopy using the XploRA confocal Raman microscope (785 nm laser). Carbon black, rutile, phtalo blue, phtalo green, helizarin red, helizarin yellow and dioxazine violet were respectively identified in black, white, blue, green, red, yellow and violet inks. However, a wide range of transition and heavy metals, potentially hazardous was revealed by Sy-XRF. A semi-quantitative evaluation has revealed, in some inks, amounts of Cr, Cu, Zn and Pb higher than the allowed according to the resolution adopted by the Council of Europe on the safety of tattoos and permanent make-up (PMU. T2 - Heavy Metals: from the Environment to the Man CY - Lissabon, Portugal DA - 21.03.2016 KW - Synchrotron KW - BAMline KW - XRF KW - Tattoo PY - 2016 AN - OPUS4-38806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin T1 - Es ist nicht alles Gold was glänzt - Die Analyse von Gold mit Synchrotronstrahlung N2 - Gold ist eines der sieben schon im Altertum bekannten Metalle und wurde wg. seines Glanzes und seiner Seltenheit von alters her als Tauschmittel und zur Herstellung von Schmuck benutzt. Außerdem ist es einfach bearbeitbar und weitestgehend gegen chemische Einflüsse resistent. Die Untersuchungen von Gold mit synchrotronstrahlungsangeregter Röntgenfluoreszenzanalyse sind zerstörungsfrei und geben Auskunft über die in der untersuchten Probe vorhandenen chemischen Elemente. Bei den hier vorgestellten Untersuchungen an der BAMline stehen Fragestellungen wie Herkunft, Herstellungsverfahren und Zusammengehörigkeit von Goldfunden im Vordergrund. Die verschiedenen Fragestellungen werden an einer Reihe von Beispielen erläutert die vom Wikingerschatz aus Hiddensee über die Himmelsscheibe von Nebra bis hin zu Funden aus Ägypten langen. Zusätzlich werden die modernen Messmethoden vorgestellt, die am Synchrotron heutzutage zur Verfügung stehen. T2 - Vortragsreihe „Naturwissenschaftliche Einsichten in Kunst- und Kulturgut" CY - Dresden, Germany DA - 13.10.2016 KW - Synchrotron KW - BAMline KW - Gold KW - XRF PY - 2016 AN - OPUS4-38809 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Data-driven materials discovery and understanding N2 - Developments in density functional theory (DFT) calculations, their automation and therefore easier access to materials data have enabled ab initio high-throughput searches for new materials for numerous applications. These studies open up exciting opportunities to find new materials in a much faster way than based on experimental work alone. However, performing density functional theory calculations for several thousand materials can still be very time consuming. The use of, for example, faster chemical heuristics and machine-learned interatomic potentials would allow to consider a much larger number of candidate materials. In addition to DFT based high-throughput searches, the seminar will discuss two possible ways to accelerate high-throughput searches. Using data analysis on the structures and coordination environments of 5000 oxides, we were able to investigate a chemical heuristic – the famous Pauling rules – regarding its usefulness for the fast prediction of stable materials. We have also investigated how machine-learned interatomic potentials can be used to accelerate the prediction of (dynamically) stable materials. The use of these potentials makes vibrational properties accessible in a much faster way than based on DFT. Our results based on a newly developed potential for silicon allotropes showed excellent agreement with DFT reference data (agreement of the frequencies within 0.1-0.2 THz). In addition, we have successfully used high-throughput calculations in the search for new candidate materials for spintronic applications and ferroelectrics T2 - ETSF Webinar CY - Online meeting DA - 25.06.2021 KW - High-throughput computations KW - Data analysis KW - Machine learning PY - 2021 AN - OPUS4-52980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prost, J. A1 - Windbichler, A. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Radtke, Martin A1 - Pepponi, G. A1 - Migliori, A. A1 - Karydas, A.G. A1 - Czyzycki, M. A1 - Eichert, D.M. A1 - Jark, W.H. A1 - Wobrauschek, P. A1 - Streli, C. T1 - Cr, Cu and Zn K-edge SR-TXRF-XANES of indoor aerosol samples at BESSY II and ELETTRA N2 - Airborne particulate matter is an issue of growing concern in industrialized countries. Particles with diameters of less than 10 μm (especially those smaller than 2.5 μm) can enter the human respiratory system and contribute to various diseases depending on their chemical composition and the chemical bonding state, in which elements are present. This chemical speciation can be obtained using X-ray absorption near-edge structure analysis (XANES), which requires a tunable excitation source and therefore has to be carried out at synchrotron facilities. Our special interest lies on the analysis of indoor airborne particulate matter, as particle composition and health effects of outdoor particles have been studied abundantly. For this work, samples were collected in various office rooms in the Atominstitut (ATI) building. The BAMline at BESSYII features a double-multilayer monochromator (DMM) and a double-crystal monochromator (DCM). The DCM offers an energy resolution E/ΔE of around 103, which makes it suitable for XANES applications. The ATI SR-TXRF vacuum chamber, formerly located at HASYLAB, Beamline L, is now available at the BAMline. The chamber offers a sample changer for up to 8 quartz reflectors and a 30 mm² silicon drift detector (SDD) was used. Aerosol samples were produced using a modified three-stage Dekati™ impactor. For this work, only the coarse (2.5 to 10 μm) and the fine particle fraction (1 to 2.5 μm), were of interest. XANES results of Cr, Cu and Zn will be presented on this poster. The X-ray Fluorescence beamline at ELETTRA operates in partnership with the IAEA an ultra-high vacuum instrument with a 7-axis manipulator suitable for a variety of X-ray analytical techniques, such as grazing incidence and total reflection X-ray fluorescence analysis (GI-XRF and TXRF), X-ray reflectometry (XRR) and XANES. Samples were produced using a four-stage Sioutas Personal Cascade Impactor. With this impactor, it is possible to produce size-fractionated samples down to the sub-μm range (Stages: A > 2.5 μm, B 1 to 2.5 μm, C 0.5 to 1 μm and D 0.25 to 0.5 μm). Direct sampling was performed on siliconized 25 mm Si wafers suitable for TXRF. Cu-K edge SR-TXRF-XANES analysis was carried out for samples of all impactor stages. Results of these experiments will be shown. T2 - European Conference on X-Ray Spectrometry (EXRS) CY - Gothenburg, Sweden DA - 19.06.2016 KW - Synchrotron KW - BAMline KW - BESSY KW - Aerosol KW - XANES PY - 2016 AN - OPUS4-38764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Dietzel, M. A1 - Ukrainczyk, N. A1 - Grengg, C. T1 - Sulfuric acid resistance of copper-doped and plain metakaolin-based alkali-activated materials studied by 29Si, 27Al and 1H MAS NMR, and Cu K-edge XANES spectroscopy N2 - Alkali-activated materials have been repeatedly reported to exhibit high acid resistance, but no generally accepted hypothesis regarding the underlying mechanisms has emerged yet. To contribute to this issue, K-waterglass-activated metakaolin specimens, with and without the addition of CuSO4·5H2O in the starting mix, were exposed to either a chemically aggressive sewer environment (mortars) or sulfuric acid (pastes). The mode of copper incorporation in the materials and the formation of copper phases in the corroded layers were studied by XANES at the Cu K-edge, and 29Si, 27Al and 1H MAS NMR was employed to understand the processes during acid attack. Copper was found as a spertiniite-like phase in the as-cured materials, while in the deterioration layers of the pastes it was present as copper sulfate. In the corroded regions of the mortars, unequivocal identification of Cu phases was not possible, but the results were reconcilable with the presence of copper carbonate hydroxide. The solid-state NMR results revealed virtually complete dissolution of the K-A-S-H gel and the formation of silica gel, interpreted to be a central mechanism determining the acid resistance. No significant differences between the microstructural alterations of the pastes with and without Cu addition on (chemical) sulfuric acid attack were observed. T2 - 74th RILEM Annual Week & 40th Cement and Concrete Science Conference CY - Online meeting DA - 31.08.2020 KW - Alkali-activated materials KW - Sulfuric acid resistance KW - Sewer structures PY - 2020 AN - OPUS4-51198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - Berger, Achim T1 - Tragbare RFA an Gläsern: Ergebnisse und Grenzen N2 - Vorstellung der Ergebnisse der Messungen an Gläsern von Goethes Prismen. T2 - 3. Goethe/Ritter-Workshop CY - Berlin, Germany DA - 25.05.2018 KW - Goethe KW - Farbenlehre KW - Prisma KW - Handheld KW - XRF PY - 2018 AN - OPUS4-46369 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radtke, Martin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich T1 - TXRF and XANES at the BAMline N2 - The BAMline at the synchrotron BESSY II in Berlin supplies users with up to date analytical x-ray methods for the energy range between 5 and 50 keV. Additional to XRF with micron Resolution it provides amongst other things the possibility to use TXRF and XANES. Especially the use of the so-called Color X-Ray Camera (CXC) opens the possibility to use new and effective detection schemes, which allow to measure simultaneously distributions of elements or Absorption spectra in a motionless mode. In this talk the analytical possibilities at the BAMline for samples with biological Background will be introduced. The available methods will be presented and discussed for various examples. A perspective for the future use for XANES in grazing emission and TXRF geometries for plant materials will be given. T2 - TXRF 2017 CY - Brescia, Italy DA - 19.09.2017 KW - XANES KW - Synchrotron KW - XRF KW - BESSY PY - 2017 AN - OPUS4-42978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Manso, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Pessanha, S. A1 - Guerra, M. A1 - Carvalho, M.L. A1 - Reinholz, Uwe A1 - Radtke, Martin T1 - Assessment of heavy metals and hazardous substances in tattoo inks N2 - Tattooing practice is adopted worldwide and represents a socio-cultural phenomenon, but the injection into the skin of coloring agents, such as metals might pose a serious health problem. Tattoo ink compounds are in general not officially controlled. Moreover, the origins as well as the chemical and toxicological specifications of these coloring agents are hardly known by the producers, the tattooists and by the consumers. In this view, the aim of this study was to characterize the metal composition of tattoo inks available in the market and to draw attention to the associated risk for human health. A set of tattoo inks from the brand Kuro Sumi was analyzed by means of Synchrotron-based X-ray Fluorescence spectrometry (Sy-XRF) at BAMline @ BESSY II and Raman Spectroscopy using the XploRA confocal Raman microscope (785 nm laser) at the LIBPhys-UNL. Carbon black, rutile, phtalo blue, phtalo green, helizarin red, helizarin yellow and dioxazine violet were respectively identified in black, white, blue, green, red, yellow and violet inks. However, a wide range of transition and heavy metals, potentially hazardous was revealed by Sy-XRF. A semi-quantitative evaluation has revealed, in some inks, amounts of Cr, Cu, Zn and Pb higher than the allowed according to the resolution adopted by the Council of Europe on the safety of tattoos and permanent make-up. T2 - European Conference on X-Ray Spectrometry (EXRS) CY - Gothenburg, Schweden DA - 19.06.2016 KW - Synchrotron KW - XRF KW - Tattoo PY - 2016 AN - OPUS4-38804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rauwolf, M. A1 - Turyanskaya, A. A1 - Roschger, A. A1 - Prost, J. A1 - Simon, R. A1 - Pape, I. A1 - Radtke, Martin A1 - Scharf, O. A1 - Schoonjans, Tom A1 - de Oliveira Guilherme Buzanich, Ana A1 - Sawhney, K. A1 - Wobrauschek, P. A1 - Rocshger, P. A1 - Hofstaetter, J. G. A1 - Streli, C. T1 - Zinc distribution in human bone: Sr-micro X-ray fluorescence imaging of osteoporotic samples N2 - Zn is known to be located in the reactive centers of various enzymes, which play a major role in the mineralization process at sites where new bone formation occurs. In addition, elevated Zn levels are supposed to increase the proliferation rate of osteoblasts [1] and may lead to a stimulation of bone formation in vitro and in vivo [2]. Consequently, Zn seems to play an essential role in bone formation and mineralization through various pathways. We thus expected Zn levels to be altered at sites of extensive bone formation like in the case of fracture healing. We measured the same areas on human bone samples with both a scanning confocal synchrotron radiation induced micro X-ray fluorescence (SR-μXRF) at the FLUO beamline (ANKA) and a full-field Color X-ray Camera at the BAMline (Bessy II) setup in order to find the ideal SR-μXRF imaging method to investigate trace element distributions in bone samples. As zinc is a trace element of special interest in bone, the setups were optimized for Zn detection. The setups were compared concerning count rate, required measurement time and resolution. We could show that the ideal method is depending on the element of interest. While for Ca (a major constituent of the bone with a low energy of 3.69keV for K) the Color X-ray Camera provided us with a higher resolution in the plane, for Zn (a trace element in bone) only the confocal SR-μXRF was able to sufficiently image the distribution. Biopsies of healing osteoporotic fractures (Vertebral compression fractures (VCFs)) were investigated in regard to their Zn distribution. The samples were measured with a confocal SR-μXRF setup with a 10 μm x 15 μm resolution at the FLUO beamline at ANKA. As we found increased Zn levels, which seemed to be accumulated in narrow structures between bone packages we also investigated thin cuts (4 μm thick) of two sample areas with a higher resolution of 1 μm x 1 μm (monochromatic beam with E= 17 keV) at B16 at Diamond SR facility. We will present the advantages and disadvantages of all three SR-μXRF setups (ANKA FLUO beamline, Bessy II BAMline, and Diamond B16) for imaging elemental distributions in bone with a focus on Zn. We will also show the distribution of Zn in healing VCFs. T2 - XRM2016: 13th International Conference on X-Ray Microscopy CY - Oxford, UK DA - 15.08.2016 KW - Synchrotron KW - BAMline KW - XRF PY - 2016 AN - OPUS4-38765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -