TY - CONF A1 - Gornushkin, Igor B. T1 - A Long Way of Plasma Modeling: Personal Experience N2 - Modeling is an important tool for understanding a physical phenomenon. It helps to interpret results of experiments and optimize experimental parameters for obtaining a desirable result. Modeling laser induced plasma is beneficial for many scientific and industrial fields, e.g., analytical chemistry, pulsed laser deposition, plasma enhanced chemical vapor deposition, laser welding, additive manufacturing etc. In this presentation, a personal experience in development of a physical model of laser induced plasma will be given in a chronological sequence starting from early 2000th and until now. Over the time, the model evolved from its simple analytical form that described plasma emission spectra to its current numerical form that describes plasma dynamics, chemistry, and interaction with a substrate surface. Several examples will be given for the application of the model to practical problems such as spectroscopic chemical analysis, plasma enhanced chemical vapor deposition, and surface modification by laser ablation. T2 - XII World Conference on Laser Induced Breakdown Spectroscopy CY - Bari, Italy DA - 05.09.2022 KW - Laser induced plasma KW - CFD computational fluid dynamic KW - Plasma modeling KW - Plasma chemistry PY - 2022 AN - OPUS4-55669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin T1 - Distributed fiber optic sensing @BAM N2 - Research and developement activities of BAM regarding Distributed Fiber Optic Sensing are portrayed using exemplary previous and current projects. Shown results pertain to distributed acoustic sensing (DAS), distributed temperagture sensing (DTS) and distributed strain sensing (DSS). T2 - Seismic seminar FU Berlin (group Prof. Shapiro) CY - Online meeting DA - 15.09.2022 KW - Distributed fiber optic sensing KW - Distributed acoustic sensing KW - Distributed temperature sensing KW - Distributed strain sensing KW - Infrastructure monitoring PY - 2022 AN - OPUS4-55721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim T1 - Overview of NDT techniques for moisture measurements in building materials N2 - Overview of NDT techniques for moisture measurements in building materials used in department 8 of BAM. T2 - ENBRI Expert Workshop "Hygrothermal testing - a necessity to guarantee durable buildings" CY - Brussels, Belgium DA - 21.09.2022 KW - Moisture KW - Building materials KW - GPR KW - NMR KW - Microwave PY - 2022 AN - OPUS4-55817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced Periodic Surface Structures (LIPSS): Mechanisms, Applications, and unsolved Problems N2 - Laser-induced Periodic Surface Structures (LIPSS, ripples) are a universal phenomenon and can be generated in a contactless, single-step process on almost any type of solid upon irradiation with intense laser pulses. They represent a (quasi-)periodic modulation of the surface topography in the form of a linear grating and are typically formed in a “self-ordered” way in the focus of a laser beam. Thus, they are often accompanying laser material processing applications. The structural sizes of LIPSS typically range from several micrometers down to less than 100 nanometers – far beyond the optical diffraction limit – while their orientations exhibit a clear correlation with the local polarization direction of the laser radiation. From a theoretical point of view, a controversial debate has emerged during the last decades, whether LIPSS originate from electromagnetic effects (seeded already during the laser irradiation) – or whether they emerge from matter-reorganization processes (distinctly after the laser irradiation). From a practical point of view, however, LIPSS represent a simple and robust way for the nanostructuring of solids that allows creating a wide range of different surface functionalities featuring applications in optics, tribology, medicine, energy technologies, etc. While the currently available laser and scanner technology already allows surface processing rates at the m^2/min level, industrial applications of LIPSS are sometimes limited by the complex interplay between the nanoscale surface topography and the specific surface chemistry. This typically manifests in difficulties to control the processing of LIPSS and in limitations to ensure the long-term stability of the created surface functions. This presentation reviews the currently existent theories of LIPSS. A focus is laid on the historic development of the fundamental ideas behind the LIPSS, their corresponding mathematical descriptions and numerical implementations, along with a comparison and critical assessment of the different approaches. Moreover, some unsolved scientific problems related to LIPSS are identified and the pending technological limitations are discussed. Hereby, it is intended to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry T2 - 10th International LIPSS Workshop 2022 CY - Orléans, France DA - 21.09.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser processing KW - Time-resolved coherent scattering PY - 2022 AN - OPUS4-55814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystals systems N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time-resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray absorption spectroscopy, NMR, Raman spectroscopy, and thermography. Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals, metal-organic compounds, and salts, thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. Our results indicate that time-resolved in situ investigations of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 5ECQUL Forging Bonds CY - Lisbon, Portugal DA - 12.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - N-Chlorination PY - 2022 AN - OPUS4-55414 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken not stirred: enhancing the flavor of mechanochemistry N2 - compounds and cocrystals. The ever-increasing interest in this method is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. Time-resolved in situ investigations of milling reactions (Figure 1) provide direct insights into the underlying mechanisms. We recently introduced different setups enabling in situ investigation of mechanochemical reactions using synchrotron XRD and XAS combined with Raman spectroscopy and thermography. The presented setup allows the detection of crystalline, amorphous, eutectic, and liquid intermediates. Furthermore, the chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key to future optimization of mechanochemical syntheses. In this contribution, we will discuss our recent results investigating the formation of (polymorphic) cocrystals and coordination polymers. Our results indicate that time-resolved in situ investigations of mechanochemical processes are key for tuning and optimizing mechanochemical syntheses allowing to unleash the potential of mechanochemistry for a green materials design. T2 - 2nd National Crystallographic Meeting Lisbon, Portugal CY - Lisbon, Portugal DA - 15.07.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Crystal PY - 2022 AN - OPUS4-55415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemical formation of multicomponent crystal systems: Mechanism & Kinetics N2 - Mechanochemistry is an effective, environmentally benign, and facile method for the synthesis of new multicomponent crystal systems. Different milling parameters are known to affect the mechanisms and rates of product formation: milling frequency, milling time, filling degree of the milling jar, ball diameter and vessel size, degree of milling ball filling, and material of jars. The increasing interest in mechanochemistry is contrasted by a limited mechanistic understanding of the mechanochemical reactivity and selectivity. Different analytical methods and their combinations have been developed for the time resolved in situ monitoring of mechanochemical transformations, including powder X-ray diffraction, X-ray adsorption spectroscopy, NMR, Raman spectroscopy, and thermography.1 Here we will discuss our recent results investigating the formation of (polymorphic) cocrystals2–3 and metal-organic frameworks,4 thereby elucidating the influence of milling parameters and reaction sequences on the formation mechanism and kinetics. For the mechanochemical chlorination reaction of hydantoin normalizing the kinetic profiles to the volume of the milling ball showed clearly that milling reaction kinetics are conserved.6 Here physical kinetics dominate reaction rates in a ball-milling transformation. Attempting to interpret such kinetics in purely chemical terms risk misinterpreting the results. Our results indicate that time-resolved in situ investigation of milling reactions offer a new approach to tune and optimize mechanochemical processes. T2 - 10th International conference on Mechanochemistry and Mechanical Alloying CY - Cagliari, Italy DA - 06.06.2022 KW - Mechanochemistry KW - In situ real-time monitoring KW - Cocrystal PY - 2022 AN - OPUS4-55421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sichler, Theresa T1 - Analyseverfahren und Messhäufigkeit zur Bestimmung des Phosphorgehalts im Klärschlamm nach AbfKlärV N2 - Auf dem Betreiberforum der DWA-Plattform P-Rück wurden die Empfehlungen für den Vollzug der Phosphorrückgewinnungspflicht aus Klärschlamm vorgestellt. Diese Empfehlungen behandeln die Häufigkeit der Phosphoruntersuchungen im Klärschlamm, wo ein Jahresgang empfohlen wird und eine Empfehlung der Phosphorbestimmung über Aufschluss der Probe in der Mikrowelle und Messung mit ICP-OES. Untermauert wurden die Empfehlungen mit den Ergebnissen von Klärschlamm-Monitoring, Ringversuch und Analytikvergleich aus dem Vorhaben extraWERT. T2 - Betreiberforum der DWA-Plattform P-Rück CY - Stuttgart, Germany DA - 23.06.2022 KW - Klärschlamm KW - Ringversuch KW - Reproduzierbarkeit KW - Phosphorrückgewinnung PY - 2022 AN - OPUS4-55146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Athman, Rukeia T1 - The BAM Data Store – an institutional RDM framework for Materials Science and Engineering N2 - In view of the increasing digitization of research and the use of data-intensive measurement and analysis methods, research institutions and their staff are faced with the challenge of documenting a constantly growing volume of data in a comprehensible manner, archiving them for the long term, and making them available for discovery and re-use by others in accordance with the FAIR principles. At BAM, we aim to facilitate the integration of research data management (RDM) strategies during the whole research cycle from the creation and standardized description of materials datasets to their publication in open repositories. To this end, we present the BAM Data Store, a central system for internal RDM that fulfills the heterogenous demands of materials science and engineering labs. The BAM Data Store is based on openBIS, an open-source software developed by the ETH Zurich that has originally been created for life science laboratories but that has since been deployed in a variety of research domains. The software offers a browser-based user interface for the digital representation of lab inventory entities (e.g., samples, chemicals, instruments, and protocols) and an electronic lab notebook for the standardized documentation of experiments and analyses. To investigate whether openBIS is a suitable framework for the BAM Data Store, we carried out a pilot phase during which five research groups with employees from 16 different BAM divisions were introduced to the software. The pilot groups were chosen to represent a diverse array of domain use cases and RDM requirements (e.g., small vs big data volume, heterogenous vs structured data types) as well as varying levels of prior IT knowledge on the users’ side. Overall, the results of the pilot phase are promising: While the creation of custom data structures and metadata schemas can be time-intensive and requires the involvement of domain experts, the system offers specific benefits in the form of a simplified documentation and automation of research processes, as well as constituting a basis for data-driven analysis. In this way, heterogeneous research workflows in various materials science research domains could be implemented, from the synthesis and characterization of nanomaterials to the monitoring of engineering structures. In addition to the technical deployment and the development of domain-specific metadata standards, the pilot phase also highlighted the need for suitable institutional infrastructures, processes, and role models. An institute-wide rollout of the BAM Data Store is currently being planned. T2 - Analytica Conference 2022 CY - Munich, Germany DA - 21.06.2022 KW - BAM Data Store KW - Forschungsdatenmanagement KW - Research data management KW - OpenBIS PY - 2022 AN - OPUS4-55139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -