TY - CONF A1 - Aris, Stephan T1 - Aktueller Stand der Normung von Gasflaschenventilen N2 - Im Vortrag wird der aktuelle Stand der Normung von Gasflaschenventilen vorgestellt. Dieser umfasst nationale, europäische und internationale Normen, die größtenteils im Bereich der Gefahrgutbeförderung verbindlich anzuwenden sind. T2 - 26. Jahrestreffen BAM/DIN/DVFG/IGV CY - Berlin, Germany DA - 27.02.2019 KW - Normung KW - ADR KW - Gasflaschenventile PY - 2019 AN - OPUS4-47470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grunewald, Thomas T1 - Nichtelektrischer Explosionsschutz: Zündgefahren durch Funken - Grundlagen und Maßnahmen zum Explosionsschutz N2 - Bei Geräten und Maschinen zur bestimmungsgemäßen Verwendung in explosionsgefährdeten Bereichen muss in der europäischen Union eine Zündgefahrenbewertung durchgeführt werden. Dabei müssen unter anderem die Gefahren von nichtelektrischen Zündquellen betrachtet werden, zu denen auch die mechanischen Schlagvorgänge gehören. Bei Schlagvorgängen kommt es infolge des Zusammenstoßes zweier Werkstücke zu einer Umwandlung der kinetischen Energie. Dabei erhöht sich die Temperatur der Werkstoffe an der Kontaktstelle und es kommt unter Umständen zu einem Abtrennvorgang kleiner Partikel erhöhter Temperatur. Sowohl die heißen Kontaktstellen als auch die abgetrennten Partikel können eine wirksame Zündquelle für ein explosionsfähiges Gasgemisch darstellen. Zur Festregung von Grenzwerten wurden in der Norm EN 13463-1:2009 die Gasgemische anhand ihrer Explosionsgruppe klassifiziert und zu jeder Gruppe die maximale Energie des Schlagvorgangs festgelegt. unter derer die Entstehung einer wirksamen Zündquelle als unwahrscheinlich angenommen werden kann. T2 - Ausbildung zum Explosionsschutzbeauftragten (Veranst.-Nr.: E-H050-06-561-9), Haus der Technik CY - Essen, Germany DA - 25.06.2019 KW - Funken KW - Mechanisch erzeugte Funken KW - nichtelektrische Funken KW - Nichtelektrischer Explosionsschutz KW - Schlagfunken PY - 2019 AN - OPUS4-48541 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lin, Xuebao T1 - Weathering Resistance of Halogen-free Flame Retardance in E&E Polymeric Materials N2 - Nowadays, various polymeric materials are used in E&E applications with sufficient flame retardance by adding rather different flame retardants. It doesn’t matter whether cables are used outdoor or are installed indoor as building products, the weathering exposures such as UV radiation, humidity and variation in temperature occur and influence the flame-retardant property. Recently, the lifetime of the flame retardance itself becomes an increasingly important factor. In this work, several devices were used to perform accelerated artificial ageing simulating different environment exposures. The comprehensive and global understanding of the durability of flame retardance in dependence on the weathering or ageing conditions is still a matter of discussion. Therefore, the weathering resistance of various halogen-free fire-retarded polymers was investigated in this work. Polymeric systems with different kinds of fire retardants were chosen, including various fire retardant mechanisms. Ethylene Vinyl Acetate (EVA) blends with high amounts of inorganic flame retardant such as aluminum hydroxide (ATH), boehmite and synergists, which mainly dilutes the polymer resin work as heat sink and cooling agent, and enhance residue formation was examined. Thermoplastic Polyurethane (TPU) was modified with melamine cyanurate (MC), which mainly acts by changed melt flow and dripping behavior as well as fuel dilution. Additionally, aluminum diethylphosphinate and boehmite are induced as assistant flame retardant. Furthermore, glass fiber reinforced Polyamide 66 (PA) was investigated containing different kinds of aluminum diethylphosphinate based flame retardant mixtures, which acts by flame inhibition and additional char formation. The degradation of the surface was analyzed after the different weathering conditions. Most of the specimens exhibited an intensive material degradation at the top surface accompanied by a distinct discoloration, e.g. getting darker or showing yellowing. The weathering of the EVA samples lead to numerous cracks (already) after 4000 h. The corresponding changes in the chemical structure was investigated by ATR FT-IR for all materials. The flammability was investigated by cone calorimeter, UL-94 burning chamber, and oxygen index (LOI) using plate and bar specimens. The flame retardance of most of the materials studied degrades only slightly or were rather stable for the investigated exposure times. Interestingly, also some opposite results were found. EVA modified by different inorganic flame retardants such as ATH achieved higher LOI after exposing in the humidity chamber and the accelerated oxidation under water in the autoclaves. It is suggested that the particle size of ATH and boehmite plays an important role, when these flame retardants agglomerate at the surface during accelerated weathering. Both materials, EVA and TPU, were also investigated as cable jackets. While EVA modified with inorganic flame retardants exhibits low-smoke and non-dripping fire behavior, TPU flame-retarded with MC yields cables with pronounced melt-dripping. Cone calorimeter tests were carried out using cable rafts of the size of 100 mm * 100 mm as well as our self-made cable module test, which simulates the vertical full-scale test of a bundle of cables at the bench-scale. Both methods were used to investigate the weathering resistance of the flame retardance in cables. The results of the cable module test for the flame-retarded EVA cables were only slightly affected even when a long time hydrothermal ageing was carried out. This is because of inorganic residue which just delays the fire growth but does not extinguish. However, for the flame-retarded TPU cable jackets, the cable module test exhibited an accelerated fire spread and a melt-dripping behavior which was promoted by weathering exposure. T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Cable KW - Flame retardant KW - Weathering resistance KW - Durability KW - ethylene vinyl acetate KW - Thermoplastic polyurethane KW - Flammability PY - 2019 AN - OPUS4-48553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Flame Retardant Polyurethane: An Old, an Actual, and a Future Challenge N2 - This paper is based mainly on the results of two different projects performed in the group of the author recently (2016-2019). The three external partners involved in these two projects are competent in the preparation of FPUF (ICL IP America), RPUF (Department of Industrial Engineering, Padova University), and TPU (Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF, Darmstadt) as well as for the specimen preparation. Systematically varied sets of materials were prepared as the key basic for scientific discussion, varying the kind and combination of flame retardant, PUR structure, density, and blowing agent. A multimethodical approach based on thermogravimetry (TGA), TGA coupled with evolved gas analysis (TGA-FTIR) and pyrolysis GC-MS was used for investigating the pyrolysis. The flammability was addressed using oxygen index (OI) and testing in UL 94 burning chamber in vertical and horizontal set-up. The fire behaviour was addressed by using a cone calorimeter. Beyond these methods according to the state of the art, key experiments were performed. We addressed the dripping and the two-stage burning of TPU using a self-designed apparatus and specific data evaluation, the foam burning through quenching burning samples, using different special sample holders, and measuring temperature profiles within the burning foams. The investigation is made round by intensive analysis of the fire residues, such as comprehensive investigation of the morphology. Result on the pyrolysis (TGA-FTIR, Pyrolysis-GC/MS), flammability (UL 94, LOI), and fire behaviour (cone calorimeter) of TPU and flame retardant TPUs are shown. We discuss in detail the characteristic of PUR decomposition: the low tendency to char, and the specific two step decomposition and how these characteristics control the regimes in fire behaviour. We demonstrate that the different burning regimes are controlled by different pyrolysis products and effective heat of combustions. The resulting formation of pool fires as well as the formation of dripping is discussed in detail. The latter quite important to understand the flame retardancy applied with respect to achieve the UL 94 classification V0 nondripping or V0 non-flaming dripping. Rigid and flexible PUR foams and their flame retarded versions are investigated for different densities. Water and pentane-blown foams are compared as well as PUR and polyisocyanurate-polyurethane (PIR) foams. Horizontal testing in the cone calorimeter is used and the vertical foam specimen holder as well. Self-designed set-ups within the cone calorimeter enable a better inside in the pyrolysis front running through the foam samples as well as the development of the temperature gradient inside the foam during the fire test. The morphology change during burning was characterised by the means of quenching burning foams with liquid nitrogen and investigating the cross sections with scanning electron microscope. In sum, a rather comprehensive study was performed to work out the principle fire phenomena controlling the fire behaviour of PUR foams in a very systematic and significant way. Promising flame retardancy approaches are discussed. The importance of either combining the drain of fuel and flame inhibition or charring into an effective protection layer/multicellular structure is underlined. This contribution focusses the general conclusions and trends. It tries to increase the understanding of the specific and demanding challenge to develop flame retardant PUR materials. T2 - Interflam 2019, 15th International Interflam Conference CY - Egham, UK DA - 01.07.2019 KW - Polyurethane KW - Flame retardant KW - Dripping KW - Flammability KW - Pool fire KW - Pyrolysis KW - Decomposition KW - Foams PY - 2019 AN - OPUS4-48557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard T1 - Understanding flame retardant modes of action: a wellspring for evidence-based development N2 - Although the main flame retardant modes of action are known, in practise the detailed scientific understanding usually falls short, when it comes to modern multicomponent systems, the important tiny optimizations, or quantifying in terms of specific fire properties. The description of the flame retardant modes of action remains usually vague and fragmentary. This talk tries to deliver thought-provoking impulses how the understanding of the fire behaviour and flame retardancy can be utilized to direct the development of future flame retardant polymer products. Some overseen details are picked up as well as rethinking of concepts memorised long ago is encouraged to discover something new. Furthermore, the talk tries to fill the gap between flame retardant modes of action and fire performance constituting a product. This talk promotes the evidence-based development of flame retardant polymers T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Flame retardant KW - Modes of action KW - Fire behaviour PY - 2019 AN - OPUS4-48551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pospiech, D. T1 - Decomposition and combustion behavior of lignin-containing polyesters: development of new carbon fiber precursors and flame retarded polyester fibers N2 - Our approach includes the preparation of blends of preferably liquid-crystalline polyesters with Lignin, but also the synthesis of new polyesters with Lignin-related monomer units. While most studies employ pulped Lignin directly, we first purified the Kraft Lignin by fractionation, followed by chemical modification of the terminal OH groups. Acetylation results in the reduction of glass transition temperatures (Tg) below 200°C, improved processability in the melt with complete melting of the Lignin sample, and higher thermostability. These Lignin fractions were melt-mixed in a mini-twin-screw extruder with polyesters. The chemical structure of the polyesters was systematically varied between poly(ethylene terephthalate), (PET); poly(ethylene terephthalate-co-oxybenzoate), (PET/HBA); liquid crystalline polyesters with fully aromatic structure; and polyesters with Lignin-related monomers like ferulic and vanillic acid). The polymer influence on the blending behavior with Lignin was examined. SEM revealed phase-separated blends with partial compatibilization of the phases indicated by the shift of Tg’s. The influence of the polyester and the Lignin on decomposition and combustion was accessed by thermogravimetry (TGA), TGA-FTIR and pyrolysis-combustion flow calorimetry (PCFC) and compared to the decomposition of polyesters. The main focus was to achieve melt-spinnable blends for fibres with improved flame retardancy or as precursors for carbon fibers. Blends of Lignin fractions with the aromatic-aliphatic polyesters (here preferably PET/HBA) were successfully spun into fibers with lab-scale melt-spinning equipment. X-ray measurements revealed orientation of the fibers with Lignin. The E-moduli raised with increasing purity of the Lignin fractions (e.g., by removal of reducing sugars). The structure of the polymer matrix determines the decomposition and combustion behavior of the blends with Lignin. Incorporation of aliphatic subunits reduces the amount of remaining char formed in TGA and PCFC from about 40-45 wt% for fully aromatic polyesters to 18-25 wt% for semiaromatic polyesters (at almost comparable carbon content in the polymer), while the maximum temperature of combustion decreased from 480-530°C for the former to 410-465°C for the latter. Lignin fractionation and acetylation yields samples with high char content (36 wt%) and extremely low heat release capacity (80-90 kJ/gK) with combustion maximum temperature at 405°C. Lignin/ PET/HBA blends combine the low HRC with intermediate char and offer interesting opportunities for polyester fibers with improved flame retardancy without adding P-containing FRs. The flame retardancy behavior was explored by limiting oxygen index measurements on injection-molded parts and fibers. T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Lignin KW - Polyesther KW - Flame retardant PY - 2019 AN - OPUS4-48556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lenz, J. T1 - Novel phosphonates as flame retardants for polymers N2 - As a potential substitute for currently used halogenated flame retardants we explored the synthesis of dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO) and derivatives. BPPO is a cyclic phosphonate and was synthesized by a simple, three-component condensation using 2,2´-biphenol, phosphorus trichloride and water by improving a procedure given by Natchev. Subsequently, BPPO was employed in phospha-Michael additions in line with the known synthesis of DOPO-compounds to double bonds. These reactions result in novel phosphorus-containing compounds with flame retardant activíty. The chemical structure of the unsaturated compounds was systematically varied yielding non-reactive flame retardants (without functional groups) from acrylates and diesters, and reactive (with functional groups) flame retardants from p-benzoquinone. The use of the phosphonate BPPO and its derivatives as flame retarding additives has not been described yet. The BPPO ring is highly reactive. Therefore, it is supposed that it mainly acts in the gas phase. The new phosphonates were applied as additives for improving the flame retardancy of rigid PUR/PIR foams with triethyl phosphate (TEP) as plasticizer. The foam characteristics like density, cell integrity, pore size and mechanical properties were investigated. The burning properties of the foams were analyzed in the vertical flame spread according to DIN 4102 and by cone calorimetry. The relevant parameters depended on the phosphorus content, which is illustrated for PIR foams with ethyl 3-(6-oxidodibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)propanoate (X, Z = H; Y = OEt; EA-BPPO) as FR additive. At comparable P-content, the EA-BPPO additive reached the PHHR-values of the benchmark foam with TEP and triphenyl phosphate as FR additive. With increased P-content the values were further reduced. TML and MARHE parameters showed a similar tendency. The FR additives dispersed well in the formulation and had no significant influence on foam density, cell integrity and pore size compared to the reference sample. T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Phosphonate KW - Flame retardant KW - PUR foams PY - 2019 AN - OPUS4-48554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schalau, Bernd T1 - Die neue VDI Richtlinie 3783 Blatt 1 N2 - Die VDI 3783 Blatt 1 befindet sich in der Überarbeitung. Der Modellwechsel auf ein Langranges Partikelmodell hat weitreichende Auswirkungen auch auf den Prüfaufwand durch die Behörden. Es wird der aktuelle Bearbeitungsstand vorgestellt. T2 - Behörden-Erfahrungsaustausch CY - Berlin, Germany DA - 03.06.2019 KW - Störfall-Verordnung KW - Auswirkungsbetrachtung PY - 2019 AN - OPUS4-48538 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis T1 - Untersuchungen zum Zündverhalten von N2O/CO2/Öl-Gemischen in Kältemaschinen N2 - Lachgas kann als Medium in Kälteanwendungen unter -50 °C eingesetzt werden. Da ein explosionsartiger Zerfall von Lachgas bei erhöhtem Druck möglich ist, sind bei entsprechenden Anwendungen Explosionsgefahren zu beachten. Im Vortrag wurden die Voraussetzungen und die Einflussgrößen für den explosionsartigen Zerfall von Lachgas, wie Temperatur, Druck, Geometrie und Zündenergie vorgestellt und diskutiert. Weiterhin wurden Versuchsergebnisse zur Untersuchung des Einflusses geringer Mengen an brennbaren Komponenten (Propan und Öl-Nebel) auf die Explosionseigenschaften vorgestellt und die Stabilisierung der Gemische durch Beimischung von Kohlendioxid diskutiert. T2 - Informations-Treffen Kälteanwendungen unter -50 °C CY - Karlsruhe, Germany DA - 05.02.2019 KW - Lachgas KW - Kältemaschinen KW - Explosionsschutz PY - 2019 AN - OPUS4-48558 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tabaka, Weronika T1 - Bench-scale fire stability testing – The most effective method to investigate structural integrity of Carbon Fiber Reinforced Polymer Composites N2 - Fire resistance testing of components made of carbon fibre reinforced polymers (CFRP) composites usually demands intermediate-scale or full-scale testing. In this study a bench-scale test is presented as practicable and efficient method to assess the improvement in structural integrity of CFRP with different protective coatings during fire. T2 - FRPM 2019, 17th European Meeting on Fire Retardant Polymeric Materials CY - Turku, Finland DA - 26.06.2019 KW - Composite in Fire KW - Fire Stability KW - Bench-scale Fire Testing KW - Intumescencent Coatings KW - Nanopaper PY - 2019 AN - OPUS4-48555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -