TY - CONF A1 - Mirtsch, Mona T1 - Exploring the Diffusion of the ISMS Standard ISO/IEC 27001 N2 - We presented and discussed the applicability of Web Mining to explore the Diffusion of Management System Standards, in particular in regards to Information Security T2 - EURAS Conference CY - Rome, Italy DA - 14.06.2019 KW - Diffusion KW - Management system standard KW - Information security KW - Web Mining PY - 2019 AN - OPUS4-49029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - NIR-Ringversuch II: Erste Ergebnisse N2 - Vorstellung der Ergebnisse des Ringversuchs NIR II für den Analyten Paracetamol. Neben den "S-Shape" Darstellungen für die Levels A, B und C werden En-Werte und eine Darstellung der relativen Unsicherheiten (Horwitz) gezeigt. Alle beteiligten Labors zeichnen sich durch eine hohe Performance aus. T2 - 15. Ttreffen PAT RFA CY - Lonza, Visp, Switzerland DA - 17.09.2019 KW - Nahinfrarotspektroskopie KW - Ringversuch PY - 2019 AN - OPUS4-49043 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Harmonization in microplastics Analysis N2 - The lecture summarizes the current status of hamonization edr microplastics analytics in Germany. T2 - Symposium on Occurrence and Fate of Microplastics CY - Beijing, China DA - 09.07.2019 KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-49063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulow, Anicó T1 - Time- and lateral-resolved X-ray absorption fine structure spectroscopy N2 - We developed a setup for time- and lateral-resolved X-ray absorption fine structure (XAFS) spectroscopy. A dispersive element is placed behind the sample to investigate. The broadband incoming beam transmits the sample, is then dispersed and finally collected by a position sensitive detector. This allows the recording of a whole X-ray absorption near edge structure (XANES) or extended X-ray absorption fine structure (EXAFS) spectrum in a single shot. The dispersive element is a Si(111) crystal, bent by means of a so called wafer bender, developed in house. Our setup is very flexible, easy to adjust and allows a time resolution down to one second which can be used to follow chemical reactions with dynamics on this time scale. T2 - SXR2019 CY - Berlin, Germany DA - 16.09.2019 KW - Spectroscopy KW - X-ray KW - Absorption KW - Synchrotron PY - 2019 AN - OPUS4-49045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mirtsch, Mona T1 - Web Mining zur Erforschung von Nutzung von Standards und Zertifikaten N2 - Anhand eines Anwendungsbeispiels im Bereich Informationssicherheit wird das Web Mining von Unternehmenswebseiten vorgestellt und diskutiert. T2 - Abteilungsseminar CY - BAM, Berlin DA - 28.01.2019 KW - Management Systeme KW - Web Mining KW - Informationssicherheit PY - 2019 AN - OPUS4-49028 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Denkler, Tilman T1 - Introduction meeting accredia - Analysis of the operation of accreditation bodies in Europe N2 - The long-term goal of the benchmarking project for European accreditation bodies is twofold: First of all, the project is supposed to help the European accreditation attending bodies to improve their processes by identifying best practices and by learning from others. Possibly Secondly, the results of the analysis can be used by the European Cooperation for Accreditation (EA) to identify differences in the operation of the European accreditation bodies and based on this knowledge to promote harmonization of accreditation activities in Europe. T2 - Kick-off at Accredia, Milano CY - Mailand, Italy DA - 28.08.2019 KW - Accreditation KW - Benchmarking PY - 2019 AN - OPUS4-49047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials (GR2M) as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended in projects at standardization bodies. The parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present. In this contribution, for the first time, the capability of SEM/EDS to reliably quantify the O/C ratio in a well-characterized graphene oxide (GO) material is evaluated. The robustness of the SEM/EDS results under various measurement conditions is tested by comparison to the established XPS analysis. A crucial step is the sample preparation from liquid suspension with GO flakes onto a substrate for analysis with both EDS and XPS. It is demonstrated that if a closed and enough thick drop-cast spot is deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, the theoretical, expected O/C atomic ratio values for pure GO of ~0.5 are achieved with both methods. Further, the effect of untight deposited material causing co-analysis of the silicon substrate, is evaluated for both methods, XPS and EDS. Note that all the EDS results in this study have been quantified standardless. The standard measurement procedure including the GO material considered here as a candidate reference material will make a significant contribution to analyse reliably the chemical composition of GR2M with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - EDX KW - Graphene-related 2D materials KW - O/C ratio KW - Standardisation KW - Samle preparation KW - XPS PY - 2025 AN - OPUS4-64261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Marcoulaki, E. T1 - Blueprint for a sustainable new European Centre to support safe innovation for nanotechnology N2 - This paper presents the blueprint for the operation of a sustainable and permanent European Centre of collaborating reference laboratories and research centres, to establish a one-stop shop for a wide variety of nanosafety related services, and to provide a central contact point for questions about nanosafety in Europe. The Centre aims to harmonise service provision, and bring novel risk assessment and management approaches closer to practice. T2 - NANOSAFE 2020 CY - Online meeting DA - 16.11.2020 KW - EC4SafeNano KW - European Centre KW - Nanomaterials KW - Nanosafety KW - Catalogue of Services (CoS) PY - 2020 UR - https://www.nanosafe.org/cea-tech/pns/nanosafe/en AN - OPUS4-51694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Considerations for nanomaterial identification of powders using volume-specific surface area method N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming. For most measurement methods for particle size determination it is necessary to initially disperse the particles in a suitable liquid. However, as the particle size decreases, the adhesion forces increase strongly, making it more difficult to deagglomerate the particles and to assess accurately the result of this process. Therefore, the success of the deagglomeration process substantially determines the measurement uncertainty and hence, the comparability between different methods. Many common methods such as dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS) or ultrasound attenuation spectroscopy (US) can give good comparable results for the size of nanoparticles, if they are properly separated and stabilized (e.g. in reference suspensions). In order to avoid the use of hardly available and expensive methods such as SEM / TEM for all powders, an agglomeration-tolerant screening method is useful. One of the measurement methods well suited to probe the size of particulate powder is the determination of the volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method was associated also with some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions, but also with the degree of sphericity of the particles. For particles containing micro-pores or having a microporous coating, false positive results are induced. Furthermore, broad particle size distributions made necessary to additionally correct the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach was tested in relation with SEM and TEM measurements. The introduction of a correction term for deviations from sphericity and further additions improved the applicability of VSSA as a screening method. T2 - Partec CY - Nuremberg, Germany DA - 09.04.2019 KW - VSSA KW - Nanoparticles PY - 2019 AN - OPUS4-47874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Glow-Discharge Optical Emission Spectroscopy (GDOES) - A powerful tool for the characterisation of coatings T2 - 7th International Conference on Plasma Surface Engineering (PSE 2000) CY - Garmisch-Partenkirchen, Germany DA - 2000-09-17 PY - 2000 AN - OPUS4-6113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -