TY - CONF A1 - Thiel, Erik T1 - AM activities at BAM with focus on process monitoring N2 - The presentation gives an overview of current projects in additive manufacturing at BAM. In particular, the results of the ProMoAm project were presented. T2 - VAMAS - Materials Issues in Additive Manufacturing CY - Berlin, Germany DA - 25.06.2018 KW - Additive Manufacturing KW - Laser Metal Deposition KW - Thermography KW - Data Fusion KW - In-situ monitoring PY - 2018 AN - OPUS4-45620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Widjaja, Martinus Putra T1 - Accumulation of fibre breaks in racetrack specimens and type IV pressure vessels N2 - The reduced volume method has been studied using the fibre break model from Mines ParisTech. This method allows less 3D finite elements to be used for predicting the failure of real scale composite structures. A favourable comparison results with racetrack specimens has been achieved. However, the comparison study with a type IV pressure vessels still requires more Evaluation. T2 - Consortium Meeting FiBreMoD CY - Toyota Motor Europe, Belgium DA - 27.03.2019 KW - Reduced volume method KW - Integral range KW - Multiscale model KW - Fibre break KW - Composite pressure vessels KW - Racetrack specimens PY - 2019 AN - OPUS4-48571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Residual stresses Analysis in Additively Manufactured alloys using neutron diffraction (L-PBF) N2 - An overview of recent progress at BAM of residual stress analysis in additively manufactured, in particular Laser Powder Bed Fusion of metallics materials, using neutron diffraction will be presented. This will cover important topics of the stress-free reference, the diffraction elastic moduli and principal stress determination. T2 - AWT-Fachausschuss 13 "Eigenspannungen" CY - Berlin, Germany DA - 28.03.2023 KW - AGIL KW - Residual stress KW - Additive manufacturing KW - Laser Powder Bed Fusion KW - Diffraction PY - 2023 AN - OPUS4-59177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - The combined use of X-ray refraction and trans-mission radiography and computed tomography N2 - Alternative to conventional transmission-based radiography and computed tomography, X-ray refraction techniques are being increasingly used to detect damage in light materials. In fact, their range of application has been recently extended even to metals. The big advantage of X-ray refraction techniques is that they are able to detect nanometric defects, whose size would lie below the resolution of even state-of-the-art synchrotron-based X-ray computed tomography (SXCT). The superiority of synchrotron X-ray refraction radiography and tomography (SXRR and SXRCT) has been shown in the case of light materials, in particular composites. X-ray refraction techniques also yield a quantitifaction of the amount of damage (the so-called relative internal specific surface) and can well be compared with damage models. At the same time, it is impossible for SXRR and SXRCT to image single defects. We show that the combination of refraction- and transmission-based imaging techniques yields an impressive amount of additional information about the type and amount of defects in microstructured materials such as additively manufactured metals or metal matrix composites. We also show that the use of data fusion techniques allows the classification of defects in statistically significant representative volume elements. T2 - 11th Conference on Industrial Computed Tomography CY - Online meeting DA - 08.02.2022 KW - X-ray refraction radiography KW - Computed Tomography KW - Synchrotron radiation KW - Additive manufacturing KW - Damage evolution PY - 2022 AN - OPUS4-54327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn T1 - Surface Characteristics of LTCC-.Substrates Fabricated by Pressure-Assisted Sintering T2 - IMAPS/ACerS 9th Int. Conf. and Exhib. on Ceramic Interconnect and Ceramic Microsystems Technolgies (CICMT 2013) CY - Orlando, FL, USA DA - 2013-04-23 PY - 2013 N1 - Geburtsname von Mieller, Björn: Brandt, B. - Birth name of Mieller, Björn: Brandt, B. AN - OPUS4-28292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Röntgen-Refraktions-Technik für eine schnelle, hochauflösende Mikrostrukturcharakterisierung von Leichtbaukompositen T2 - Verbundwerkstoffe und Werkstoffverbunde 2015 CY - Wien, Austria DA - 2015-07-01 PY - 2015 AN - OPUS4-33684 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Diffraction based residual stress analysis: challenges and opportunities in additive manufacturing N2 - This presentation overviews the challanges and opportunities of diffraction based residual stress analysis for additively manufactured metals. Through examples, the challanges and respective solutions are presented and the opportunities that the presented methods allow are described. T2 - Workshop on Advanced Manufacturing (WAM) 2025 CY - Grenoble, France DA - 03.06.2025 KW - Residual stress KW - Diffraction KW - AGIL KW - Laser powder bed fusion KW - MANUFACT PY - 2025 AN - OPUS4-64137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - Peculiarities of the determination of residual stress in additively manufactured materials N2 - The determination of residual stress in additively manufactured materials is a challenge, even after decades from the establishment of the basics of residual stress analysis. This is due to the peculiar microstructure of such materials. In fact, researchers have discovered that conventional methods for the determination of RS in materials do not properly work for AM materials. In this tutorial, the basics of RS analysis will be explained, together with the basics of AM manufacturing techniques. The microstructure of the peculiar materials (AM) dealt with here will be elucidated. Successively, the necessary modifications to the conventional approaches to RS analysis will be explained and case studies will be displayed, for the attendant to touch with hands the peculiarities of the approaches. Finally, a few experimental and theoretical tips will be given on dos and don’ts for a correct determination of RS in AM materials. T2 - 11th European Conference on Residual Stresses CY - Prague, Czech Republic DA - 03.06.2024 KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Residual Stress KW - Diffraction PY - 2024 AN - OPUS4-60428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 3D imaging and residual stress analysis of AM Materials N2 - In this seminar, the capabilities for materials characterization at Division 8.5, BAM will be shon. Particular focus will be given to residual stress analysis and defect imaging in additively manufactured materials and components T2 - Skoltech - The 3rd International Workshop of Advanced Manufacturing Technologies CY - Online meeting DA - 18.04.2023 KW - Neutron Diffraction KW - X-ray diffraction KW - X-ray Computed Tomography KW - X-ray refraction radiography KW - Residual stress KW - Additive manufacturing PY - 2023 AN - OPUS4-57360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -